basic ggplot2

Zhenke Wu

Seminar Course: Visualization for Individualized Health Johns Hopkins University

> http://zhenkewu.com Figures and R code from online

> > 2016-02-23

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stephen Curry Is One Of The Best

All of his shots, 2015-16 regular season

Curry Is The Most Valuable Shooter (By A Lot)

Shooting value added (based on distance, shot clock and defender distance) vs. shots, by player; last season through Nov. 28, 2015

Charles Joseph Minard (1869), Napoleon's March to Moscow - The War of 1812

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Important questions for statistical graphics

- What is a graphic?
- How can we succinctly describe a graphic?
- How can we create the graphic that we have described?

One approach: develop a grammar!

- Grammar: the fundamental principles or rules of an art or science (Oxford English Dictionary; Item 6)
 - Allows us to gain insights into the composition of complicated graphics
 - Reveals unexpected connections for understanding a diverse range of graphics
 - Guides us to produce sensical and well-formed graphics
- Analogy to the English language: good grammar is just the first step in creating a good sentence.

Existing R graphics tools

- base graphics (Ross Ihaka)
 - pen on paper model; cannot modify or delete existing content
 - no representation of the graphics, apart from their appearance on the screen
 - fast but with limited scope
- grid (Paul Murrell, 2000)
 - a much richer system of graphical primitives (only primitives; no tools for producing statistical graphics)
 - graph objects represented independently of the plot and can be modified later
 - a system of viewports to lay out complex graphics
- lattice package (Deepayan Sarkar, 2008)
 - uses grid to implement the trellis graphics system of Cleveland
 - can easily produce conditioned plots and some details (e.g., legends) are automatically taken care of
 - lacks a formal model; hard to extend

ggplot2: a framework for producing statistical graphics

- takes the good things from base and lattice graphics
- uses a strong underlying model with several principles (details to follow)

What we get:

- a compact syntax to describe a wide range of graphics
- independent components that are easily extensible

ggplot2 Scatterplot Example: data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 ##
 A
 B
 C
 D

 ##
 1
 2
 3
 4
 a

 ##
 2
 1
 2
 1
 a

 ##
 3
 4
 5
 15
 b

 ##
 4
 9
 10
 80
 b

ggplot2 Scatterplot Example: *geom* aesthetics and **mapping**

- Scatterplot:
 - a point for each observation
 - position the point horizontally according to the value of A, vertically according to C
 - Here, we will also map categorical variable D to the shape of the points

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Aesthetics:
 - x-poistion: A
 - y-position: C
 - shape: D
- ## x y Shape
 ## 1 2 4 a
 ## 2 1 1 a
 ## 3 4 15 b
 ## 4 9 80 b

Example: mapping from data space to aesthetic space (controlled by **scale**)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Х	У	Shape
1	25	11	circle
2	0	20	circle
3	75	53	square
4	200	300	square
	1 2 3 4	x 1 25 2 0 3 75 4 200	x y 1 25 11 2 0 20 3 75 53 4 200 300

Example: Plot the Geometric objects (geom)

run `?geom_point` geom_point understands the
following aesthetics (required aesthetics are in bold).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Details about geometric objects, or geom

- Controls the type of the plot you create (a point geom creates a scatterplot; a line geom creates a line plot, etc.)
 - Od: point, text,
 - Id: path, line (ordered path),
 - 2d: polygon, interval.
- Are abstract and can be rendered in different ways (e.g., intervals).
- Require outputs from a statistic (e.g., x,y-positions in scatterplot; edges in boxplots)
- Every geom has a default statistic, and every statistic a default geom.
 - For example, the bin statistic defaults to using the bar geom to produce a histogram.
- Each geom can only display certain aesthetics.
 - Try ?geom_point
 - Different parameterizations may be useful (e.g., polar coordinate system).

Example: Faceting (facet)

example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What are the components in the previous example? layered grammer of graphics (Wickham, 2009)

- data and mappings (describe how variables in the data are mapped to aesthetic attributes that you can perceive)
- geometric objects (geom); what you actually see on the plot, e.g., points, lines, polygons, etc.
- statistical transformations, stat; summarize data in useful ways, e.g., binning and counting to create a histogram
- scale: maps values in the data space to values in an aesthetic space; scale draws a legend or axes to make it possible to read the original data values from the graph (inverse mapping: what does this mean?)
- A coordinate system: **coord**
- A faceting specification: describes how to break up data into subsets and how to display them as small multiples; also known as conditioning or latticing/trelissing.

Diamond data

just getting some data
library(ggplot2)
head(diamonds)

##		carat	cut	color	clarity	depth	table	price	x	
##	1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3
##	2	0.21	Premium	E	SI1	59.8	61	326	3.89	;
##	3	0.23	Good	E	VS1	56.9	65	327	4.05	4
##	4	0.29	Premium	I	VS2	62.4	58	334	4.20	4
##	5	0.31	Good	J	SI2	63.3	58	335	4.34	4
##	6	0.24	Very Good	J	VVS2	62.8	57	336	3.94	3

Diamond data plotted by base graphics

• □ ▶ • □ ▶ • □ ▶

Diamond data plotted by ggplot2

Diamond Example: count within each cut category

```
d <- ggplot(diamonds, aes(cut))
d + geom_bar()</pre>
```


Diamond Example: average prices within each cut category

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

library(HistData) head(Minard.troops)

##		long	lat	survivors	direction	group
##	1	24.0	54.9	340000	А	1
##	2	24.5	55.0	340000	Α	1
##	3	25.5	54.5	340000	Α	1
##	4	26.0	54.7	320000	Α	1
##	5	27.0	54.8	300000	Α	1
##	6	28.0	54.9	280000	А	1

人口 医水黄 医水黄 医水黄素 化甘油

head(Minard.cities)

##		long	lat	city
##	1	24.0	55.0	Kowno
##	2	25.3	54.7	Wilna
##	3	26.4	54.4	Smorgoni
##	4	26.8	54.3	Moiodexno

plot_troops

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

plot_polished

What grammar of graphics doesn't do

- It doesn't suggest what graphics you should use to answer the questions you are interested in.
 - ggplot2 focuses on how to produce the plots you want, not knowing what plots to produce.
- Grammar doesn't specify what a graphic should look like and how to make a plot attractive.
 - Finer details, e.g., font size, background color are not specified by the grammar.

- ggplot2 uses its theming system
- No real-time interaction; other dynamic and interactive graphics packages exist:
 - rCharts: http://rcharts.io/
 - clickme: https://github.com/nachocab/clickme
 - D3: Data-Driven Documents: https://d3js.org/

"Ins and Outs"

Data manipulation (get your data into the form required by ggplot2). You will shortly encounter at least these two R packages written by the same author of ggplot2:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- reshape2
- plyr
- Make figures publishable
 - comprehensive theming system in ggplot2

References

 Wickham H(2009). A Layered Grammar of Graphics. Journal of Computational and Graphical Statistics

Optional:

- Examples of statistical graphics used in sport analytics:
 - Stephen Curry's Bombs Are Too Good To Be True I mean, they have to be, right? (FiveThirtyEight.com, 2015)
 - Lionel Messi Is Impossible (FiveThirtyEight.com, 2014)
- Notes by Wickham himself:
 - ggplot2 short courses by Wickham: http://courses.had.co.nz/11-rice/
 - ggplot2 cheatsheet
- A book-length introduction:
 - Wickham (2010) ggplot2: Elegant Graphics for Data Analysis (Use R!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00