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Motivating Application
Pneumonia Etiology Research for Child Health (PERCH) (PERCH Study Group, Lancet

2019, In Press)
Background:

• > 30 possible infectious causes

• Difficult to directly observe

Goal:

• Population disease etiology estimation

• Individual diagnosis

Study details:

• $40-mil, Gates-funded 7-country study;

Sites at Sub-Saharan Africa and South

Asia

• Diverse measures; variable precisions

• ∼5,000 cases and ∼5,000 controls
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Measurements of Different Quality

cases
(~5,000)

controls
(~5,000)

Lung 
Infection NA

--------
*NP: nasopharyngeal; PCR: polymerase chain reaction; LA: lung aspirate
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Latent Health State Measurements
Measurement 
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Specimen (S)
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Data From A Random Case
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Problem and Data Features
Summary

Problem:

1. To infer individual latent health state

2. To estimate population distribution of latent health states

(CSCFs)

Features:

• case data:

1. Few or no gold-standard measure

2. A large number of categories of latent health states

3. Multiple sources of measurements of differential quality

• extra control data to integrate

No method has effectively estimated the etiologic distribution

(“pie”) using such data.
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Previous Statistical Methods for Etiology Research
A Selected Review

• Case-only, needs lots of GS data: verbal autopsy methods

for areas without medical death certification; Kernel smoothing

for estimating sparse probability contingency table Pr [MBrS | I ]
(King and Lu, 2008, Stat. Sci.)
• Case-only, BrS data: Bayesian nonparametric clustering

(Hoff, 2004, Biometrics); Subset clustering (Friedman and

Meulman, 2004, JRSS-B). Both no pre-defined cluster labels.
• Case-control, only allows BrS data, assumes perfect test

sensitivities: Attributable fraction method (Bruzzi et al., 1985,

AJE) based on logistic regression

logit Pr [Yi = 1 |MBrS
i ,Xi ] =

J∑
j=1

βjM
BrS
ij + X ′i γ
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Case Measurement Model
Joint Distribution of (Health State, Measurements)
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Hierarchical Bayes Model for Etiology Research
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Partially-Latent Class Models (pLCM; Wu et al., 2015)
Notation

• Yi =

{
0, control

1, case

• I Li =


0, control

1, pathogen 1

...

L, pathogen L

• MS
i = (MS

i1, ...,M
S
iJS

)′ - Measurement vector

- Specimen S on individual i

- 1 for presence of pathogen from the test; 0 for absence
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Partially-Latent Class Models (pLCM; Wu et al., 2016)
Model Structure (Bronze-Standard Data Only) partial identifiability statistical information
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Assumptions
pLCM

• Non-interference assumptions for BrS data:

P(MBrS
[−(j ,j ′)] | I

L = j ,Y = 1) = P(MBrS
[−(j ,j ′)] | I

L = j ′,Y = 1),

j , j ′ = 1, ..., J.

P(MBrS
[−j] | Y = 0) = P(MBrS

[−j] | I
L = j ,Y = 1),

j = 1, ..., J

• Independence of measurements given class label (I Li )

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 11 / 55



Background Models Regression Simulations Results Discussion

Likelihood
pLCM

• Bronze-standard

P0,BrS
i =

∏J
j=1

(
ψBrS
j

)mj
(

1−ψBrS
j

)1−mj
,

P1,BrS
i′ =

∑J
j=1 πj ·

(
θBrS
j

)mj
(

1−θBrS
j

)1−mj ∏
l 6=j

(
ψBrS
l

)ml
(

1−ψBrS
l

)1−ml
,

m=mBrS
i′

• Silver-standard

P1,SS
i′ =Pr(MSS

i′ =m|π,θSS )=
∑J′

j=1 πj ·
(
θSS
j

)mj
(

1−θSS
j

)1−mj
1{∑J′

l=1
ml≤1}, m=mSS

i′

• Gold-standard

P1,GS
i′ =Pr

(
MGS

i′ =m|π
)

=
∏J

j=1 π
1{mj=1}
j 1{

∑
j mj=1}, m=mGS

i′ .
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Partial Identifiablility
Necessity of Informative Priors on True Positive Rate

• pLCM implies: Model structure

Pr
[
MBrS

ij = 1
]

= πjθ
BrS
j + (1− πj)ψBrS

j

• Formal argument: singular vectors and values of Jacobian

matrix of model parametrization
• Bayesian framework sidesteps partial identifiability problem

• Use TPR prior elicited from laboratory scientists (Cf. Wu et al.,

2015, JRSS-C )
• No Bayesian free lunch: posterior of unidentified parameters

not shrinking to point mass as sample size grows
• Identified set of parameter values; Valuable in epidemiology,

econometrics, sociology (Cf. Greenland, 2005, JRSS-A;

Gustafson, 2009, JASA; Gustafson, 2005, Stat. Sci.; Manski,

2010, PNAS)
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Priors
pLCM

• Informative
• θBrS

j ∼ Beta(c1j , c2j) - true positive rates for BrS data

• θSS
j ∼ Beta(d1j , d2j) - true positive rates for SS data

• Non-informative
• π ∼ Dirichlet(0.5, ..., 0.5) - population etiology
• ψBrS

j ∼ Beta(1, 1) - false positive rates for BrS data

Joint prior for γ = (π,ψBrS ,θBrS ,θSS)′, a priori independent:

[γ] = [π][ψBrS ][θBrS ][θSS ]
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Posterior Computing

• Gibbs sampler: construct correlated samples to approximate the

shape of joint posterior distribution of the unknowns

• Unknowns:
• π-population etiology distribution
• (ψBrS ,θBrS )′- TPRs and FPRs for BrS measurements
• θSS - TPRs for SS measurements
• I Li -latent health state; for case i

• Individual diagnosis: For a case with new measurements m∗,
approximate by

Pr(I Li = j | m∗,D) =

∫
Pr(I Li = j | m∗,γ) Pr(γ | m∗,D)dγ,

j = 1, ...J
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Information for Correct Individual Diagnosis
• Log relative probability of I Li = j versus I Li = ` given others is

Rj` = log

(
πj

π`

)
+ log


 θBrS

j

ψBrS
j

m∗j
 1− θBrS

j

1− ψBrS
j

1−m∗j


+ log


(
ψBrS
`

θBrS
`

)m∗` (
1− ψBrS

`

1− θBrS
`

)1−m∗`


• Suppose I Li = j . Averaging over m∗:

E [Rj`] = log
(
πj/π`

)
+ I (θBrS

j ;ψBrS
j ) + I (ψBrS

` ; θBrS
` )︸ ︷︷ ︸

large & positive if the arguments are discrepant

Model structure

• I (v1; v2): expected amount of information in m∗j ∼ Bern(v1)

for discriminating against m∗j ∼ Bern(v2).
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Inference with BrS+GS Data
Simulation: 3 Pathogens; 500 Cases/Controls; 5 Cases with GS Measure
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“nested” pLCM
Relax the LI and Non-interference Assumption

• Direct evidence against LI: control measurements
(Mi1, ...,MiJ)′

• test cross-reactions (prevented in PERCH assays)
• lab technicians effect
• heterogeneity in subjects’ immunity level

• Deviations from independence impacts inference (Cf. Pepe and

Janes, 2007, Biostatistics; Albert et al., 2001, Biometrics)
• Modeling Deviation from LI Modeling a cross-classified

probability contingency table

P[Mi1 = m1, ...,MiJ = mJ | Ii ], ∀m = (m1, ...,mJ)′

• Log-linear parameterization
• Generalized linear mixed-effect models (GLMM)
• Simplex factor model; similar to mixed-membership model (Cf.

Bhattacharya and Dunson, 2012, JASA)
• PARAFAC decomposition (Cf. Dunson and Xing, 2009, JASA)
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Nested Partially-Latent Class Models (npLCM; Wu and Zeger, 2016)

Example: 5 Pathogens, 2 Subclasses; BrS Data Only
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Nested Partially-Latent Class Models (npLCM; Wu and Zeger, 2016)

Example: 5 Pathogens, 3 Subclasses; BrS Data Only
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Encourage Few Subclasses: Stick-Breaking Prior
Vj ∼ Beta(1, α); Example: K = 10, α = 1

• On average, the first several segments receive most weights
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npLCM: Likelihood and Prior
BrS Data Only

• Likelihood

P0(Mi = m) =
K∑

k=1

νk

J∏
j=1

{
ψ

(j)
k

}mj
{

1− ψ(j)
k

}1−mj
,

P1(Mi = m) =
J∑

j=1

πj

K∑
k=1

ηk {θ(j)
k

}mj
{

1− θ(j)
k

}1−mj ∏
6̀=j

{
ψ

(j)
k

}m`
{

1− ψ(j)
k

}1−m`

 ,
• Prior:

π ∼ Dirichlet(.5, . . . , .5),

ψ
(j)
k ∼ Beta(1, 1), θk ∼ Beta(c1kj , c2kj ), j = 1, ..., J; k = 1, ...,∞,

Zi′ | I Li′ = j ∼
∞∑
k=1

Uk

∏
`<k

[1− U`] δk , Uk ∼ Beta(1, α0), for all cases,

Zi ∼
∞∑
k=1

Vk

∏
`<k

[1− V`]δk , Vk ∼ Beta(1, α0), for all controls,

α0 ∼ Gamma(0.25, 0.25),
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Estimation Bias if Ignoring Local Dependence (LD)
Simulation: LD Truth (npLCM) Estimated by Working LI Models (pLCM)
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So Far: A General Framework

Nested Partially Latent Class

Models (npLCM)
For simplicity, we assume “single-pathogen causes”, or a single

relevant feature per cluster, or more visually, ”one row of green

boxes per disease class”
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npLCM Framework (no Covariates)
Three components of a likelihood function:

a. Cause-specific case fractions (CSCF): π = (π1, . . . , πL)> =

{π` = P(I = ` | Y = 1), ` = 1, . . . , L} ∈ SL−1;

b. P1` = {P1`(m)} = {P(M = m | I = `,Y = 1)}: a table of

probabilities of making J binary observations M = m in a case

class ` 6= 0;

c. P0 = {P0(m)} = {P(M = m | I = 0,Y = 0)}: the same

probability table as above but for controls.

Cases’ disease classes are unobserved, so the distribution of their

measurements is a weighted finite-mixture model: P1 =
∑L

`=1 π`P1`

The likelihood:

L = L1 · L0 =

 ∏
i :Yi=1

L∑
`=1

π` · P1`(Mi ;Θ,Ψ,η)

× ∏
i ′:Yi′=0

P0(Mi ′ ;Ψ,ν)

(1)
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Background Models Regression Simulations Results Discussion

Special Case: pLCM (Wu et al., 2016)
Setting η1 = 1 and ν1 = 1

Control model for multivariate binary data {Mi : where Yi = 0}:
1. P0(m) =

∏J
j=1{ψj}mj{1− ψj}1−mj = Π(m;ψ)

1a. Π(m; s) =
∏J

j=1{sj}mij{1− sj}1−mij is the probability mass

function for a product Bernoulli distribution given the success

probabilities s = (s1, . . . , sJ)>, 0 ≤ sj ≤ 1

1b. Parameters ψ = (ψ1, . . . , ψJ)> represent the positive rates

absent disease, referred to as “false positive rates” (FPRs).

Local Independence: Mij ⊥ Mij ′ | I = 0
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Background Models Regression Simulations Results Discussion

Special Case: pLCM (Wu et al., 2016)
Model for the multivariate binary data in case class ` 6= 0

2. P1`(m) is a product of the probabilities of measurements made

2a. on the causative pathogen `,

P(M` | I = `,Y = 1,θ) = {θ`}M`{1− θ`}1−M` , where

θ = (θ1, . . . , θJ)> are “true positive rates” (TPRs), larger than

FPRs.

2b. on the non-causative pathogens

P(Mi [−`] | Ii = `,Yi = 1,ψ[−`]) = Π(M[−`];ψ[−`]), where a[−`]
represents all but the `-th element in a vector a.

2c. Under the single-pathogen-cause assumption, pLCM uses J

TPRs θ for L = J causes and J FPRs ψ.

2a-2b: Local Independence (LI): Mij ⊥ Mij ′ | I = ` 6= 0

2a-2b. Non-interference: disease-causing pathogen(s) are more

frequently detected among cases than controls (θ` > ψ`) and

the non-causative pathogens are observed with the same rates

among cases as in controls
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Background Models Regression Simulations Results Discussion

Regression Analysis in nested PLCM

In large-scale disease etiology studies:

• Data: case-control diagnostic tests, multivariate binary

observations

• Scientific problem: estimate cause-specific case fractions

(CSCF); Think “Pie chart” for cases

• Statistical problem: Using nested PLCM to estimate the

mixing distribution among the cases

• Motivation for regression analyses: CSCFs may vary by

season, a child’s age, HIV status, disease severity
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Background Models Regression Simulations Results Discussion

Data (with Covariates)

• D = {(Mi ,Yi ,XiYi ,Wi ), i = 1, . . . ,N}

• Mi = (Mi1, ...,MiJ)>: binary measurements; Indicate the

presence or absence of J pathogens for subject i = 1, . . . ,N.

• Yi : case (1) or a control (0).

• Xi = (Xi1, . . . ,Xip)>: covariates that may influence case i ’s

etiologic fractions

• Wi = (Wi1, . . . ,Wiq)>: shared by cases and controls; possibly

different from Xi ; may influence control distribution

[Mi |Wi ,Yi = 0]. For example, healthy controls do not have

disease severity information (which can be included in Xi ).

• Continuous covariates: the first p1 and q1 elements of Xi and

Wi , respectively.
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Background Models Regression Simulations Results Discussion

Motivating Application Again: PERCH Study
Data : 494 cases and 944 controls from one site

Goal a. : Estimate CSCFs at all covariate values, and assign

cause-specific probabilities for each case

Goal b. : Quantify overall cause-specific disease burdens in a

population, i.e., overall CSCFs π∗ = (π∗1, . . . , π
∗
L)> as an

empirical average of the stratum-specific CSCFs (by X ); Of

policy interest (vaccine/antibiotics development and

manufacture)

Model : • J = 7: noisy presence/absence of 2 bacteria and 5 viruses in the

nose
• Causes: seven single-pathogen causes plus an “Not Specified”

(NoS) cause; So L = J + 1
• Xi : enrollment date, age (< or > 1 year), disease severity for

cases (severe or very severe), HIV status (+/-)
• Wi : Xi minus “disease severity”.
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Background Models Regression Simulations Results Discussion

PERCH Data: Sparsely-Populated Strata§

Table: The observed count (frequency) of cases and controls by age,
disease severity and HIV status (1: yes; 0: no). The marginal fractions
among cases and controls for each covariate are shown at the bottom.
Regression results will be shown for the first two strata.

age ≥ 1 very severe (VS) HIV positive # cases (%) # controls (%)

(case-only) total: 524 (100) total: 964 (100)

0 0 0 208 (39.7) 545 (56.5)

1 0 0 72 (13.7) 278 (28.8)

0 1 0 116 (22.1) -

1 1 0 33 (6.3) -

0 0 1 37 (7.1) 85 (8.8)

1 0 1 24 (4.5) 51 (5.3)

0 1 1 25 (4.8) -

1 1 1 3 (0.6) -

case: 25.2% 34.5% 17.0%

control: 34.3% - 14.1%
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Background Models Regression Simulations Results Discussion

Current Methods Fall Short§

• Fully-stratified analysis: fit an npLCM to the case-control data

in each covariate stratum.

Like pLCM, the npLCM is partially-identified in each stratum,

necessitating multiple sets of independent informative priors

across multiple strata.

Two primary issues:

Gap 1a Unstable CSCF estimates due to sparsely-populated strata.

Gap 1b Informative TPR priors are often elicited for a case population

and rarely for each stratum; Reusing independent prior

distributions of the TPRs across all the strata will lead to

overly-optimistic posterior uncertainty in π∗, hampering policy

decisions.
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Background Models Regression Simulations Results Discussion

The Rest of Talk©
More focus on model formulation; Inference done by ‘baker‘

Extend the npLCM to perform regression analysis in case-control

disease etiology studies that

(a) incorporates controls to estimate the CSCFs (π),

(b) specifies parsimonious functional dependence of π upon

covariates such as additivity, and

(c) correctly assesses the posterior uncertainty of the CSCF

functions and the overall CSCFs π∗ by applying the TPR priors

just once.
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Now, how to incorporate covariates, to which quantities?

Regression Extension for P0

and P1:

letting π`, νk , ηk depend on

covariates



Background Models Regression Simulations Results Discussion

Roadmap

Let three sets of parameters in an npLCM (pg.17) depend on the

observed covariates

1x. Etiology regression function among cases, {π`(x), ` 6= 0},
which is of primary scientific interest

2x. Conditional probability of measurements m given covariates w
in controls: P0(m; w) = [M = m |W = w , I = 0],

3x. 2x above, but in the case class `:

P1`(m; w) = [M = m |W = w , I = `], ` = 1, . . . , L

note Keep the specifications for the TPRs and FPRs (Θ, Ψ) as in

the original npLCM.
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Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

Etiology Regression π`(X )
π`(X ) is the primary target of inference.

1. Recall that Ii = ` represents case i ’s disease being caused by

pathogen `.

2. Occurs with probability πi` that depends upon covariates.

3. Over-parameterized multinomial logistic regression:

πi` = π`(Xi ) = exp{φ`(Xi )}/
∑L

`′=1 exp{φ`′(Xi )}, ` = 1, ..., L,

where φ`(Xi )− φL(Xi ) is the log odds of case i in disease class

` relative to L: log πi`/πiL.

4. Without specifying a baseline category, we treat all the disease

classes symmetrically which simplifies prior specification.

5. Additive models for φ`(x ;Γπ` ) =
∑p1

j=1 f
π
`j (xj ;β

π
`j) + x̃>γπ`

5a. Use B-spline basis expansion to approximate f π`j (·) and use

P-spline for estimating smooth functions.

5b. x̃ is the subvector of the predictors x ; Γπ` = (βπ`j ,γ
π
` ).

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 36 / 55



Background Models Regression Simulations Results Discussion

P0: Multivariate binary regression for controls

Desirable properties

Model Specification:

• Model space large enough for complex conditional dependence

of M given covariates W
• Upward compatibility, or reproducibility (invariant parameter

interpretation with increasing dimensions or complex patterns

of missing responses)

Estimation:

• Adaptivity: regularization to adapt to the difficulty of the

problem, e.g., model residual dependence [M |W , I = 0] only

if necessary; model the effect of covariates only if necessary
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Background Models Regression Simulations Results Discussion

Let P0 depend on Wi

Regression model for controls

• The pmf for controls’ measurements:
Pr(Mi = m |Wi , Ii = 0) =

∑K
k=1 νk(Wi )Π(m; Ψk),

Ψk = (ψ
(1)
k , . . . , ψ

(J)
k )′

• The vector (ν1(Wi ), . . . , νK (Wi )) lies in a (K − 1)-simplex
• Π(m; s) =

∏J
j=1{sj}mij (1− sj)

1−mij

• An equivalent generative process:

sample subclass indicator : Zi |Wi ∼ CategoricalK (ν(Wi ))

generate measurements : Mij | Zi = k ∼ Bernoulli(ψ
(j)
k ),

independently for j = 1, ..., J.
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Background Models Regression Simulations Results Discussion

Let P0 depend on Wi

Regression model for controls Stick-breaking parametrization of

weight functions νk(Wi ) = P(Zi = k |Wi ) by

hk(Wi ;Γ
ν
k)︸ ︷︷ ︸

stick k

=

{
g(ανik)

∏
s<k {1− g(ανis)} , if k < K ,∏

s<k {1− g(ανis)} , if k = K ,

g(·) = 1/(1 + exp{−(·)}) . We specify ανik via additive models:

ανik = µk0 +

q1∑
j=1

fkj(Wij ;β
ν
kj) + W̃>

i γ
ν
k , k = 1, . . . ,K − 1.

Expand the smooth functions by B-spline bases with coefficients

βνkj ; w̃ is a subvector of covariates w
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Background Models Regression Simulations Results Discussion

Adaptivity Considerations©
Proposed Model

• Prevent overfitting when the regression is easy, and improve

interpretability
• We a priori place substantial probabilities on models with the

following two features:

a) Few subclasses with effective weights (in the sense that νk(·) is

bounded away from 0 and 1): a novel additive half-Cauchy prior for

µk0.

b) Smooth weight regression curves νk(·): by Bayesian Penalized-Splines

(P-Splines) combined with mixture priors on spline coefficients to

sensitively distinguish constant ανk (·) from flexible smooth curves
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Background Models Regression Simulations Results Discussion

On Consideration a) “Uniform Shrinkage over Simplex” for

νk(W )
Proposed Model

• We let µk0 =
∑k

j=1 µ
∗
j0, µ∗j0 > 0. A large µk0 for a large k .

• µk0 increases with k : making the stick-breaking a priori more likely to

stop for a large k
• We specify the prior distributions for µ∗j0 to be heavy-tailed:

µ∗j0 ∼ Cauchy+(0, sj), j = 1, . . . ,K ,
• A large sk produces a large µ∗k0 and helps stop the stick-breaking at

class k .
• Encourages using a small number of effective classes (< K ) to

approximate the observed 2J probability contingency table in finite

samples
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Background Models Regression Simulations Results Discussion

Inference of νk(x) at three hyperparameter values sj
Simulation: with a single continuous covariate; “—”: truth, “—”: posterior samples

X-axis: covariate values

Y-axis: weight; 0 to 1.
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Background Models Regression Simulations Results Discussion

Let P1 depend on X and W
Subclass Weight Regression: For Cases

The pmf for cases’ measurements:

Pr(Mi = m) =
∑L

`=1 πi`
∑K

k=1 ηikΠ(Mi ; pk`)

• pk` = {p(j)
k` , j = 1, . . . , J} are positive rates for J measurements

in subclass k of disease class `:

p
(j)
k` =

{
θ

(j)
k

}I{j=`}
·
{
ψ

(j)
k

}1−I{j=`}

• Equals the TPR θ
(j)
k for a causative pathogen and the FPR ψ

(j)
k

otherwise
• Subclass weight regression ηk(W ) is also specified via

stick-breaking: ηik = hk(Wi ;Γ
η
k), k = 1, . . . ,K − 1

• αηik : GAMs
• αηik = αηk(Wi ;Γ

η
k ) = µk0 +

∑q1

j=1 fkj(Wij ;β
η
kj) + W̃>

i γ
η
k , where

Γηk = {µk0, {βηkj},γ
η
k} are the regression parameters.

• we use µk0 from the controls (why?)
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Background Models Regression Simulations Results Discussion

npLCM Regression Framework

The npLCM regression framework is then obtained as:

• Control likelihood with covariates:

Lreg
0 =

∏
i :Yi=0

∑K
k=1 νikΠ(Mi ;Ψk).

• Cases likelihood with covariates:

Lreg
1 =

∏
i :Yi=1


L∑
`=1

π`(Xi ;Γ
π
` )︸ ︷︷ ︸

CSCF `

K∑
k=1

{ηik · Π(Mi ; pk`)}

 (2)

• νik = hk(Wi ;Γ
ν
k) : The S? ? ? ?-B? ? ? ? parameterization

• ηik = hk(Wi ;Γ
η
k)

The joint likelihood for the regression model can be written as:

Lreg = Lreg
1 × Lreg

0 .

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 44 / 55



Background Models Regression Simulations Results Discussion

npLCM Regression Framework

The npLCM regression framework is then obtained as:

• Control likelihood with covariates:

Lreg
0 =

∏
i :Yi=0

∑K
k=1 νikΠ(Mi ;Ψk).

• Cases likelihood with covariates:

Lreg
1 =

∏
i :Yi=1


L∑
`=1

π`(Xi ;Γ
π
` )︸ ︷︷ ︸

CSCF `

K∑
k=1

{ηik · Π(Mi ; pk`)}

 (2)

• νik = hk(Wi ;Γ
ν
k) : The S? ? ? ?-B? ? ? ? parameterization

• ηik = hk(Wi ;Γ
η
k)

The joint likelihood for the regression model can be written as:

Lreg = Lreg
1 × Lreg

0 .

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 44 / 55



Background Models Regression Simulations Results Discussion

npLCM Regression Framework

The npLCM regression framework is then obtained as:

• Control likelihood with covariates:

Lreg
0 =

∏
i :Yi=0

∑K
k=1 νikΠ(Mi ;Ψk).

• Cases likelihood with covariates:

Lreg
1 =

∏
i :Yi=1


L∑
`=1

π`(Xi ;Γ
π
` )︸ ︷︷ ︸

CSCF `

K∑
k=1

{ηik · Π(Mi ; pk`)}

 (2)

• νik = hk(Wi ;Γ
ν
k) : The S? ? ? ?-B? ? ? ? parameterization

• ηik = hk(Wi ;Γ
η
k)

The joint likelihood for the regression model can be written as:

Lreg = Lreg
1 × Lreg

0 .

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 44 / 55



Background Models Regression Simulations Results Discussion

npLCM Regression Framework

The npLCM regression framework is then obtained as:

• Control likelihood with covariates:

Lreg
0 =

∏
i :Yi=0

∑K
k=1 νikΠ(Mi ;Ψk).

• Cases likelihood with covariates:

Lreg
1 =

∏
i :Yi=1


L∑
`=1

π`(Xi ;Γ
π
` )︸ ︷︷ ︸

CSCF `

K∑
k=1

{ηik · Π(Mi ; pk`)}

 (2)

• νik = hk(Wi ;Γ
ν
k) : The S? ? ? ?-B? ? ? ? parameterization

• ηik = hk(Wi ;Γ
η
k)

The joint likelihood for the regression model can be written as:

Lreg = Lreg
1 × Lreg

0 .

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 44 / 55



Background Models Regression Simulations Results Discussion

Prior Specifications

Unknown parameters:

• etiology regression coefficients ({Γπ` }),

• subclass mixing weight parameters for cases ({Γηk}) and

controls ({Γνk}),

• true and false positive rates (Θ = {θ(j)
k },Ψ = {ψ(j)

k }).

To avoid potential overfitting, we a priori introduce:

• (a) few non-trivial subclasses via novel additive half-Cauchy

prior for the intercepts {µk0}
• (b) for continuous variable: smooth regression curves π`(·),

νk(·) and ηk(·) by Bayesian Penalized-splines (Lang, 2004)

combined with shrinkage priors on spline coefficients (Ni et.al,

2015) (to encourage towards constant values)
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Background Models Regression Simulations Results Discussion

Posterior Inference

Use Markov chain Monte Carlo (MCMC) algorithm to approximate

joint posterior distribution

• Posterior inference is flexible and can be obtained from any

functions of model parameters and individual latent variables

Fit npLCMs (w/ or w/out covariates using R package baker

(https://github.com/zhenkewu/baker)

• calls Bayesian model fitting software JAGS 4.2.0 (Plummer et

al., 2003) from within R

• provides functions to visualize the posterior distributions of the

unknowns

• also performs posterior predictive model checking
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Background Models Regression Simulations Results Discussion

Simulation Results

• Simulation I: flexible and valid statistical inferences about the

CSCF functions {π`(·)} (not shown here)

• Simulation II: valid inferences about the overall CSCF π∗`
(empirical average) to quantify disease burdens in a population

(of policy interest)

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 47 / 55



Background Models Regression Simulations Results Discussion

Simulation Results

• Simulation I: flexible and valid statistical inferences about the

CSCF functions {π`(·)} (not shown here)

• Simulation II: valid inferences about the overall CSCF π∗`
(empirical average) to quantify disease burdens in a population

(of policy interest)

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 47 / 55



Background Models Regression Simulations Results Discussion

Simulation Results

• Simulation I: flexible and valid statistical inferences about the

CSCF functions {π`(·)} (not shown here)

• Simulation II: valid inferences about the overall CSCF π∗`
(empirical average) to quantify disease burdens in a population

(of policy interest)

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 47 / 55



Background Models Regression Simulations Results Discussion

Simulation II: Regression Model Reduces the Percent

Relative Bias in Recovering the Overall CSCFs π∗`
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Background Models Regression Simulations Results Discussion

Simulation II: Regression Model Produces More Valid 95%

CrIs in Recovering the Overall CSCFs π∗`
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Background Models Regression Simulations Results Discussion

Regression analysis of PERCH data from one site: Age<1,

Severe Pneumonia, HIV negative
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Background Models Regression Simulations Results Discussion

Seasonal Trend for πRSV: Age<1, Severe Pneumonia, HIV

negative
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Background Models Regression Simulations Results Discussion

Summary of the Regression Approach

• 1) allows analysts to specify a model that links important

covariates to CSCFs ©
• 2) produces covariate-dependent reference distribution for

controls, which is critical for assigning cause-specific
probabilities to a given case ©
• because we can compare control measurements to case

measurements with similar covariate values

• 3) TPR priors are only used once; avoids overly-optimistic

etiology uncertainty estimates. ©
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Background Models Regression Simulations Results Discussion

Main Points Once Again

Context: Modern large-scale etiology studies generate complex

measurements of unobserved causes of disease, and have raised the

analytic needs of estimating cause-specific case fractions (CSCFs)

Gap: Despite recent methodological advances, the need of

describing the relationship between covariates and CSCFs, remains

unmet

Contribution: A general etiology regression framework building on

npLCM that is broadly applicable to case-control studies

A general framework for a class of statistical problems that can be

formulated as estimating covariate-dependent class-mixing weights.
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Background Models Regression Simulations Results Discussion

Discussions
• Related to restricted latent class models (RLCM, Xu, 2017,

AOS; Wu 2019);

• ”Restricted” means the response probability for a measurement

depends on the latent state in a monotonic way (e.g., we have

TPR greater than FPR in the pneumonia example)

• Established sufficient and necessary conditions for theoretical

identifibility (based on likelihood only).

• Also related to boolean matrix decomposition (Rukat 2017,

ICML) and double feature allocation (Ni and Mueller, 2019,

JASA)

• Other applications in autoimmune disease subsetting (Wu et al,

2019, Biostatistics) and electronic health records (Ni and

Mueller, 2019) and verbal autopsy (King and Lu, 2008 Stat

Sci; McCormick et al., 2016, JASA)
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Thank You!
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Simulation I Results
• Nd = 500 cases and Nu = 500 controls for each of two levels of

S (discrete covariate); Uniformly sample the subjects’

enrollment dates over a period of 300 days.
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Simulation I: Recovery of Truth π0
` (t, S = s)

0.0

0.2

0.4

0.6

0.8

1.0

po
si

tiv
e 

ra
te

Acase   −−>

case   −−>

control−−>

control−−>

1)

standardized date

et
io

lo
gi

c 
fr

ac
tio

n

50.5%
44%57.4%2)

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

case   −−>

0.0

0.2

0.4

0.6

0.8

1.0

B

standardized date

26.2%
20.4%33.3%

<− Overall Pie −>
<− 95% CrI −>

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

C

standardized date

11.8%
7.8%16.8%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

D

standardized date

6.3%
3.1%10.8%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

E

standardized date

1.7%
0.2%4.1%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.8

1.0

F

standardized date

1.1%
0.1%3.1%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.8

1.0

G

standardized date

0.6%
0% 2.3%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

H

standardized date

0.9%
0% 4.1%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

I

standardized date

0.9%
0% 2.8%

20
10

:F
eb

−
01

M
ay

−
01

A
ug

−
01

N
ov

−
01

0

0.2

0.4

0.6

0.8

1

Zhenke Wu(zhenkewu@umich.edu) 2019 TAMU 57 / 55



Simulation I: Recovery of νk(t) and ηk(t)
True K 0 = 2; Model fitted using a working number K = 7

(a) case

(b) control
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Appendix: Simulation II Setup

• npLCM regression analysis with K ∗ = 3, R = 200 replication

data sets simulated under 48 different scenarios

• L = J = 3, 6, 9 causes, under single-pathogen-cause

assumption, BrS measurements made on Nd cases and Nu

controls for each level of X where Nd = Nu = 250 or 500.

• φ`(X ) = β0` + β1` I{X = 2} take two sets of values to reflect

CSCF variability across X : i) βi
0 = (0, 0, 0, 0, 0, 0),

βi
1 = (−1.5, 0,−1.5,−1.5, 0,−1.5); ii) βii

0 = (1, 0, 1, 1, 0, 1)

and βii
1 = (−1.5, 1,−1.5,−1.5, 1,−1.5)

• TPRs θ
(j)
k = 0.95 or 0.8 and FPRs

(ψ
(j)
1 , ψ

(j)
2 ) ∈ {(0.5, 0.05), (0.5, 0.15)}, for j = 1, . . . , J.

• νk(W ) = ηk(W ) = logit−1 (γk0 + γk1 I{W = 2}) where

(γ10, γ11) = (−0.5, 1.5) and (γ20, γ21) = (1,−1.5).
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Figure: Posterior distributions of the stratum-specific (Row 1 and 2) and the
overall (Bottom Row) CSCFs based on a simulation with a two-level discrete
covariate and L = J = 6 causes. The vertical gray lines indicate the 2.5% and
97.5% posterior quantiles, respectively; The truths are indicated by vertical blue
dashed lines. Row 1-2) CSCFs by stratum (level = 1,2) and cause (A-F);
Bottom) π∗` : overall population etiologic fraction for cause A-F (empirical
average of the two CSCFs above).
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Figure: NPLCM analyses with or without regression perform similarly in terms of
percent relative bias (top) and empirical coverage rates (bottom) over R = 100
replications in simulations where the case and control subclass weights do not
vary by covariates. Each panel corresponds to one of 16 combinations of true
parameter values and sample sizes
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Simulation II: Regression Model Reduces the Percent

Relative Bias in Recovering the Overall CSCFs π∗`
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Simulation II: Regression Model Produces More Valid 95%

CrIs in Recovering the Overall CSCFs π∗`
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Figure: NPLCM analyses with or without regression perform similarly in terms of
percent relative bias (top) and empirical coverage rates (bottom) over R = 100
replications in simulations where the case and control subclass weights do not
vary by covariates. Each panel corresponds to one of 16 combinations of true
parameter values and sample sizes
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Figure: Individual etiology fraction estimates for RSV (left) and NoS
(right) differ by age and season among HIV negative and severe
pneumonia cases for whom the seven pathogens were all tested negative
in the nasopharyngeal specimens.
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