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Introduction - INLA

I Inference for latent Gaussian Markov random field (GMRF)
models, avoiding MCMC simulations

I Fast Bayesian inference using accurate, multiple types of
approximations to

I pr(θ | y): marginal density for the model parameters
I pr(xi | y): marginal posterior densities for one (or more) latent

variables.

I Can be used for model criticisms:
1. Fast cross-validation
2. Bayes factors and deviation information criterion (DIC) can be

efficiently calculated for model comparisoins

I Software inla available from R; very easy to use



Supported Models

I Hierarchical GMRF of the form:

likelihood :yj | ηj ,θ1 ∼ pr(yj | ηj ,θ1), j ∈ J ,

linear predictor :ηi = Offseti +
nf−1∑
k=0

wki fk(cki ) + z ′iβ + εi ,

i = 0, . . . , nη − 1.

I J ⊂ {0, 1, . . . , nη − 1}, i.e., not all latent η are observed
through data y

I pr(yj | ηj ,θ1): likelihood of data; known link function
I ε = (ε0, . . . , εnη−1)′ | λη ∼ N (0, ληI); λη denotes precision
I η = {ηi}: a vector of linear predictors, e.g., in GLM
I wk : in the k-th nonlinear effect, the known weights, one for

each observed data point



Supported Models (continued)

I Hierarchical GMRF of the form:

likelihood :yj | ηj ,θ1 ∼ pr(yj | ηj ,θ1), j ∈ J ,

linear predictor :ηi = Offseti +
nf−1∑
k=0

wki fk(cki ) + z ′iβ + εi ,

i = 0, . . . , nη − 1.

I fk(cki ): nonlinear effect of covariate k for observation i
1. Nonlinear effects: time trends and seasonal effects, two

dimensional surfaces, iid random intercepts, slopes and spatial
random effects.

2. The unknown functions f k = (f0k , . . . , fmk−1,k)′ are modelled as
GMRF given some parameter θfk : f k | θfk ∼ N (0,Q−1

k )
I z i : A vector of nβ covariates assumed to have a linear effect
I β: The vector of unknown parameters



Supported Models (continued)
I x = (η′, f ′0, . . . , f ′nf−1,β

′)′: full vector of latent variables;
Dimension: n = nη +

∑nf−1
j=0 mj + nβ ; note we parameterized x

by η instead of ε
I All the elements of vector x are defined as GMRFs:

pr(x | θ2) =
nη−1∏
i=0

pr(ηi | f 0, . . . , f nf−1,β, λ
−1
η )

nf−1∏
k=0

pr(f k | θfk )

×
nβ−1∏
m=0

pr(βm),

where

ηi | f 0, . . . , f nf−1,β ∼ N

nf−1∑
k=0

fk(cki ) + z ′iβ, λη

 , βm
iid∼ N (0, λβ)

and θ2 = {log λη,θf0 , . . . ,θfnf −1} is a vector of unknown
hyperparameters.



Prior

I Specify priors on the hyperparameters:
θ2 = {log λη,θf0 , . . . ,θfnf −1, log λβ}

I Need not be Gaussian



Examples

I Time series model: ck = t for time, fk for nonlinear trends or
seasonal effects

ηt = ftrend (t) + fseasonal (t) + z ′tβ

I Generalized additive models (GAM):
1. pr(yi | ηi ,θ1) belongs to an exponential family
2. cki ’s are univariate, continuous covariates
3. fk ’s are smooth functions



Examples

I Generalized additive mixed models (GAMM) for longitudinal
data

I Individuals: i = 0, · · · , ni − 1, observed at time points
t0, t1, . . . . A GAMM extends a GAM by introducing individual
specific random effects:

ηit = f0(cit0)+. . .+fnf−1(cit,nf−1)+boiwit0+. . .+bnb−1,iwit,nb−1,

where ηit is the linear predictor for individual i at time t,
citk , k = 0, . . . , nf − 1,witq, q = 0, . . . , nb − 1 are covariate
values for individual i at time t, and b0i , . . . , bnb−1,i is a vector
of nb individual-specific random intercepts (if witq = 1) or
slopes.

I Just define r = (i , t) and ckr = ckit for k = 0, . . . , nf − 1 and
cnf−1+q,r = wqit , fnf−1+q(c(nf−1+q),r ) = bqiwqit for
q = 0, . . . , nb.



Examples

I Geoadditive models (Kammann and Wand, 2003, JRSS-C):

ηi = f1(c0i ) + . . .+ fnf−1(cnf−1,i ) + fspatial (si ) + z ′iβ,

where si indicates the location of observation i and fspatial is a
spatially correlated effect.



Examples

I ANOVA-type interaction model: For the effect of two
continuous covariates w and v :

ηi = f1(wi ) + f2(vi ) + f1,2(wi , vi ) + . . . ,

where f1, f2 are the main effects and f1,2 is a two dimensional
interaction surface. As a special case, we just define c1i = wi ,
c2i = vi and c3i = (wi , vi ),

I Univariate stochastic volatility model
I Time series models with Gaussian likelihood where the variance

(not the mean) of the observed data is part of the latent GMRF
model:

yi | ηi ∼ N (0, exp(ηi )),

and, for example, model the latent field η as an autoregressive
model of order 1.



Bayesian for Spatial and Spatio-temporal Models
(Blangiardo and Cameletti, 2015, Wiley)



INLA for Spatial Area Data: Suicides in London

I Disease mapping is commonly used in small area studies to
assess the pattern of a disease

I To identify areas characterized by unusually high or low relative
risk (Lawson 2009)



London Cholera Outbreak in 1854

- John Snow’s
Cholera map in dot style; dots represent deaths from cholera in
London in 1854 to detect the source of the disease



Example: Suicide Mortality

I 32 Boroughs in London; 1989-1993
I For the i-th area, the number of suicides yi :

yi ∼ Poisson(λi ),

where λi = ρiEi , a product of rate ρi and the expected number
of suicides Ei

I Linear predictor defined on logarithmic scale:

ηi = log(ρi ) = α + vi + νi ,

where α is the intercept, vi = f1(i) and νi = f2(i) are two area
specific effects.



Besag-York-Mollie (BYM) model (Besag et al. 1991)

I vi : spatially structured residual, modeled using an intrinsic
conditional autoregressive structure (iCAR):

vi | vj 6=i ∼ Normal(mi , s2
i )

mi =
∑

j∈N (i) vj

|N (i)|

s2
i = σ2

v
|N (i)| ,

where |N (i)| is the number of areas which share boundaries
with the i-th one.

I νi : unstructured residual; modeled by exchangeable prior:

νi ∼ Normal(0, σ2)



Priors

I log τν ∼ log−Gamma(1, 0.0005)
I log τv ∼ log−Gamma(1, 0.0005)



Goal

1. Posterior for borough-specific relative risks of suicides,
compared to the whole of London: pr(exp(vi + νi ) | y)

2. Posterior exceedance probability: pr(exp(vi + νi ) > 1 | y)
3. Fraction of structured variance component



Incorporating Risk Factors

I Extension: when risk factors are available and the aim of the
study is to evaluate their effect on the risk of death (or disease)

I Ecological regression model
I For example: Index of social deprivation (x1), index of social

fragmentation (describing lack of social connections and of
sense of community) (x2)

I Model:
ηi = α + β1x1i + β2x2i + vi + νi

I Can be fitted using the R-INLA package



London Suicide Rates Mapping

Figure 1: suicide_rates



Other Spatial Examples (FiveThirtyEight)

Figure 2: Stehpen Curry



Background: Gaussian Markov Random Fields (GMRF)

I GMRF: x = (x1, . . . , xn)′ with Markov property that for some
i 6= j , xi ⊥ xj | x−ij

I Can be encoded by precision matrix Q: Qij = 0 if and only if
xi ⊥ xj | x−ij

I Density function with mean vector µ:

pr(x) = (2π)−n/2|Q|−1/2 exp{−1
2(x − µ)′Q(x − µ)}

I Most cases: Q is sparse: only O(n) of the n2 entries are
nonzero

I Can handle extra linear constraints: Ax = e for a k × n matrix
A of rank k

I Computational note: Simulation usually based on lower
Cholesky decomposition Q = LL′, with L preserving the
sparseness in Q. See Section 2.1 in Rue et al. (2009) for more
details.



Background: Gaussian approximation (under regularity
conditions)

I Find a Gaussian density q(z) to approximate a density
p(z) = 1

Z f (z), where Z =
∫

f (z)dz
I One-dimensional case
I Multi-dimensional case

I Need to find mode z0 (Newton or quasi-Newton methods)
I Need not know the normalizing constant Z
I Central Limit Theorem, approximate becomes better as sample

size n increases if f (z; Data) is a posterior distribution of
model parameters

I Typically better for marginal and conditional posteriors than
joint posteriors (marginals are averages across other
distributions!)

I Can use transformations (e.g., logit or log) to approximate a
distribution over a constrained space

I Not so useful if there is skewness, or if interested in extreme
values that are far from the mode



Background: Gaussian approximation - Density at Extreme
Values (Bishop CM, 2006, Sec 4.4)



Background: Gaussian Approximations

I Approximate density of the form

pr(x) ∝ exp
{
−1
2x ′Qx +

∑
i∈I

gi (xi )
}
,

where gi (xi ) = log(pr(yi | xi ,θ)) in our setting.
I Gaussian approximation p̃rG(x): obtained by matching the

modal configuration and curvature at the mode (model could
be computed by Newton-Raphson method)

I Let the mode be x∗, the precision matrix be Q∗ + diag(c∗)
(hint: use expansion to the second order -
gi (xi ) ≈ gi (x∗) + bixi − 1

2cix2
i )

I Property: because the second summation does not involve xi
and xj in one g(), the resulting Q∗ preserves the Markov
property in the original latent Gaussian model on x



Background: Laplace Approximation

I Approximate marginal posterior:

pr(θ | y) =
∫

pr(x,θ, y)dx∫
pr(x,θ, y)dxdθ

∝ pr(θ, x, y)
p̃r(x | θ, y)

∣∣∣∣
x=x∗(θ)

,

where x∗(θ) = argmaxx pr(x | θ, y).

I Key difference with Tierney and Kadane (1986) JASA: here in
latent Gaussian models, the dimension of latent field x is n,
could change with the number of observations nd ; Not the case
in TK1986



Goal of INLA: Approximate Marginal Posteriors

I Marginal posterior for each θk and xj by numerical integration
over θ:

I

pr(θk | y) ≈
∫

p̃r(θ | y)dθ−k

I

pr(xj | y) ≈
∫

p̃r(xj | θ, y)p̃r(θ | y)dθ



INLA in Three Steps

I Goal: Compute posterior marginal pr(xi | y), i = 1, . . . , n.
I Step I: Laplace approximation to pr(θ | y); Will be used to

integrate out uncertainty about θ
I Step II: Simplified Laplace approximation to pr(x i | θ, y) over

selected θ values: {θk}
I Step III: Combines the previous two steps using numerical

integration



INLA - Step I: Approximate pr(θ | y)

I θ = (θ1, . . . , θm) ∈ Rm

1. Locate the mode θ∗ for p̃r(θ | y): optimize log(p̃r(θ | y)) by
quasi-Newton method; Compute the Hession matrix H at
θ = θ∗

2. Construct a representation for general θ values for exploration:
θ = θ(z) = θ∗ + V Λ1/2z, where Σ = H−1 and Σ has been
spectrally decomposed as Σ = V ΛV ′

3. Explore log(p̃r(θ | y)) over a grid of {θk} by using the
z-parametrization. Need stepsize δz in each z-direction. For
each grid points, assign weight ∆k (see next slide for an
example with m = 2)

4. Can approximate pr(θj | y) already!



INLA - Step I-3



INLA - Step II: Approximate pr(xi | θk , y)

I Now we have a set of weighted points {θk}, we obtain for each
xi the marginal posterior given each selected θk Three options:

1. Gaussian approximation: simplest and cheapest: p̃rG(xi | θ, y);
There could be errors in the location or due to the lack of
skewness

2. Laplace approximation

p̃rLA(xi | θ, y) ∝ pr(x,θ, y)
p̃rGG(x−i | xi ,θ, y)

∣∣∣∣
x−i =x∗

−i (xi ,θ)

Too expensive: recomputed p̃rGG() at every xi . Has some fixes
(see Section 3.2.3 of Rue et al. 2009)

3. Simplified Laplace approximation: Correct Gaussian
approximation for location and skewness AND has computing
time O(n2 log n) exp(m).



Comparing MCMC and INLA

I MCMC: Stochastic simulation of the posterior; Accurate if
computing time is not a concern (rarely true)

I Easy posterior inferene for functions of unknowns
I Components of latent field x strongly dependent; θ and x are

also strongly dependent. Chains will mix painfully slow
I Usually requires blockwise proposal-and-rejection scheme (aka

block MCMC)
I The Monte Carlo error decays at rate O(N−1/2).
I Time: hours to days for some spatial models (see Rue et al,

2009)



Comparing MCMC and INLA

I INLA: Deterministic; Using analytic approximations
I Suitable for latent GMRF; Sparse precision matrix can speed up

computations; Approximation bias found to be smaller than
typical MCMC in some cases

I Variational Bayes: Also deterministic approximation; Iterative
algorithm; Usually require exponential-family likelihood and
priors on θ

I Time: seconds or minutes



INLA - Summary

I Compute the posterior marginals for latent Gaussian Markov
Random Field Models based on deterministic Laplace
approximations

I Much faster than MCMC with small approximation biases
I Practically exact results by INLA over a randge of commonly

used latent Gaussian models; Also has tools for assessing
approximation errors to decide if they are non-neglegible (not
discussed see Section 4 of Rue et al. 2009)

I Could be a basis for greater automation and parallel
implementation; Core is the sparse matrix algorithms;
Essentially no tunning.

I Disadvantage: computing time exponential of m, the dimension
of hyperparameters θ

I Could be used as a baseline model to explore smooth effects



Extensions (Not Discussed)

I Approximate posterior marginals for a subset of xS
I Approximate marginal likelihood (e.g. for Bayes factor)
I Approximate predictive measures for model crticism and

comparison
I Approximate Deviance Information Criteria (Spiegelhalter,

2002, Bayesian measure of model complexity and fit)



Comment

I Next and Final lecture: Network Analysis
I Required reading:

I Rue, Martino and Chopin (2009) Approximate Bayesian
Inference for Latent Gaussian Models by using Integrated
Nested Laplace Approximations. JRSS-B, 71(2): 319-392.

I Additional References:
I INLA Tutorials
I Simpson et al. (2015). Going off grid: computationally efficient

inference for log-Gaussian Cox processes. Biometrika.

I Other resouces:
I R-INLA project
I All models implemented in R inla package

http://www.r-inla.org/examples/tutorials
http://biomet.oxfordjournals.org/content/103/1/49.abstract
http://biomet.oxfordjournals.org/content/103/1/49.abstract
http://www.r-inla.org
http://www.r-inla.org/models

