Lecture 1: Introduction

Statistical and Computational Methods for Learning through Graphical Models (aka Probabilistic Graphical Models)

> BIOSTAT 830 September 6th, 2016 Zhenke Wu

> > Some materials adapted from Eric Xing's CMU Graphical Model Course

Welcome

- Course website (Syllabus and notes are posted here)
 - <u>http://zhenkewu.com/teaching/graphical_model</u>
- Your instructor:
 - Zhenke Wu PhD, Assistant Professor of Biostatistics
- Office Hours:
 - Tuesday 2-3pm and by appointment
- Contact
 - Instructor: <u>zhenkewu@umich.edu</u>
 - Class Announcement Email: <u>BIOSTAT-830-001-FA2016-</u> <u>A@courses.umich.edu</u>

Logistics

- Homework Assignment 30%. (Theory and Implementation)
 - The total homework grade equals the sum of 3 highest scores out of four, each corresponding to one learning module and graded in the scale of 0-10.)
 - The homework will be assigned one week prior to the end of each module.
 - Assignments will be due 1 week after the module completion.

• Active participation - 10%.

- Peer-review.
- Help oneself learn and teach one's classmates and instructor by asking questions and discussing solutions.

• Term Project – 60% (Application to your area, or theory/methods work)

- (Poster presentation on December 13th, 2016)
- Based on the trimmed mean of the scores obtained from external judges and the instructor.
- A separate, but optional report will be due at 11:59pm December 20th, 2016.
- Students with ONLY poster presentation will be graded solely on poster scores; those with ADDITIONAL written report will be graded based on the LARGER of the two: the poster and the written report scores.

Course Objectives

- To familiarize students with the concepts, applications and computational techniques of graphical models.
- To engage students in building, estimating and interpreting expert systems for problems either suggested by the instructor or identified by the students.
- To showcase the current frontier of graphical model research in biomedical problems and to prepare advanced PhD or Masters students for their next research projects.

Discussion

- What is a statistical model?
- Why model?
- What is science?
- How does statistics, in particular, statistical models function in scientific investigation?

Reasoning under Uncertainty

Key Questions to be addressed in This Class

- Graphical representation of probability distributions
- Inference of model parameters given evidence from observed nodes
- Learn graph structures that are compatible with data at hand
- Use the graphical models for decision making

Brief History of Graphical Models

- Represent the interactions between variables using a graph structure
 - Statistical physics (Gibbs, 1902, for interacting particles)
 - Genetics (Wright, 1921, for path analysis on inheritance in natural species); Largely rejected by statisticians at the time
 - Economists and social scientists (Wold 1954, Blalock, Jr. 1971)
 - Statistics (!) (Bartlett, 1935, for contingency tables, or log-linear models); More accepted thereafter
 - 1960s~70s: Artificial intelligence (AI); Expert systems for locating oil-well, or making medical diagnosis; Great performance with constrained probabilistic model structure
 - Late 1980s: widespread acceptance of probabilistic methods (Theory: Pearl 1988, Lauritzen and Spiegelhalter 1988; Application: Pathfinder expert system by Heckerman et al 1992)

• ..

Probabilistic Graphical Models

- Connects graph structure with probability distributions
- Advantages:
 - A general reasoning framework under uncertainty
 - Interpretability and ease of communication (hence many scientific applications)
 - Conditional independence that constrains the model space
 - Data integration/fusion
 - Unobserved/latent variables, missing data easily handled

Directed Acyclic Graphs (DAG)

 Directed edges + nodes gives causality relationships (Bayesian network)

Fig. 1. The sprinkler example

Hidden Markov Model: Speech Recognition

Hidden Markov Model

Image Segmentation

DAG for Medical Diagnosis

Undirected Graphs

- A node is conditionally independent of every other node in the graph given its immediate neighbors
- Gives correlations; no explicit generative process
- Example: solid state physics; Potts model with 4 states on a 2D lattice

Inference Given Observed Evidence in a DAG

• Are the nodes "sprinkler" and "rain" correlated if we see the ground is wet?

- "Wet" is a *collider*
- Conditioning on a collider or its descendants tend to induce dependence among the collider's parental nodes. (cf. Pg17, Pearl, 2009) slippery

BIOSTAT830, UMICH BIOST. 1. The sprinkler example

sprinkler

season

rain

General Inference Questions and Procedures

- Inference questions:
 - Is node X independent of Y given observed node Z?
 - What is the probability of X=Tail if (Y=Head and Z=Head)?
 - What is the joint distribution of (X,Y) given Z?
 - What is the likelihood of a configuration of node values?
 - What is the most likely configuration to all or a subset of the graph?
- Computational Procedures
 - Exact algorithms: junction tree, etc.
 - Approximate algorithms: variational inference, Monte Carlo, loopy belief propagation, etc.

Plan for the Class

- Module 1 (3 weeks): Representation
 - 1. Graph structure and terminologies; Why study graphical models?
 - 2. Directed graphical models
 - 3. Undirected graphs models
 - 4. Other variants of graphical models
- Module 2 (4 weeks): Inference and Computation for Graphical Models
 - 1. Exact and Approximate algorithms
 - 3. Scalable Bayesian algorithms
 - 4. Structure learning
 - 5. Software packages
- Module 3 (3 weeks): Graphical Models for Causality
 - 1. Causal graphical models: concepts and inference
 - 2. Structure learning of causal graphs
 - 3. Causal inference for network data (randomization; peer-encouragement design, etc.)
- Module 4 (4 weeks): Case Studies
 - 1. Individualized health problems (partially-latent class models, dynamic Bayesian networks, etc.)
 - 2. Large-scale networks (latent state space models)
 - 3. Deep learning examples
 - 4. Graphical models for neuroimaging data (Guest lectures, TBD)
- Optional Advanced Topics

Readings for the First Week

- Required
 - Chapters 1-3, Koller and Friedman (2009)
 - Spiegelhalter, David J., et al. "Bayesian analysis in expert systems." *Statistical science* (1993): 219-247.
- No pen-and-paper homework assignment for the first week.