Function reference
-
H() - Shannon entropy for multivariate discrete data
-
I2symb() - Convert 0/1 coding to pathogen/combinations
-
Imat2cat() - Convert a matrix of binary indicators to categorical variables
-
NA2dot() - convert 'NA' to '.'
-
add_meas_BrS_case_Nest_Slice() - add likelihood for a BrS measurement slice among cases (conditional dependence)
-
add_meas_BrS_case_Nest_Slice_jags() - add likelihood for a BrS measurement slice among cases (conditional dependence)
-
add_meas_BrS_case_NoNest_Slice() - add a likelihood component for a BrS measurement slice among cases (conditional independence)
-
add_meas_BrS_case_NoNest_Slice_jags() - add a likelihood component for a BrS measurement slice among cases (conditional independence)
-
add_meas_BrS_case_NoNest_reg_Slice_jags() - add likelihood component for a BrS measurement slice among cases
-
add_meas_BrS_case_NoNest_reg_discrete_predictor_Slice_jags() - add likelihood component for a BrS measurement slice among cases
-
add_meas_BrS_ctrl_Nest_Slice() - add likelihood for a BrS measurement slice among controls (conditional independence)
-
add_meas_BrS_ctrl_NoNest_Slice() - add a likelihood component for a BrS measurement slice among controls (conditional independence)
-
add_meas_BrS_ctrl_NoNest_reg_Slice_jags() - add a likelihood component for a BrS measurement slice among controls
-
add_meas_BrS_ctrl_NoNest_reg_discrete_predictor_Slice_jags() - add a likelihood component for a BrS measurement slice among controls
-
add_meas_BrS_param_Nest_Slice() - add parameters for a BrS measurement slice among cases and controls (conditional dependence)
-
add_meas_BrS_param_Nest_Slice_jags() - add parameters for a BrS measurement slice among cases and controls (conditional dependence)
-
add_meas_BrS_param_Nest_reg_Slice_jags() - add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_param_NoNest_Slice() - add parameters for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_BrS_param_NoNest_Slice_jags() - add parameters for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_BrS_param_NoNest_reg_Slice_jags() - add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_param_NoNest_reg_discrete_predictor_Slice_jags() - add parameters for a BrS measurement slice among cases and controls
-
add_meas_BrS_subclass_Nest_Slice() - add subclass indicators for a BrS measurement slice among cases and controls (conditional independence)
-
add_meas_SS_case() - add likelihood for a SS measurement slice among cases (conditional independence)
-
add_meas_SS_param() - add parameters for a SS measurement slice among cases (conditional independence)
-
as.matrix_or_vec() - convert one column data frame to a vector
-
assign_model() - Interpret the specified model structure
-
baker - baker: Bayesian Analytic Kit for Etiology Research
-
beta_parms_from_quantiles() - Pick parameters in the Beta distribution to match the specified range
-
beta_plot() - Plot beta density
-
bin2dec() - Convert a 0/1 binary-coded sequence into decimal digits
-
check_dir_create() - check existence and create folder if non-existent
-
clean_combine_subsites() - Combine subsites in raw PERCH data set
-
clean_perch_data() - Clean PERCH data
-
combine_data_nplcm() - combine multiple data_nplcm (useful when simulating data from regression models)
-
compute_logOR_single_cause() - Calculate marginal log odds ratios
-
compute_marg_PR_nested_reg() - compute positive rates for nested model with subclass mixing weights that are the same across
Jcauseclasses for each person (people may have different weights.)
-
compute_marg_PR_nested_reg_array() - compute positive rates for nested model with subclass mixing weights that are the same across
Jcauseclasses for each person (people may have different weights.)
-
create_bugs_regressor_Eti() - create regressor summation equation used in regression for etiology
-
create_bugs_regressor_FPR() - create regressor summation equation used in regression for FPR
-
data_nplcm_noreg - Simulated dataset that is structured in the format necessary for an
nplcm()without regression
-
data_nplcm_reg_nest - Simulated dataset that is structured in the format necessary for an
nplcm()with regression
-
delete_start_with() - Deletes a pattern from the start of a string, or each of a vector of strings.
-
dm_Rdate_Eti() - Make etiology design matrix for dates with R format.
-
dm_Rdate_FPR() - Make FPR design matrix for dates with R format.
-
expit() - expit function
-
extract_data_raw() - Import Raw PERCH Data
extract_data_rawimports and converts the raw data to analyzable format
-
get_coverage() - Obtain coverage status from a result folder
-
get_direct_bias() - Obtain direct bias that measure the discrepancy of a posterior distribution of pie and a true pie.
-
get_fitted_mean_nested() - get fitted mean for nested model with subclass mixing weights that are the same among cases
-
get_fitted_mean_no_nested() - get model fitted mean for conditional independence model
-
get_individual_data() - get individual data
-
get_individual_prediction() - get individual prediction (Bayesian posterior)
-
get_latent_seq() - get index of latent status
-
get_marginal_rates_nested() - get marginal TPR and FPR for nested model
-
get_marginal_rates_no_nested() - get marginal TPR and FPR for no nested model
-
get_metric() - Obtain Integrated Squared Aitchison Distance, Squared Bias and Variance (both on Central Log-Ratio transformed scale) that measure the discrepancy of a posterior distribution of pie and a true pie.
-
get_pEti_samp() - get etiology samples by names (no regression)
-
get_plot_num() - get the plotting positions (numeric) for the fitted means; 3 positions for each cell
-
get_plot_pos() - get a list of measurement index where to look for data
-
get_postsd() - Obtain posterior standard deviation from a result folder
-
get_top_pattern() - get top patterns from a slice of bronze-standard measurement
-
has_non_basis() - test if a formula has terms not created by [s_date_Eti() or
s_date_FPR()
-
init_latent_jags_multipleSS() - Initialize individual latent status (for
JAGS)
-
insert_bugfile_chunk_noreg_etiology() - insert distribution for latent status code chunk into .bug file
-
insert_bugfile_chunk_noreg_meas() - Insert measurement likelihood (without regression) code chunks into .bug model file
-
insert_bugfile_chunk_reg_discrete_predictor_etiology() - insert etiology regression for latent status code chunk into .bug file; discrete predictors
-
insert_bugfile_chunk_reg_discrete_predictor_nonest_meas() - Insert measurement likelihood (with regression; discrete) code chunks into .bug model file
-
insert_bugfile_chunk_reg_etiology() - insert etiology regression for latent status code chunk into .bug file
-
insert_bugfile_chunk_reg_nest_meas() - Insert measurement likelihood (nested model+regression) code chunks into .bug model file
-
insert_bugfile_chunk_reg_nonest_meas() - Insert measurement likelihood (with regression) code chunks into .bug model file
-
is.error() - Test for 'try-error' class
-
is_discrete() - Check if covariates are discrete
-
is_intercept_only() - check if the formula is intercept only
-
is_jags_folder() - See if a result folder is obtained by JAGS
-
is_length_all_one() - check if a list has elements all of length one
-
jags2_baker() - Run
JAGSfrom R
-
line2user() - convert line to user coordinates
-
loadOneName() - load an object from .RDATA file
-
logOR() - calculate pairwise log odds ratios
-
logit() - logit function
-
logsumexp() - log sum exp trick
-
lookup_quality() - Get position to store in data_nplcm$Mobs:
-
make_filename() - Create new file name
-
make_foldername() - Create new folder name
-
make_list() - Takes any number of R objects as arguments and returns a list whose names are derived from the names of the R objects.
-
make_meas_object() - Make measurement slice
-
make_numbered_list() - Make a list with numbered names
-
make_template() - make a mapping template for model fitting
-
marg_H() - Shannon entropy for binary data
-
match_cause() - Match latent causes that might have the same combo but different specifications
-
merge_lists() - For a list of many sublists each of which has matrices as its member, we combine across the many sublists to produce a final list
-
my_reorder() - Reorder the measurement dimensions to match the order for display
-
nplcm() - Fit nested partially-latent class models (highest-level wrapper function)
-
nplcm_fit_NoReg() - Fit nested partially-latent class model (low-level)
-
nplcm_fit_Reg_Nest() - Fit nested partially-latent class model with regression (low-level)
-
nplcm_fit_Reg_NoNest() - Fit nested partially-latent class model with regression (low-level)
-
nplcm_fit_Reg_discrete_predictor_NoNest() - Fit nested partially-latent class model with regression (low-level)
-
nplcm_read_folder() - Read data and other model information from a folder that stores model results.
-
null_as_zero() - Convert
NULLto zero.
-
order_post_eti() - order latent status by posterior mean
-
overall_uniform() - specify overall uniform (symmetric Dirichlet distribution) for etiology prior
-
parse_nplcm_reg() - parse regression components (either false positive rate or etiology regression) for fitting npLCM; Only use this when formula is not
NULL.
-
pathogen_category_perch - pathogens and their categories in PERCH study (virus or bacteria)
-
pathogen_category_simulation - Hypothetical pathogens and their categories (virus or bacteria)
-
plot(<nplcm>) plot.nplcmplot the results fromnplcm().
-
plot_BrS_panel() - Plot bronze-standard (BrS) panel
-
plot_SS_panel() - Plot silver-standard (SS) panel
-
plot_case_study() - visualize the PERCH etiology regression with a continuous covariate
-
plot_check_common_pattern() - Posterior predictive checking for the nested partially class models - frequent patterns in the BrS data. (for multiple folders)
-
plot_check_pairwise_SLORD() - Posterior predictive checking for nested partially latent class models - pairwise log odds ratio (only for bronze-standard data)
-
plot_etiology_regression() - visualize the etiology regression with a continuous covariate
-
plot_etiology_strat() - visualize the etiology estimates for each discrete levels
-
plot_leftmost() - plotting the labels on the left margin for panels plot
-
plot_logORmat() - Visualize pairwise log odds ratios (LOR) for data that are available in both cases and controls
-
plot_panels() - Plot three-panel figures for nested partially-latent model results
-
plot_pie_panel() - Plot etiology (pie) panel
-
plot_subwt_regression() - visualize the subclass weight regression with a continuous covariate
-
print(<nplcm>) print.nplcmsummarizes the results fromnplcm().
-
print(<summary.nplcm.no_reg>) - Compact printing of
nplcm()model fits
-
print(<summary.nplcm.reg_nest>) - Compact printing of
nplcm()model fits
-
print(<summary.nplcm.reg_nest_strat>) - Compact printing of
nplcm()model fits
-
print(<summary.nplcm.reg_nonest>) - Compact printing of
nplcm()model fits
-
print(<summary.nplcm.reg_nonest_strat>) - Compact printing of
nplcm()model fits
-
read_meas_object() - Read measurement slices
-
rvbern() - Sample a vector of Bernoulli variables.
-
s_date_Eti() - Make Etiology design matrix for dates with R format.
-
s_date_FPR() - Make false positive rate (FPR) design matrix for dates with R format.
-
set_prior_tpr_BrS_NoNest() - Set true positive rate (TPR) prior ranges for bronze-standard (BrS) data
-
set_prior_tpr_SS() - Set true positive rate (TPR) prior ranges for silver-standard data.
-
set_strat() - Stratification setup by covariates
-
show_dep() - Show function dependencies
-
show_individual() - get an individual's data from the output of
clean_perch_data()
-
simulate_brs() - Simulate Bronze-Standard (BrS) Data
-
simulate_latent() - Simulate Latent Status:
-
simulate_nplcm() - Simulate data from nested partially-latent class model (npLCM) family
-
simulate_ss() - Simulate Silver-Standard (SS) Data
-
softmax() - softmax
-
subset_data_nplcm_by_index() - subset data from the output of
clean_perch_data()
-
summarize_BrS() - summarize bronze-standard data
-
summarize_SS() - silver-standard data summary
-
summary(<nplcm>) summary.nplcmsummarizes the results fromnplcm().
-
sym_diff_month() - get symmetric difference of months from two vector of R-format dates
-
symb2I() - Convert names of pathogen/combinations into 0/1 coding
-
tsb() - generate stick-breaking prior (truncated) from a vector of random probabilities
-
unfactor() - Convert factor to numeric without losing information on the label
-
unique_cause() - get unique causes, regardless of the actual order in combo
-
unique_month() - Get unique month from Date
-
visualize_case_control_matrix() - Visualize matrix for a quantity measured on cases and controls (a single number)
-
visualize_season() - visualize trend of pathogen observation rate for NPPCR data (both cases and controls)
-
write.model() - function to write bugs model (copied from R2WinBUGS)
-
write_model_NoReg() - Write .bug model file for model without regression
-
write_model_Reg_Nest() - Write
.bugmodel file for regression model WITH nested subclasses
-
write_model_Reg_NoNest() - Write .bug model file for regression model without nested subclasses
-
write_model_Reg_discrete_predictor_NoNest() - Write .bug model file for regression model without nested subclasses