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Lecture 5 Main Points Once Again

Bayesian network ( )

Markov network ( , )

Roughly, given Markov properties, graph , or  is a valid guide to
understand the variable relationships in distribution 

· , P
Directed acyclic graph (DAG): , comprised of nodes  and edges 

Joint distribution  over  random variables

 is Markov to  if variables in  satisfy  whenever  d-
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Undirected graph (UG): , comprised of nodes  and edges 

Joint distribution  over  random variables

 is Global Markov to  if variables in  satisfy  whenever 
 separates  and  as read off from the graph
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Lecture 5 Main Points Once Again (continued)

Question: Given a distribution  that is Markov to a DAG , can we find an UG 
 with the same set of nodes so that  is also Markov to it? (Yes, by

moralization—"marrying the parents". But UG could lose some d-separations,
e.g., v-structure; won't lose any if  is already moralized.)

(Question above, but with DAG and UG reversed) (Yes, by constructing directed
edges following certain node ordering. But DAG could lose some separations,
e.g., four-node loop)

Are there distributions representable by both DAG and UG, but without loss of
(d-)separations? (Yes.) If so, under what conditions? (Those distributions either
are Markov to a chordal Markov network, or to a DAG without immoralities.)

Definition (chordal Markov network): every one of its loops of length 
possesses a chord, where a chord in the loop is an edge (from the original
graph) connecting  and  for two nonconsecutive nodes (with respect to
the loop).

· P 

 P



·

·

· ≥ 4

Xi Xj
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Markov Network Example: Ising Model

A mathematical model of ferromagnetism in statistical mechanics; Named
after physicist Ernst Ising;

The model consists of discrete variables that represent magnetic dipole
moments of atomic spins that can be in one of two states (+1 or −1).

The spins are arranged in a graph, usually a lattice, allowing each spin to
interact with its neighbors.

·

·

·
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Markov Network Example: Ising Model

Formulation: Let  be an undirected graph, e.g., (lattice or non-
lattice). Let the binary random variables . The Ising model takes
the form

·  = (V, E)
∈ {−1, +1}Xi

P(x; θ) ∝ exp( + )∑
i∈V

θi xi ∑
(i,j)∈E

θijxi xj

From the model form, Ising model is positive and Markov to . Using the local
Markov property, and code the  into , the conditional distribution for a
node  given all its neighbors is given by a logisitic regression:

· 

−1 0
Xi

Pr( = 1 ∣ , j ≠ i; θ) = Pr( = 1 ∣ , (i, j) ∈ E; θ)Xi Xj Xi Xj

= sigmoid( + )θi ∑
j:(i,j)∈E

θijxj
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Markov Network Example: Special case of Ising
Model

No external field: 

, .

We have

· = 0, ∈ Vθi Xi

· = βJθij ∀i, j

·

P(x; θ) ∝ exp(β ⋅ J ⋅ )∑
(i,j)∈E

xi xj

: inverse temperature; large , lower temperature (colder)

: neighboring nodes tend to align, so-called ferromagnetic model; :
anti-ferromagnetic.

· β β

· J > 0 J < 0
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Square-Lattice Ising Model under Different
Temperatures

· P(x; θ) ∝ exp(β ⋅ J ⋅ )∑(i,j)∈E xi xj

Set , ferromagnetic

(Run Lecture6.Rmd in RStudio)

- J = 2

-

Vary inverse temperature: 

Try different graph size: 
n: grid points  beta: inverse-temperature

- β

- n2
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Bayesian Network Example: Naive Bayes for
SPAM classification

Features (words) assumed independent given SPAM or HAM status, hence
"naive"

Infer the SPAM status given observed evidence from the email

Very fast, low storage requirements, robust to irrelevant features, good for
benchmarking

·

·

·

8/14



Bayesian Network Example: Beta-Binomial Model

30 soccer players' penalty shot score rates and the actual number of shots

What's the best estimate of a player's scoring rate? (empirical Bayes estimate)

Information from other players could contribute to a given player's score rate
estimate. Use moralized graph to explain.

·

·

·
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Inference for Bayesian Network: Moralization

Question: given observed evidence, what's the updated probability
distribution for those unobserved variables? Or more specifically, which
conditional independencies still hold, which don't?

Proposition 4.7 Let  be a Bayesian Network over  and  an
observation. Let . Then  is a Gibbs distribution
defined by factors , where  The
partition function for this Gibbs distribution is , the marginal
probability.

Use the moralized graph to identify conditional independencies given
observed data.

Because the Gibbs distribution above factorizes according to a moralized
graph  which creates cliques for a family (parents and a child).

And  factorizing with respect to  amounts to  satisfying the Markov
property. This means you can use the moralized graph as a "map", albeit it
could miss some original conditional independence information.

·

·  V Z = z
W = V − Z (W ∣ Z = z)P

Φ = {ϕXi } ∈VXi = ( ∣ P )[Z = z].ϕXi P Xi aXi

(Z = z)P

·

·
M()

· P M() P
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Moralized Graph

Naturally, if a Bayesian network is already moral (parents are connected by
directed edges), then moralization will not add extra edges and conditional
independencies will not be lost.

So in this case separations in UG  correspond one-to-one for d-
separations in the original DAG .

·

· M()
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Chordal Graph

If  is an UG, and let  be any DAG that is minimal I-map for , then  must
have no immoralities. [Proof]

Nonchordal DAGs must have immoralities

 then must be chordal

The conditional independencies encoded by an undirected chordal graph can
be perfectly encoded by a directed graph. (Use clique tree proof)

If  is nonchordal, no DAG can encode perfectly the same set of conditional
independencies as in . (Use the third bullet point.)

·    

·

· 

·

· 
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The connections among graphs and distributions
(note from Lafferty, Liu and Wasserman)

The intersection of Bayesian networks and Markov networks (or random
fields) are those distributions Markov to a chordal Markov network or to a
DAG without immoralities.

Chordal graph  decomposable graph

·

· ⇔
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Comment

Next Lecture: Overview of Module 2 that discusses inference: more
algorithmic-flavored and exciting ideas. Begin exact inference.

No required reading.

Homework 1 due 11:59PM, October 3rd, 2016 to Instructor's email.

·

·

·
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