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Individualizing Health

Source: http://www.diabetesdaily.com/voices/2014/07/why-one-size-fits-all-doesnt-work-in-diabetes
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Evaluation of individualized intervention

1 Scientific question: To what extent has the individualized rule

improved health outcomes for the entire population? (Policy

makers may care more than clinicians)

2 Statistical question: How to estimate the overall effect

consistently and efficiently?

Wu, Frangakis, Louis, Scharfstein (2014). Estimating Treatment Effects in Cluster Randomized Trials by Calibrating

Covariate Imbalances between Clusters. Biometrics. doi: 10.1111/biom.12214.

R package: http://github.com/zhenkewu/mpcr
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Example: Guided Care study
Background: specially trained nurses to help deliver patient-centered care

Study website: http://www.guidedcare.org/

Nurse training courses: https://www.ijhn-education.org/content/guided-care-nursing
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How data is collected?
Matched-pair cluster randomized (MPCR) design–rationale

1 Sometimes, investigators are only able to intervene on clusters

of individuals, e.g., a nurse for each clinical practice

2 To recoup the resulting efficiency loss1, some studies pair

similar clusters and randomize treatments within pairs2,3

3 The use of pre-treatment variables that affect the outcome can

improve estimation efficiency4
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Matched-pair cluster randomized (MPCR) design
One pair
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MPCR design
Example: Guided Care study5

Observed

Intervention: assignment of specially trained

nurses to coordinate patient-centered care

14 teams of clinical practices matched into 7

pairs

Covariates: hierarchical condition category

(hcc), age, race, gender, education,

livesalone, etc.

Primary outcome: physical component

summary in Short-Form 36 (SF-36) Version 2
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MPCR design
Goal

Observed
If all are

assigned

control

if all are

assigned

intervention
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MPCR design
Goal

Observed

Goal: To estimate the average outcome if

all clusters in all pairs are assigned control

(1) versus if all clusters in all pairs are

assigned to intervention (2):

δeffect = µ(1)− µ(2)
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Understanding the observed data from MPCR design
Type 1

Clinical practice "1"
(actually assigned 

control)

Clinical practice "2"
(actually assigned 

intervention)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p

(µp,1 (1) , σ
2
p,1 (1))

(µp,1 (2) , σ
2
p,1 (2))

(µp,2 (1) , σ
2
p,2 (1))

(µp,2 (2) , σ
2
p,2 (2))
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Understanding the observed data from MPCR design
Type 1 and Type 2

Clinical practice "1"
(actually assigned 

control)

Clinical practice "2"
(actually assigned 

intervention)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p
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Pair p'
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2
p,2 (1))
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(µp ,1 (1) , σ
2
p ,1 (1))

(µp ,1 (2) , σ
2
p ,1 (2))

(µp ,2 (1) , σ
2
p ,2 (1))

(µp ,2 (2) , σ
2
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Understanding the observed data from MPCR design
Two types share the same characteristics

Clinical practice "1"
(actually assigned 

control)

Clinical practice "2"
(actually assigned 

intervention)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p'

(µp,1 (1) , σ
2
p,1 (1))

(µp,1 (2) , σ
2
p,1 (2))

(µp,2 (1) , σ
2
p,2 (1))

(µp,2 (2) , σ
2
p,2 (2))

(µp ,1 (1) , σ
2
p ,1 (1))

(µp ,1 (2) , σ
2
p ,1 (2))

(µp ,2 (1) , σ
2
p ,2 (1))

(µp ,2 (2) , σ
2
p ,2 (2))

equal
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Understanding the observed data from MPCR design
Each type is sampled with probability 1

2
(design-based)

Clinical practice "1"
(actually assigned 

control)

Clinical practice "2"
(actually assigned 

intervention)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p

(mean, variance)
(if assigned control)

(mean, variance)
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Pair p'

(µp,1 (1) , σ
2
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2
p,1 (2))

(µp,2 (1) , σ
2
p,2 (1))

(µp,2 (2) , σ
2
p,2 (2))

(µp ,1 (1) , σ
2
p ,1 (1))

(µp ,1 (2) , σ
2
p ,1 (2))

(µp ,2 (1) , σ
2
p ,2 (1))

(µp ,2 (2) , σ
2
p ,2 (2))

equal

equal
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The right target Clinical practice "1"
(actually as 

control

Clinical practice "2"
(actually  

intervention

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p'

(µp,1 (1) , σ
2
p,1 (1))

(µp,1 (2) , σ
2
p,1 (2))

(µp,2 (1) , σ
2
p,2 (1))

(µp,2 (2) , σ
2
p,2 (2))

(µp ,1 (1) , σ
2
p ,1 (1))

(µp ,1 (2) , σ
2
p ,1 (2))

(µp ,2 (1) , σ
2
p ,2 (1))

(µp ,2 (2) , σ
2
p ,2 (2))

equal

If all patients are assigned with intervention t,

µp(t) = µp,1(t)πp,1 + µp,2(t)πp,2,

where πp,1 is the fraction of patients served by the first clinic;

πp,2 = 1− πp,1.

Averaging over a population of pairs, µ(1) = E {µp(1)},
µ(2) = E {µp(2)}, δeffect = µ(1)− µ(2) .
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Directly estimable contrasts
Clinical practice "1"

(actually 
 control

Clinical practice "2"
(actually as 
intervention

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p'

(µp,1 (1) , σ
2
p,1 (1))

(µp,1 (2) , σ
2
p,1 (2))

(µp,2 (1) , σ
2
p,2 (1))

(µp,2 (2) , σ
2
p,2 (2))

(µp ,1 (1) , σ
2
p ,1 (1))

(µp ,1 (2) , σ
2
p ,1 (2))

(µp ,2 (1) , σ
2
p ,2 (1))

(µp ,2 (2) , σ
2
p ,2 (2))

equal

Direct difference between observed means

δ̂crude
p = µ̂p,1(1)− µ̂p,2(2),

with [δ̂crude
p | δcrude

p , v2,crude
p ] approximately normal
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Methods for effect estimation under MPCR design
First-level only

Only based on the following equality

E
(
δcrude
p

)
= δeffect,

without assumptions on [δcrude
p , v2,crude

p ].

Example: Average of δ̂crude
p or other weighted extensions4
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Methods for effect estimation under MPCR design
With a hierarchical second-level (meta-analysis)

Directly models observed outcomes, using two-level model6

δ̂crude
p | δcrude

p , v2,crude
p ∼ Normal

(
δcrude
p , v2,crude

p

)
,

δcrude
p | τ2 ∼ Normal

(
δeffect, τ2

)

Question: an implicit assumption in the second level ?

δcrude
p ⊥⊥ v2,crude

p | τ2

Can lead to inconsistent effect estimator if not true!
Example of inconsistent estimation
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Another practical problem: covariate imbalance despite

matching
Data from the Guided Care study

Standardized differences of several continuous covariates between two clusters

within each of 7 pairs.
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Proposed method: covariate calibration

Bias consideration: If a hierarchical second level is used, to

make the following more plausible:

δcrude
p ⊥⊥ v2,crude

p | X , τ2

Efficiency consideration: To decrease residual variance by

conditional on important covariates that affect outcomes
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Methods to handle covariate imbalance
Existing approaches

1 Interpretation of treatment effect conditional on covariates6

2 Normal assumption on individual level: does not necessarily

hold; interpretation of treatment effect conditional on

cluster-specific random effects, thus treatment effect require a

model to be estimable7,8
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Covariate-calibrated estimation
1 Combine covariate distribution, and 2 re-weight outcome regression

1 Stratify the average outcome by covariate

2 Re-calibrating the stratified means with respect to the covariate

distribution of the two clusters combined, for example, for the

control arm t = 1,

µcalibr
p,c=1 =

∫
x
µp,c=1(x ; t = 1)dGp(x),

= 82% · µp,c=1(x = F ; t = 1)

+18% · µp,c=1(x = M; t = 1).
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Uncalibrated vs calibrated analysis
Reduced variances

Presenter: Wu Z.(zhwu@jhu.edu) MPCR 27 August 2014 17 / 20



Analysis of Guided Care data

Table: Results from MLE, profile MLE, Bayes estimates and permutation test in

the Guided Care study. The outcome is the physical component summary of the

Short Form 36 (SF36).
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Summary

Goal: to evaluate individualized interventions for a population

Data: from matched-pair cluster randomized (MPCR) design.

Statistical contributions:

Existing approaches only model the observed data (e.g.,

meta-analysis). We connect them with potential outcome

framework and reveal implicit assumptions

Covariate-calibration is necessary if 2nd-level checking reveals

substantial dependence

Covariate-calibration improves estimation efficiency
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Thank you!
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An example of inconsistency of meta-analytic “MLE”
Meta-analytic approach

Clinical practice "1"
(actually assigned 

control)

Clinical practice "2"
(actually assigned 

intervention)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p (type=1)

(mean, variance)
(if assigned control)

(mean, variance)
(if assigned intervention)

Pair p' (type=2)

(0 , 1)

(0 , σ2 )

(µ, 1)

(µ, 1)

(µ, 1)

(µ, 1)

(0 , 1)

(0 , σ2 )

equal

equal
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Matched-pair cluster randomized design

level 1’:δ̂
calibr
1

...

δ̂calibr
N

 |
δ

calibr
1

...

δcalibr
N

 , θ,Σδ̂calibr

∼ Normal


δ

calibr
1

...

δcalibr
N

 ,Σδ̂calibr


level 2’: δcalibr

p | δeffect, τ2 ∼ Normal(δeffect, τ2),

p = 1, . . . ,N.
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Checking second-level dependence

●
●

●

●

●

●

●

δp
crude

v pcr
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1.
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●

●

●

●

●

●

●
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calibr

v pca
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