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Problem Models Results Results Discussion

Question: What’s Causing Her Lung Infection?
Measurements From a Random Case

Bacterium

Virus

Measurements using different specimens
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Motivating Application
Pneumonia Etiology Research for Child Health (PERCH)

Background:

• > 1 million deaths per year among children

under 5

• > 30 possible pathogen causes

Goal:

• To determine the etiology and risk factors

for pneumonia

Design:

• 7-country, case-control study

• Multiple modern diagnostic tools

• ∼5,000 cases and ∼5,000 controls
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Common Questions on Individual and Population Health

1. a. What is the person’s health state

given health measurements?

b. What is the population distribution of

health states?

(Wu et al., 2015a,b,c)

2. How to make robust inference?

Picture source: http://www.diabetesdaily.com/voices/2014/07/why-one-size-fits-all-doesnt-work-in-diabetes
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Problem and Data Features

Latent health state:

• Estimating population distribution + individual diagnosis

Data Features:

1. Gold-standard measure: few or none

2. Latent state: many categories

3. Measurements: many, with distinct error rates, missingness

4. Blessing: control data

No effective and principled methods to estimate the etiologic

distribution (“pie”) using such data.
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Our Approach: Direct Modeling
Connect Latent States and Measurements for Individual i
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Latent Class Models (LCM)
Review
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• IDEA: marginal correlations are caused by confounding of unobserved

cluster indicators (Ii )

• Assumption 1: Within-Class Homogeneity

P[Mij = 1 | Ii = k] = ψ
(j)
k , k = 1, ...,K

• Assumption 2: Local Independence (LI)

P[Mi1 = m1, ...,MiJ = mJ | Ii = k] =
J∏

j=1

Pr [Mij = mj | Ii = k], ∀(m1, ...,mJ)′ = m
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Partially-Latent Class Models (pLCM; Wu et al. 2015a)
Model Structure

casescontrols
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• Partially-observed class:

Controls have no lung infection;

• Non-interference:

P(M[−j] | Y = 0)

= P(M[−j] | I L = j ,Y = 1);

• Local independence (LI):

independence among

measurements given class (I Li ).

Next: relax both non-interference and LI assumptions.
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Modeling Local Dependence (LD)

logOR
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• Direct evidence from control data;

symmetry (see Figure); pathogen

interactions

• Impact on inference (Pepe and

Janes, 2007; Albert et al., 2001)

• Modeling cross-classified probability

contingency tables

P(Mi1 = m1, ...,MiJ = mJ)

• Log-linear parametrization

• Generalized linear mixed-effect

models (GLMM)

• Mixed-membership models

• Other non-negative decompositions
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Nested pLCM
Example: 5 Pathogens, 2 Subclasses
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Example: Dependence Structure; 2 Subclasses
Left: weak LD Right: strong LD
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Simulation: Relative Asymptotic Bias
Bias if Estimated by Working LI Model (pLCM)

Left: weak LD Right: strong LD
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Estimation in Finite Samples: How Many Subclasses?
Example: 3 Subclasses

A model selection problem:

• Extra subclasses: rich correlation structure;

• Few subclasses: parsimonious approximation in finite samples.

Proposed solution:

Model averaging by stick-breaking prior: to encourage few but allow more

if data have rich dependence
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Finite-Sample Simulations: Smaller MSE by npLCM
Scenario II: Strong LD; Ncase = Ncontrol = 500

Truth: Cases’ First Subclass Weight (ηo)

0 0.25 0.5 0.75 1

Class 100×Ratio of MSE( Standard Error)

A 82( 4) 25( 1) 47( 2) 115( 6) 221( 12)

B 516( 11) 177( 5) 80( 3) 62( 4) 140( 8)

C 2379( 77) 711( 26) 131( 7) 268( 13) 357( 8)

D 397( 14) 152( 6) 94( 5) 79( 4) 60( 4)

E 357( 13) 151( 6) 102( 5) 95( 6) 82( 5)

Table: ratio of mean squared errors (MSE) for pLCM vs npLCM. All

numbers are averaged across 1,000 replications.
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Analysis of PERCH Data
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Model Checking: Frequent Binary Patterns
Left: pLCM; Right: npLCM
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Main Points Once Again

• Input: multivariate binary data in case-control studies

• Output: two histograms: 1) the fraction of cases caused by

each pathogen; 2) the probability of a particular case caused by

each pathogen; both given measurements.

• Proposed a larger model family (nested pLCM) to

1) Borrow covariation and measurement precision from controls;

2) Account for residual measurement correlations, or local

dependence (LD);

3) Parsimoniously approximate LD by sparse Bayesian fitting

• Compared to pLCM, the extended model family can

1) Reduce bias

2) Retain efficiency

3) Have near-nominal coverage
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Regression Analysis
Left: pLCM (bad fit) Middle: npLCM (improved fit) Right: Seasonality
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Thanks!
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