Function reference
-
H()
- Shannon entropy for multivariate discrete data
-
I2symb()
- Convert 0/1 coding to pathogen/combinations
-
Imat2cat()
- Convert a matrix of binary indicators to categorical variables
-
NA2dot()
- convert 'NA' to '.'
-
add_meas_BrS_case_Nest_Slice()
- add likelihood for a BrS measurement slice among cases (conditional dependence)
-
add_meas_BrS_case_Nest_Slice_jags()
- add likelihood for a BrS measurement slice among cases (conditional dependence)
-
add_meas_BrS_case_NoNest_Slice()
- add a likelihood component for a BrS measurement slice among cases (conditional independence)
-
add_meas_BrS_case_NoNest_Slice_jags()
- add a likelihood component for a BrS measurement slice among cases (conditional independence)
-
add_meas_BrS_case_NoNest_reg_Slice_jags()
- add likelihood component for a BrS measurement slice among cases
-
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags()
- add likelihood component for a BrS measurement slice among cases
-
add_meas_BrS_ctrl_Nest_Slice()
- add likelihood for a BrS measurement slice among controls (conditional independence)
-
add_meas_BrS_ctrl_NoNest_Slice()
- add a likelihood component for a BrS measurement slice among controls (conditional independence)
-
add_meas_BrS_ctrl_NoNest_reg_Slice_jags()
- add a likelihood component for a BrS measurement slice among controls
-
add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags()
- add a likelihood component for a BrS measurement slice among controls
-
add_meas_BrS_param_Nest_Slice()
- add parameters for a BrS measurement slice among cases and controls (conditional dependence)
-
add_meas_BrS_param_Nest_Slice_jags()
- add parameters for a BrS measurement slice among cases and controls (conditional dependence)
-
add_meas_BrS_param_Nest_reg_Slice_jags()
- add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_param_NoNest_Slice()
- add parameters for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_BrS_param_NoNest_Slice_jags()
- add parameters for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_BrS_param_NoNest_reg_Slice_jags()
- add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags()
- add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_subclass_Nest_Slice()
- add subclass indicators for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_SS_case()
- add likelihood for a SS measurement slice among cases (conditional independence)
-
add_meas_SS_param()
- add parameters for a SS measurement slice among cases (conditional independence)
-
as.matrix_or_vec()
- convert one column data frame to a vector
-
assign_model()
- Interpret the specified model structure
-
baker
- baker: Bayesian Analytic Kit for Etiology Research
-
beta_parms_from_quantiles()
- Pick parameters in the Beta distribution to match the specified range
-
beta_plot()
- Plot beta density
-
bin2dec()
- Convert a 0/1 binary-coded sequence into decimal digits
-
check_dir_create()
- check existence and create folder if non-existent
-
clean_combine_subsites()
- Combine subsites in raw PERCH data set
-
clean_perch_data()
- Clean PERCH data
-
combine_data_nplcm()
- combine multiple data_nplcm (useful when simulating data from regression models)
-
compute_logOR_single_cause()
- Calculate marginal log odds ratios
-
compute_marg_PR_nested_reg()
- compute positive rates for nested model with subclass mixing weights that are the same across
Jcause
classes for each person (people may have different weights.)
-
compute_marg_PR_nested_reg_array()
- compute positive rates for nested model with subclass mixing weights that are the same across
Jcause
classes for each person (people may have different weights.)
-
create_bugs_regressor_Eti()
- create regressor summation equation used in regression for etiology
-
create_bugs_regressor_FPR()
- create regressor summation equation used in regression for FPR
-
data_nplcm_noreg
- Simulated dataset that is structured in the format necessary for an
nplcm()
without regression
-
data_nplcm_reg_nest
- Simulated dataset that is structured in the format necessary for an
nplcm()
with regression
-
delete_start_with()
- Deletes a pattern from the start of a string, or each of a vector of strings.
-
dm_Rdate_Eti()
- Make etiology design matrix for dates with R format.
-
dm_Rdate_FPR()
- Make FPR design matrix for dates with R format.
-
expit()
- expit function
-
extract_data_raw()
- Import Raw PERCH Data
extract_data_raw
imports and converts the raw data to analyzable format
-
get_coverage()
- Obtain coverage status from a result folder
-
get_direct_bias()
- Obtain direct bias that measure the discrepancy of a posterior distribution of pie and a true pie.
-
get_fitted_mean_nested()
- get fitted mean for nested model with subclass mixing weights that are the same among cases
-
get_fitted_mean_no_nested()
- get model fitted mean for conditional independence model
-
get_individual_data()
- get individual data
-
get_individual_prediction()
- get individual prediction (Bayesian posterior)
-
get_latent_seq()
- get index of latent status
-
get_marginal_rates_nested()
- get marginal TPR and FPR for nested model
-
get_marginal_rates_no_nested()
- get marginal TPR and FPR for no nested model
-
get_metric()
- Obtain Integrated Squared Aitchison Distance, Squared Bias and Variance (both on Central Log-Ratio transformed scale) that measure the discrepancy of a posterior distribution of pie and a true pie.
-
get_pEti_samp()
- get etiology samples by names (no regression)
-
get_plot_num()
- get the plotting positions (numeric) for the fitted means; 3 positions for each cell
-
get_plot_pos()
- get a list of measurement index where to look for data
-
get_postsd()
- Obtain posterior standard deviation from a result folder
-
get_top_pattern()
- get top patterns from a slice of bronze-standard measurement
-
has_non_basis()
- test if a formula has terms not created by [s_date_Eti() or
s_date_FPR()
-
init_latent_jags_multipleSS()
- Initialize individual latent status (for
JAGS
)
-
insert_bugfile_chunk_noreg_etiology()
- insert distribution for latent status code chunk into .bug file
-
insert_bugfile_chunk_noreg_meas()
- Insert measurement likelihood (without regression) code chunks into .bug model file
-
insert_bugfile_chunk_reg_discrete_predictor_etiology()
- insert etiology regression for latent status code chunk into .bug file; discrete predictors
-
insert_bugfile_chunk_reg_discrete_predictor_nonest_meas()
- Insert measurement likelihood (with regression; discrete) code chunks into .bug model file
-
insert_bugfile_chunk_reg_etiology()
- insert etiology regression for latent status code chunk into .bug file
-
insert_bugfile_chunk_reg_nest_meas()
- Insert measurement likelihood (nested model+regression) code chunks into .bug model file
-
insert_bugfile_chunk_reg_nonest_meas()
- Insert measurement likelihood (with regression) code chunks into .bug model file
-
is.error()
- Test for 'try-error' class
-
is_discrete()
- Check if covariates are discrete
-
is_intercept_only()
- check if the formula is intercept only
-
is_jags_folder()
- See if a result folder is obtained by JAGS
-
is_length_all_one()
- check if a list has elements all of length one
-
jags2_baker()
- Run
JAGS
from R
-
line2user()
- convert line to user coordinates
-
loadOneName()
- load an object from .RDATA file
-
logOR()
- calculate pairwise log odds ratios
-
logit()
- logit function
-
logsumexp()
- log sum exp trick
-
lookup_quality()
- Get position to store in data_nplcm$Mobs:
-
make_filename()
- Create new file name
-
make_foldername()
- Create new folder name
-
make_list()
- Takes any number of R objects as arguments and returns a list whose names are derived from the names of the R objects.
-
make_meas_object()
- Make measurement slice
-
make_numbered_list()
- Make a list with numbered names
-
make_template()
- make a mapping template for model fitting
-
marg_H()
- Shannon entropy for binary data
-
match_cause()
- Match latent causes that might have the same combo but different specifications
-
merge_lists()
- For a list of many sublists each of which has matrices as its member, we combine across the many sublists to produce a final list
-
my_reorder()
- Reorder the measurement dimensions to match the order for display
-
nplcm()
- Fit nested partially-latent class models (highest-level wrapper function)
-
nplcm_fit_NoReg()
- Fit nested partially-latent class model (low-level)
-
nplcm_fit_Reg_Nest()
- Fit nested partially-latent class model with regression (low-level)
-
nplcm_fit_Reg_NoNest()
- Fit nested partially-latent class model with regression (low-level)
-
nplcm_fit_Reg_discrete_predictor_NoNest()
- Fit nested partially-latent class model with regression (low-level)
-
nplcm_read_folder()
- Read data and other model information from a folder that stores model results.
-
null_as_zero()
- Convert
NULL
to zero.
-
order_post_eti()
- order latent status by posterior mean
-
overall_uniform()
- specify overall uniform (symmetric Dirichlet distribution) for etiology prior
-
parse_nplcm_reg()
- parse regression components (either false positive rate or etiology regression) for fitting npLCM; Only use this when formula is not
NULL
.
-
pathogen_category_perch
- pathogens and their categories in PERCH study (virus or bacteria)
-
pathogen_category_simulation
- Hypothetical pathogens and their categories (virus or bacteria)
-
plot(<nplcm>)
plot.nplcm
plot the results fromnplcm()
.
-
plot_BrS_panel()
- Plot bronze-standard (BrS) panel
-
plot_SS_panel()
- Plot silver-standard (SS) panel
-
plot_case_study()
- visualize the PERCH etiology regression with a continuous covariate
-
plot_check_common_pattern()
- Posterior predictive checking for the nested partially class models - frequent patterns in the BrS data. (for multiple folders)
-
plot_check_pairwise_SLORD()
- Posterior predictive checking for nested partially latent class models - pairwise log odds ratio (only for bronze-standard data)
-
plot_etiology_regression()
- visualize the etiology regression with a continuous covariate
-
plot_etiology_strat()
- visualize the etiology estimates for each discrete levels
-
plot_leftmost()
- plotting the labels on the left margin for panels plot
-
plot_logORmat()
- Visualize pairwise log odds ratios (LOR) for data that are available in both cases and controls
-
plot_panels()
- Plot three-panel figures for nested partially-latent model results
-
plot_pie_panel()
- Plot etiology (pie) panel
-
plot_subwt_regression()
- visualize the subclass weight regression with a continuous covariate
-
print(<nplcm>)
print.nplcm
summarizes the results fromnplcm()
.
-
print(<summary.nplcm.no_reg>)
- Compact printing of
nplcm()
model fits
-
print(<summary.nplcm.reg_nest>)
- Compact printing of
nplcm()
model fits
-
print(<summary.nplcm.reg_nest_strat>)
- Compact printing of
nplcm()
model fits
-
print(<summary.nplcm.reg_nonest>)
- Compact printing of
nplcm()
model fits
-
print(<summary.nplcm.reg_nonest_strat>)
- Compact printing of
nplcm()
model fits
-
read_meas_object()
- Read measurement slices
-
rvbern()
- Sample a vector of Bernoulli variables.
-
s_date_Eti()
- Make Etiology design matrix for dates with R format.
-
s_date_FPR()
- Make false positive rate (FPR) design matrix for dates with R format.
-
set_prior_tpr_BrS_NoNest()
- Set true positive rate (TPR) prior ranges for bronze-standard (BrS) data
-
set_prior_tpr_SS()
- Set true positive rate (TPR) prior ranges for silver-standard data.
-
set_strat()
- Stratification setup by covariates
-
show_dep()
- Show function dependencies
-
show_individual()
- get an individual's data from the output of
clean_perch_data()
-
simulate_brs()
- Simulate Bronze-Standard (BrS) Data
-
simulate_latent()
- Simulate Latent Status:
-
simulate_nplcm()
- Simulate data from nested partially-latent class model (npLCM) family
-
simulate_ss()
- Simulate Silver-Standard (SS) Data
-
softmax()
- softmax
-
subset_data_nplcm_by_index()
- subset data from the output of
clean_perch_data()
-
summarize_BrS()
- summarize bronze-standard data
-
summarize_SS()
- silver-standard data summary
-
summary(<nplcm>)
summary.nplcm
summarizes the results fromnplcm()
.
-
sym_diff_month()
- get symmetric difference of months from two vector of R-format dates
-
symb2I()
- Convert names of pathogen/combinations into 0/1 coding
-
tsb()
- generate stick-breaking prior (truncated) from a vector of random probabilities
-
unfactor()
- Convert factor to numeric without losing information on the label
-
unique_cause()
- get unique causes, regardless of the actual order in combo
-
unique_month()
- Get unique month from Date
-
visualize_case_control_matrix()
- Visualize matrix for a quantity measured on cases and controls (a single number)
-
visualize_season()
- visualize trend of pathogen observation rate for NPPCR data (both cases and controls)
-
write.model()
- function to write bugs model (copied from R2WinBUGS)
-
write_model_NoReg()
- Write .bug model file for model without regression
-
write_model_Reg_Nest()
- Write
.bug
model file for regression model WITH nested subclasses
-
write_model_Reg_NoNest()
- Write .bug model file for regression model without nested subclasses
-
write_model_Reg_discrete_predictor_NoNest()
- Write .bug model file for regression model without nested subclasses