Skip to contents

All functions

H()
Shannon entropy for multivariate discrete data
I2symb()
Convert 0/1 coding to pathogen/combinations
Imat2cat()
Convert a matrix of binary indicators to categorical variables
NA2dot()
convert 'NA' to '.'
add_meas_BrS_case_Nest_Slice()
add likelihood for a BrS measurement slice among cases (conditional dependence)
add_meas_BrS_case_Nest_Slice_jags()
add likelihood for a BrS measurement slice among cases (conditional dependence)
add_meas_BrS_case_NoNest_Slice()
add a likelihood component for a BrS measurement slice among cases (conditional independence)
add_meas_BrS_case_NoNest_Slice_jags()
add a likelihood component for a BrS measurement slice among cases (conditional independence)
add_meas_BrS_case_NoNest_reg_Slice_jags()
add likelihood component for a BrS measurement slice among cases
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags()
add likelihood component for a BrS measurement slice among cases
add_meas_BrS_ctrl_Nest_Slice()
add likelihood for a BrS measurement slice among controls (conditional independence)
add_meas_BrS_ctrl_NoNest_Slice()
add a likelihood component for a BrS measurement slice among controls (conditional independence)
add_meas_BrS_ctrl_NoNest_reg_Slice_jags()
add a likelihood component for a BrS measurement slice among controls
add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags()
add a likelihood component for a BrS measurement slice among controls
add_meas_BrS_param_Nest_Slice()
add parameters for a BrS measurement slice among cases and controls (conditional dependence)
add_meas_BrS_param_Nest_Slice_jags()
add parameters for a BrS measurement slice among cases and controls (conditional dependence)
add_meas_BrS_param_Nest_reg_Slice_jags()
add parameters for a BrS measurement slice among cases and controls
add_meas_BrS_param_NoNest_Slice()
add parameters for a BrS measurement slice among cases and controls (conditional independence)
add_meas_BrS_param_NoNest_Slice_jags()
add parameters for a BrS measurement slice among cases and controls (conditional independence)
add_meas_BrS_param_NoNest_reg_Slice_jags()
add parameters for a BrS measurement slice among cases and controls
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags()
add parameters for a BrS measurement slice among cases and controls
add_meas_BrS_subclass_Nest_Slice()
add subclass indicators for a BrS measurement slice among cases and controls (conditional independence)
add_meas_SS_case()
add likelihood for a SS measurement slice among cases (conditional independence)
add_meas_SS_param()
add parameters for a SS measurement slice among cases (conditional independence)
as.matrix_or_vec()
convert one column data frame to a vector
assign_model()
Interpret the specified model structure
baker
baker: Bayesian Analytic Kit for Etiology Research
beta_parms_from_quantiles()
Pick parameters in the Beta distribution to match the specified range
beta_plot()
Plot beta density
bin2dec()
Convert a 0/1 binary-coded sequence into decimal digits
check_dir_create()
check existence and create folder if non-existent
clean_combine_subsites()
Combine subsites in raw PERCH data set
clean_perch_data()
Clean PERCH data
combine_data_nplcm()
combine multiple data_nplcm (useful when simulating data from regression models)
compute_logOR_single_cause()
Calculate marginal log odds ratios
compute_marg_PR_nested_reg()
compute positive rates for nested model with subclass mixing weights that are the same across Jcause classes for each person (people may have different weights.)
compute_marg_PR_nested_reg_array()
compute positive rates for nested model with subclass mixing weights that are the same across Jcause classes for each person (people may have different weights.)
create_bugs_regressor_Eti()
create regressor summation equation used in regression for etiology
create_bugs_regressor_FPR()
create regressor summation equation used in regression for FPR
data_nplcm_noreg
Simulated dataset that is structured in the format necessary for an nplcm() without regression
data_nplcm_reg_nest
Simulated dataset that is structured in the format necessary for an nplcm() with regression
delete_start_with()
Deletes a pattern from the start of a string, or each of a vector of strings.
dm_Rdate_Eti()
Make etiology design matrix for dates with R format.
dm_Rdate_FPR()
Make FPR design matrix for dates with R format.
expit()
expit function
extract_data_raw()
Import Raw PERCH Data extract_data_raw imports and converts the raw data to analyzable format
get_coverage()
Obtain coverage status from a result folder
get_direct_bias()
Obtain direct bias that measure the discrepancy of a posterior distribution of pie and a true pie.
get_fitted_mean_nested()
get fitted mean for nested model with subclass mixing weights that are the same among cases
get_fitted_mean_no_nested()
get model fitted mean for conditional independence model
get_individual_data()
get individual data
get_individual_prediction()
get individual prediction (Bayesian posterior)
get_latent_seq()
get index of latent status
get_marginal_rates_nested()
get marginal TPR and FPR for nested model
get_marginal_rates_no_nested()
get marginal TPR and FPR for no nested model
get_metric()
Obtain Integrated Squared Aitchison Distance, Squared Bias and Variance (both on Central Log-Ratio transformed scale) that measure the discrepancy of a posterior distribution of pie and a true pie.
get_pEti_samp()
get etiology samples by names (no regression)
get_plot_num()
get the plotting positions (numeric) for the fitted means; 3 positions for each cell
get_plot_pos()
get a list of measurement index where to look for data
get_postsd()
Obtain posterior standard deviation from a result folder
get_top_pattern()
get top patterns from a slice of bronze-standard measurement
has_non_basis()
test if a formula has terms not created by [s_date_Eti() or s_date_FPR()
init_latent_jags_multipleSS()
Initialize individual latent status (for JAGS)
insert_bugfile_chunk_noreg_etiology()
insert distribution for latent status code chunk into .bug file
insert_bugfile_chunk_noreg_meas()
Insert measurement likelihood (without regression) code chunks into .bug model file
insert_bugfile_chunk_reg_discrete_predictor_etiology()
insert etiology regression for latent status code chunk into .bug file; discrete predictors
insert_bugfile_chunk_reg_discrete_predictor_nonest_meas()
Insert measurement likelihood (with regression; discrete) code chunks into .bug model file
insert_bugfile_chunk_reg_etiology()
insert etiology regression for latent status code chunk into .bug file
insert_bugfile_chunk_reg_nest_meas()
Insert measurement likelihood (nested model+regression) code chunks into .bug model file
insert_bugfile_chunk_reg_nonest_meas()
Insert measurement likelihood (with regression) code chunks into .bug model file
is.error()
Test for 'try-error' class
is_discrete()
Check if covariates are discrete
is_intercept_only()
check if the formula is intercept only
is_jags_folder()
See if a result folder is obtained by JAGS
is_length_all_one()
check if a list has elements all of length one
jags2_baker()
Run JAGS from R
line2user()
convert line to user coordinates
loadOneName()
load an object from .RDATA file
logOR()
calculate pairwise log odds ratios
logit()
logit function
logsumexp()
log sum exp trick
lookup_quality()
Get position to store in data_nplcm$Mobs:
make_filename()
Create new file name
make_foldername()
Create new folder name
make_list()
Takes any number of R objects as arguments and returns a list whose names are derived from the names of the R objects.
make_meas_object()
Make measurement slice
make_numbered_list()
Make a list with numbered names
make_template()
make a mapping template for model fitting
marg_H()
Shannon entropy for binary data
match_cause()
Match latent causes that might have the same combo but different specifications
merge_lists()
For a list of many sublists each of which has matrices as its member, we combine across the many sublists to produce a final list
my_reorder()
Reorder the measurement dimensions to match the order for display
nplcm()
Fit nested partially-latent class models (highest-level wrapper function)
nplcm_fit_NoReg()
Fit nested partially-latent class model (low-level)
nplcm_fit_Reg_Nest()
Fit nested partially-latent class model with regression (low-level)
nplcm_fit_Reg_NoNest()
Fit nested partially-latent class model with regression (low-level)
nplcm_fit_Reg_discrete_predictor_NoNest()
Fit nested partially-latent class model with regression (low-level)
nplcm_read_folder()
Read data and other model information from a folder that stores model results.
null_as_zero()
Convert NULL to zero.
order_post_eti()
order latent status by posterior mean
overall_uniform()
specify overall uniform (symmetric Dirichlet distribution) for etiology prior
parse_nplcm_reg()
parse regression components (either false positive rate or etiology regression) for fitting npLCM; Only use this when formula is not NULL.
pathogen_category_perch
pathogens and their categories in PERCH study (virus or bacteria)
pathogen_category_simulation
Hypothetical pathogens and their categories (virus or bacteria)
plot(<nplcm>)
plot.nplcm plot the results from nplcm().
plot_BrS_panel()
Plot bronze-standard (BrS) panel
plot_SS_panel()
Plot silver-standard (SS) panel
plot_case_study()
visualize the PERCH etiology regression with a continuous covariate
plot_check_common_pattern()
Posterior predictive checking for the nested partially class models - frequent patterns in the BrS data. (for multiple folders)
plot_check_pairwise_SLORD()
Posterior predictive checking for nested partially latent class models - pairwise log odds ratio (only for bronze-standard data)
plot_etiology_regression()
visualize the etiology regression with a continuous covariate
plot_etiology_strat()
visualize the etiology estimates for each discrete levels
plot_leftmost()
plotting the labels on the left margin for panels plot
plot_logORmat()
Visualize pairwise log odds ratios (LOR) for data that are available in both cases and controls
plot_panels()
Plot three-panel figures for nested partially-latent model results
plot_pie_panel()
Plot etiology (pie) panel
plot_subwt_regression()
visualize the subclass weight regression with a continuous covariate
print(<nplcm>)
print.nplcm summarizes the results from nplcm().
print(<summary.nplcm.no_reg>)
Compact printing of nplcm() model fits
print(<summary.nplcm.reg_nest>)
Compact printing of nplcm() model fits
print(<summary.nplcm.reg_nest_strat>)
Compact printing of nplcm() model fits
print(<summary.nplcm.reg_nonest>)
Compact printing of nplcm() model fits
print(<summary.nplcm.reg_nonest_strat>)
Compact printing of nplcm() model fits
read_meas_object()
Read measurement slices
rvbern()
Sample a vector of Bernoulli variables.
s_date_Eti()
Make Etiology design matrix for dates with R format.
s_date_FPR()
Make false positive rate (FPR) design matrix for dates with R format.
set_prior_tpr_BrS_NoNest()
Set true positive rate (TPR) prior ranges for bronze-standard (BrS) data
set_prior_tpr_SS()
Set true positive rate (TPR) prior ranges for silver-standard data.
set_strat()
Stratification setup by covariates
show_dep()
Show function dependencies
show_individual()
get an individual's data from the output of clean_perch_data()
simulate_brs()
Simulate Bronze-Standard (BrS) Data
simulate_latent()
Simulate Latent Status:
simulate_nplcm()
Simulate data from nested partially-latent class model (npLCM) family
simulate_ss()
Simulate Silver-Standard (SS) Data
softmax()
softmax
subset_data_nplcm_by_index()
subset data from the output of clean_perch_data()
summarize_BrS()
summarize bronze-standard data
summarize_SS()
silver-standard data summary
summary(<nplcm>)
summary.nplcm summarizes the results from nplcm().
sym_diff_month()
get symmetric difference of months from two vector of R-format dates
symb2I()
Convert names of pathogen/combinations into 0/1 coding
tsb()
generate stick-breaking prior (truncated) from a vector of random probabilities
unfactor()
Convert factor to numeric without losing information on the label
unique_cause()
get unique causes, regardless of the actual order in combo
unique_month()
Get unique month from Date
visualize_case_control_matrix()
Visualize matrix for a quantity measured on cases and controls (a single number)
visualize_season()
visualize trend of pathogen observation rate for NPPCR data (both cases and controls)
write.model()
function to write bugs model (copied from R2WinBUGS)
write_model_NoReg()
Write .bug model file for model without regression
write_model_Reg_Nest()
Write .bug model file for regression model WITH nested subclasses
write_model_Reg_NoNest()
Write .bug model file for regression model without nested subclasses
write_model_Reg_discrete_predictor_NoNest()
Write .bug model file for regression model without nested subclasses