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Introduction - INLA

» Inference for latent Gaussian Markov random field (GMRF)
models, avoiding MCMC simulations

» Fast Bayesian inference using accurate, multiple types of
approximations to

» pr(0 | y): marginal density for the model parameters
» pr(x; | y): marginal posterior densities for one (or more) latent
variables.

» Can be used for model criticisms:

1. Fast cross-validation
2. Bayes factors and deviation information criterion (DIC) can be
efficiently calculated for model comparisoins

» Software inla available from R; very easy to use



Supported Models

» Hierarchical GMRF of the form:

likelihood :y; | n;, 01 ~ pr(y; | nj,601),j € J,
ne—1
linear predictor :n; = Offset; + Z wiifi(cki) + Z:B + e,
k=0
i=0,...,n— 1

v

Jc{0,1,...,n, — 1}, i.e., not all latent 1 are observed
through data y

pr(y; | mj,01): likelihood of data; known link function

€= (€0, €n,-1)" | Ay ~ N(0,\;]); Ay, denotes precision
n = {n;}: a vector of linear predictors, e.g., in GLM

wy: in the k-th nonlinear effect, the known weights, one for
each observed data point
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Supported Models (continued)

» Hierarchical GMRF of the form:

likelihood :y; | n;, 01 ~ pr(y; | nj,601),j € J,
ne—1
linear predictor :n; = Offset; + Z wiifi(cki) + ZiB + e,
k=0
i=0,...,n— 1

> fr(cki): nonlinear effect of covariate k for observation i

1. Nonlinear effects: time trends and seasonal effects, two
dimensional surfaces, iid random intercepts, slopes and spatial
random effects.

2. The unknown functions fy = (fox, . . ., fm,—1,4)" are modelled as
GMREF given some parameter 0 : f | 8z ~ N(0, Q; ")

» z;: A vector of ng covariates assumed to have a linear effect
» 3. The vector of unknown parameters



Supported Models (continued)

» x=(n',fy,....f, 1,8 full vector of latent variables;

Dimension: n = n, + Zjlal m; + ng; note we parameterized x
by m instead of €

» All the elements of vector x are defined as GMRFs:

ny—1 nf—1
pr(x | 62) = HprnI’wa"afnfflnB?)\;l)Hpr(fk‘efk)
k=0
n5 1
x [T pr(Bm),
m=0
where
n,r—l
! ud
771' | f07"’7fnf—176 NN (Z fk(ckf)+ziB7A7]) 7/8 N(O )\,8)
k=0
and 0> = {log \,, 05, .. .,0fnf,1} is a vector of unknown

hyperparameters.



Prior

» Specify priors on the hyperparameters:
0, = {log A\, 05, ..., 0¢, _1,log A}
» Need not be Gaussian



Examples

» Time series model: ¢, = t for time, f; for nonlinear trends or
seasonal effects

e = ftl’end(t) + fseasonal(t) + Z/t,B

» Generalized additive models (GAM):

1. pr(yi | ni,01) belongs to an exponential family
2. cx's are univariate, continuous covariates
3. f¢'s are smooth functions



Examples

» Generalized additive mixed models (GAMM) for longitudinal
data

» Individuals: i =0,---,n; — 1, observed at time points
to, t1,.... A GAMM extends a GAM by introducing individual
specific random effects:

nie = fo(ciro)+- - -+ Fn,—1(Cit,ns—1)+boiWito+ - .+bp,—1,i Wit n,—1,

where 7);; is the linear predictor for individual i at time t,

Citk, k =0,...,nf =1, Witq,q =0,...,np, — 1 are covariate
values for individual i at time t, and by;, ..., by,—1,i is a vector
of np individual-specific random intercepts (if wiq = 1) or
slopes.

» Just define r = (i, t) and ¢k = cxir for k=10,...,ns— 1 and

Cni—1+q,r = Wyit, fnf71+q(c(nffl+q),r) = bquqit for
q= 07 ceoy Np.



Examples

» Geoadditive models (Kammann and Wand, 2003, JRSS-C):

’,7’- = fl(COI) —|— e “l’ fnff]_(Cnffl,f) + fspatial(si) + zjﬂ?

where s; indicates the location of observation i and fgp,yia is a
spatially correlated effect.



Examples

» ANOVA-type interaction model: For the effect of two
continuous covariates w and v:

ni = f]_(W,) + I(Q(Vi) + f1,2(WI'7 Vi) +..

)

where fi, f, are the main effects and f; 5 is a two dimensional
interaction surface. As a special case, we just define ¢;; = w;,
Cojf = Vi and C3j = (W,'7 V,'),

» Univariate stochastic volatility model

» Time series models with Gaussian likelihood where the variance
(not the mean) of the observed data is part of the latent GMRF
model:

yi [ mi ~ N(0,exp(n;)),

and, for example, model the latent field 1 as an autoregressive
model of order 1.



Bayesian for Spatial and Spatio-temporal Models
(Blangiardo and Cameletti, 2015, Wiley)

MARTA BLANGIARDO « MICHELA CAMELETTI

WILEY




INLA for Spatial Area Data: Suicides in London

» Disease mapping is commonly used in small area studies to
assess the pattern of a disease

» To identify areas characterized by unusually high or low relative
risk (Lawson 2009)
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Cholera map in dot style; dots represent deaths from cholera in
London in 1854 to detect the source of the disease



Example: Suicide Mortality

» 32 Boroughs in London; 1989-1993
» For the i-th area, the number of suicides y;:

yi ~ Poisson(\;),

where \; = p;E;, a product of rate p; and the expected number
of suicides E;
> Linear predictor defined on logarithmic scale:

ni = log(pi) = a + vi + vi,

where « is the intercept, v; = f1(i) and v; = f(i) are two area
specific effects.



Besag-York-Mollie (BYM) model (Besag et al. 1991)

> v;: spatially structured residual, modeled using an intrinsic
conditional autoregressive structure (iCAR):

Vi | Viz, ~ Normal(m;, s?)

2 jeN() Y
T TN
2
2 _ Jv
NG

where [N (/)| is the number of areas which share boundaries

with the i-th one.
» v unstructured residual; modeled by exchangeable prior:

v; ~ Normal(0, o%)



Priors

> log7, ~ log —Gamma(1,0.0005)
» log 7, ~ log —Gamma(1,0.0005)



Goal

1. Posterior for borough-specific relative risks of suicides,

compared to the whole of London: pr(exp(v; + v;) | y)
2. Posterior exceedance probability: pr(exp(v; +vi) > 1| y)
3. Fraction of structured variance component



Incorporating Risk Factors

» Extension: when risk factors are available and the aim of the
study is to evaluate their effect on the risk of death (or disease)

» Ecological regression model

» For example: Index of social deprivation (x;), index of social
fragmentation (describing lack of social connections and of
sense of community) (x2)

> Model:

ni = o+ Bixii + Paxoj + Vi + v

» Can be fitted using the R-INLA package



London Suicide Rates Mapping

(a) Distribution of the borough spe- (b) Distribution of the borough spe-
cific relative risks of suicides ¢; = cific posterior probability p(¢; > 1 |
exp(vi + ;) in the discase mapping ) in the disease mapping model
model

(c) Distribution of the borough spe- (d) Distribution of the borough spe-
cific relative risks of suicides (; = cific posterior probability p(¢; > 1|
exp(u; +v;) in the ecological regres- ) in the ecological regression model

sion model

Figure 1: Borough specific relative risks and posterior probabilities.

Figure 1: suicide_rates



Other Spatial Examples (FiveThirtyEight)

Stephen Curry Is One Of The Best
All of his shots, 2015-16 regular season
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Figure 2: Stehpen Curry



Background: Gaussian Markov Random Fields (GMRF)

>

GMRF: x = (xq, ..., x,) with Markov property that for some
i j, xi Lxj|x_j

Can be encoded by precision matrix Q: Q; = 0 if and only if
X Lo | x—

Density function with mean vector p:

pr(x) = (27) "2/ @1 M2 exp{ 5 (x — ) Qlx — )}

Most cases: Q is sparse: only O(n) of the n? entries are
nonzero

Can handle extra linear constraints: Ax = e for a k x n matrix
A of rank k

Computational note: Simulation usually based on lower
Cholesky decomposition @ = LL’, with L preserving the
sparseness in Q. See Section 2.1 in Rue et al. (2009) for more
details.



Background: Gaussian approximation (under regularity
conditions)

» Find a Gaussian density g(z) to approximate a density
p(z) = %f(z), where Z = [ f(z)dz
» One-dimensional case
» Multi-dimensional case
» Need to find mode zo (Newton or quasi-Newton methods)
» Need not know the normalizing constant Z
» Central Limit Theorem, approximate becomes better as sample
size n increases if f(z; Data) is a posterior distribution of
model parameters
» Typically better for marginal and conditional posteriors than
joint posteriors (marginals are averages across other
distributions!)
» Can use transformations (e.g., logit or log) to approximate a
distribution over a constrained space
> Not so useful if there is skewness, or if interested in extreme
values that are far from the mode



Background: Gaussian approximation - Density at Extreme
Values (Bishop CM, 2006, Sec 4.4)

0.8 40
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92 =1 0 1 2 3 4 92 =1 0 1 2 3 4

Figure 4.14 lllustration of the Laplace approximation applied to the distribution p(z) o exp(—2*/2)c (202 + 4)
where o(z) is the logistic sigmoid function defined by o(z) = (1 + ¢ *) '. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode zo of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.



Background: Gaussian Approximations

» Approximate density of the form

pr(x) o exp {—;X/Qx + Zgi(xf)} ;

i€eT

where gi(x;) = log(pr(y; | xi,0)) in our setting.

» Gaussian approximation pr¢(x): obtained by matching the
modal configuration and curvature at the mode (model could
be computed by Newton-Raphson method)

> Let the mode be x*, the precision matrix be Q" + diag(c*)
(hint: use expansion to the second order -
gi(xi) ~ gi(x*) + bixi — 3¢ix7)

» Property: because the second summation does not involve x;
and x; in one g(), the resulting Q" preserves the Markov

property in the original latent Gaussian model on x



Background: Laplace Approximation

» Approximate marginal posterior:

[ pr(x,0,y)dx
PriO1Y) = 1 or(x. 0, y)dxdb
pr(6,x,y)
X ——F——F
pr(x | 07y) x:x*(@)

where x*(0) = arg max, pr(x | 0,y).

» Key difference with Tierney and Kadane (1986) JASA: here in
latent Gaussian models, the dimension of latent field x is n,

could change with the number of observations ng; Not the case
in TK1986



Goal of INLA: Approximate Marginal Posteriors

» Marginal posterior for each 6, and x; by numerical integration

over 0:
| 4

pr(0ic | )~ [ pr( | y)do-

prxi | y) =~ / pr(xi | 0,y)pr(0 | y)do



INLA in Three Steps

» Goal: Compute posterior marginal pr(x; | y), i=1,...,n.

» Step |: Laplace approximation to pr(6 | y); Will be used to
integrate out uncertainty about @

» Step II: Simplified Laplace approximation to pr(x; | 0,y) over
selected 0 values: {0}

» Step II: Combines the previous two steps using numerical
integration



INLA - Step |: Approximate pr(6 | y)

> 0=(01,...,0m)cRM

1. Locate the mode 6" for pr(€ | y): optimize log(pr(0 | y)) by
quasi-Newton method; Compute the Hession matrix H at
0 =0"

2. Construct a representation for general 6 values for exploration:
6 =0(z) = 0" + VAY/2z, where £ = H™! and X has been
spectrally decomposed as ¥ = VAV’

3. Explore log(pr(€ | y)) over a grid of {64} by using the
z-parametrization. Need stepsize ¢, in each z-direction. For
each grid points, assign weight Ay (see next slide for an
example with m = 2)

4. Can approximate pr(6; | y) already!



INLA - Step I-3

02

01 01
(a) (b)
Fig. 1. lllustration of the exploration of the posterior marginal for 6: in (a) the mode is located and the Hes-

sian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (e) until the
log-density drops below a certain limit; finally the new points (e) are explored




INLA - Step Il: Approximate pr(x; | O, y)

» Now we have a set of weighted points {6}, we obtain for each
x; the marginal posterior given each selected 8, Three options:

1. Gaussian approximation: simplest and cheapest: prg(x; | 0,y);
There could be errors in the location or due to the lack of
skewness

2. Laplace approximation

pr(x,6.y)
Prec(x—i| xi,6,y) x_i=x* ,(xi,0)

pria(xi|0,y)

Too expensive: recomputed prcc() at every x;. Has some fixes
(see Section 3.2.3 of Rue et al. 2009)

3. Simplified Laplace approximation: Correct Gaussian
approximation for location and skewness AND has computing
time O(n?log n) exp(m).



Comparing MCMC and INLA

» MCMC: Stochastic simulation of the posterior; Accurate if
computing time is not a concern (rarely true)

» Easy posterior inferene for functions of unknowns

» Components of latent field x strongly dependent; € and x are
also strongly dependent. Chains will mix painfully slow

» Usually requires blockwise proposal-and-rejection scheme (aka
block MCMC()

» The Monte Carlo error decays at rate O(N~1/2).

» Time: hours to days for some spatial models (see Rue et al,
2009)



Comparing MCMC and INLA

> INLA: Deterministic; Using analytic approximations

» Suitable for latent GMRF; Sparse precision matrix can speed up
computations; Approximation bias found to be smaller than
typical MCMC in some cases

» Variational Bayes: Also deterministic approximation; lterative
algorithm; Usually require exponential-family likelihood and
priors on 6

» Time: seconds or minutes



INLA - Summary

» Compute the posterior marginals for latent Gaussian Markov
Random Field Models based on deterministic Laplace
approximations

» Much faster than MCMC with small approximation biases

» Practically exact results by INLA over a randge of commonly
used latent Gaussian models; Also has tools for assessing
approximation errors to decide if they are non-neglegible (not
discussed see Section 4 of Rue et al. 2009)

» Could be a basis for greater automation and parallel
implementation; Core is the sparse matrix algorithms;
Essentially no tunning.

» Disadvantage: computing time exponential of m, the dimension
of hyperparameters 6

» Could be used as a baseline model to explore smooth effects



Extensions (Not Discussed)

v

Approximate posterior marginals for a subset of xg
Approximate marginal likelihood (e.g. for Bayes factor)
Approximate predictive measures for model crticism and
comparison

Approximate Deviance Information Criteria (Spiegelhalter,
2002, Bayesian measure of model complexity and fit)

vy

v



Comment

v

Next and Final lecture: Network Analysis
Required reading;:

v

» Rue, Martino and Chopin (2009) Approximate Bayesian
Inference for Latent Gaussian Models by using Integrated
Nested Laplace Approximations. JRSS-B, 71(2): 319-392.

Additional References:

» INLA Tutorials
» Simpson et al. (2015). Going off grid: computationally efficient
inference for log-Gaussian Cox processes. Biometrika.

v

Other resouces:

» R-INLA project
> All models implemented in R inla package

v


http://www.r-inla.org/examples/tutorials
http://biomet.oxfordjournals.org/content/103/1/49.abstract
http://biomet.oxfordjournals.org/content/103/1/49.abstract
http://www.r-inla.org
http://www.r-inla.org/models

