

Clustering Multivariate Binary Outcomes with Restricted Latent Class Models: A Bayesian Approach

Zhenke Wu

Assistant Professor of Biostatistics Schools of Public Health, University of Michigan, Ann Arbor

Joint Statistical Meetings 2018 Vancouver August 2, 2018

(zhenkewu@umich.edu)

zhenkewu.com

R Package: rewind https://github.com/zhenkewu/rewind

Motivating Example

Accurate clustering of multivariate binary data that

automatically selects feature subsets and
 works well for **unbalanced** cluster sizes

We achieve this goal via boolean matrix decomposition, or more generally, restricted latent class models

Boolean Matrix Decomposition (noise-free version) (a special case of restricted latent class models)

Statistical Formulation

Model Setup: Quick Overview

- **Data:** $Y_i = (Y_{i1}, \dots, Y_{iL})^T \in \{0, 1\}^L, i = 1, \dots, N$
- Latent state vector: $\boldsymbol{\eta}_i \in A \subset \{0,1\}^M$
- Latent dimension: M
- Latent class: K distinct patterns of η_i
- The number of clusters, K, unknown (no greater than 2^M)
- Q-matrix (M by L; binary): Q

Model Setup: Quick Overview

1) Given a latent state dimension M, specify likelihood $[Y_i | \eta_i, \Lambda]$ via restricted latent class models (RLCM); with conditional independence

$$\mathbb{P}(\boldsymbol{Y}_{i} = \boldsymbol{y} \mid \boldsymbol{\eta}_{i}, \lambda_{\ell}(\cdot)) = \prod_{\ell=1}^{L} (\lambda_{i\ell})^{y_{i\ell}} (1 - \lambda_{i\ell})^{1 - y_{i\ell}}, \text{ where } \lambda_{i\ell} = \lambda_{\ell}(\boldsymbol{\eta}_{i}).$$

For example, for dimension *I*:

$$\lambda_{i\ell} = \theta_{\ell}^{\Gamma_{i\ell}}(\psi_{\ell})^{1-\Gamma_{i\ell}}, \quad \Gamma_{i\ell} = 1 - \prod_{m=1}^{M} (1-\eta_{im})^{Q_{m\ell}}.$$

-Needs just one required state in $({m : Q_{ml} = 1})$ for a positive ideal response $\Gamma_{il} = 1$.

- referred to as partially latent class model in epidemiology (Wu *et al.*, 2016); Deterministic In and Noise Or gate (DINO) in psychology (Junker and Sijtsma, 2001); non-negative matrix factorization if rows of Q are orthogonal (Lee and Seung, 1999)

Model Setup: Quick Overview

In two steps,

1) Given a latent state dimension M, first specify the likelihood [$Y_i \mid \eta_i, \Lambda$] via restricted latent class models (RLCM); with conditional independence

2) A prior distribution $[\eta_i, i = 1, ..., N]$ obtained from a clustering mechanism with unknown # of clusters *K* (represented by cluster assignment indicators $\{Z_i, i = 1, ..., N\}$);

We use mixture of finite mixtures (Miller and Harrison, 2017 JASA)

Challenges: Boolean Matrix Decomposition (an example of restricted latent class models)

- C1. High-dimensional discrete space Sparse priors that encourage:
 1. small # of latent state dimensions
 2. small # of distinct latent state patterns
- C2. Unknown number of latent state dimensions Infinite dimension model (based on semi-ordered formulation of Indian Buffet Process); Identifiability issue
- C3. Unknown number of clusters (i.e., # latent classes) Mixture of finite mixture model
- T1: Identifiability of model parameters based on likelihood only Open and frontier problem; exciting progress at Michigan

Aug 2, 2018

JSM2018 zhenkewu@umich.edu C: computational T: theoretical

Comparison of variants of latent class analysis of multivariate binary data

			Methods (examples)			
			Restricted LCM			Nested Partially
Model Specification			Bayesian	non-Bayesian	Classical LCM	LCM [†]
$egin{aligned} & ext{latent state} \ & ext{variables} \ (m\eta_i \in \mathcal{A} \subset \{0,1\}^M; \ \# ext{latent classes:} \ & \widetilde{K} = \mid \mathcal{A} \mid) \end{aligned}$	\widetilde{K} known	${\cal A}\ { m known}$	$\mathcal{A} = \{0, 1\}^M$: Chen et al. (2017)	$\begin{split} \mathcal{A} &= \{0,1\}^{M}: \\ & \text{Xu (2017);} \\ 0_{M} \in \mathcal{A} \neq \{0,1\}^{M}: \\ & \text{Leighton et al. (2004),} \\ & \text{Gu and Xu (2018)} \\ & \text{Miettinen et al. (2008)}^{\#} \end{split}$	Green (1951)*, Anderson (1954)*, Lazarsfeld and Henry (1968)*, Goodman (1974)* Erosheva et al. (2007) ^{†,‡} , Bhattacharya and Dunson (2012) ^{†,‡}	$0_M \in \mathcal{A}$ and partially observed some of $\{i : \boldsymbol{\eta}_i = 0_M\}$: Wu et al. (2017b)
	\widetilde{K} unknown	$ \begin{array}{l} \mathcal{A} \text{ unknown} \\ (M \text{ known} \\ \text{or unknown}) \end{array} $	(proposed)	-	Dunson and Xing $(2009)^{\dagger}$	Hoff (2005)
design matrix $(\Gamma = (\Gamma_{\eta,\ell})$ $\in \{0,1\}^{\widetilde{K} \times L})$	$\begin{array}{c} Q\text{-matrix}\\ (\Gamma=\Gamma(\boldsymbol{\eta},Q)) \end{array}$	known	(proposed)	Xu (2017)	$\checkmark: Q = 1_{M \times L}$	Wu et al. (2017b); Hoff (2005): $Q = I_{L \times L}$
		unknown	(proposed), Chen et al. (2017), Rukat et al. (2017)	Xu and Shang (2017), Chen et al. (2015)	-	-
$egin{array}{l} {f measurement} \ {f process} \ ([m Y_i \mid m \eta_i, \Gamma, \Lambda]) \end{array}$	local indep. given $\boldsymbol{\eta}_i$	yes	(proposed)	\checkmark		Wu et al. (2016)
		no	-	-	Pepe and Janes (2006), Albert et al. (2001)	Wu et al. (2017b)
	(K_ℓ^+, K_ℓ^-)	(=1,=1)	(proposed), Chen et al. (2017), Rukat et al. (2017), Wu et al. (2016)	Junker and Sijtsma (2001), Templin and Henson (2006)	-	Wu et al. (2016)
		$(\geq 1, = 1)$	-	-	-	Hoff (2005)
		$(=1,\geq 1)$	(proposed)	De La Torre (2011), Henson et al. (2009)	-	_
		$(\geq 1, \geq 1)$	-	-	-	Wu et al. (2017b)
		$(\geq 1, = 0)$	-	-	✓	-
t. Payagian approach t, has acquivalent I CM for				4. configurations #, non probabilistic		

[†]: Bayesian approach. [‡]: has equivalent LCM formulation. ^{*}: early applications. [#]: non-probabilistic.

 \checkmark : applies to all in the column (except for other rows in the same row block)

Table 1: Comparison of variants of latent class analysis of multivariate binary data.

- 76 autoantibody patterns from patients with rheumatic disease & cancer
- all were negative for autoantibodies against prominent defined specificities

Can an algorithm be developed to identify common autoantibody signatures? And estimate clusters among patients?

Aug 2, 2018

Raw Intensity Scan Data (20 lanes on a single gel)

JSM2018 zhenkewu@umich.edu

Scientific Questions

- How many clusters? What are the clusters?
 [the clustering problem]
- How many machines are there and what are the component auto-antigens?
 [estimation of latent state dimensions]
- What makes the clusters different in terms of presence or absence of machines? [interpretability of the clusters]

Preprocessing Step I-a: Automated Peak Detection

Example: Gel Set 1

Aug 2, 2018

Align the peaks (Wu et al., 2017)

Aug 2, 2018

zhenkewu@umich.edu

R package: spotgear

Posterior Computation

Posterior Computation

- Designed and implemented MCMC algorithms that deal with
 - a) unknown number of clusters (mixture of finite mixture models; split-merge), and
 - b) unknown number of machines (slice sampler for infinite Indian Buffet Process). Also works for pre-specified number of machines.

R package: rewind

Simulation

Simulation Setup

Recovery of the matrix Q (low noise)

Aug 2, 2018

Recovery of the matrix Q (intermediate noise)

Aug 2, 2018

Recovery of the matrix Q (high noise)

Aug 2, 2018

Preliminary clustering results based on machine models

Data: CTP negative sera

Method: Bayesian machinebased restricted latent class analysis

Figure: Three estimated clusters (top three panels) with distinct enrichment of three distinct estimated machines (bottom panel)

Colored labels: red, blue, green - for clusters obtained by standard method; this algorithm is agnostic to them.

Main Points Once Again

- Goal: Based on multivariate binary data, find scientifically structured, interpretable clusters
- Proposed a framework for clustering using restricted latent class models

- Designed and implemented MCMC algorithms that deal with unknown number of clusters and machines; Bayesian binary factorization algorithm
- Superior clustering performance compared to standard analyses; Improved estimations under **unbalanced** cluster sizes.

References

Wu Z, Casciola-Rosen L, Shah A, Rosen A, Zeger SL. Estimating autoantibody signatures to detect autoimmune disease patient subsets. Submitted for publication. *Biostatistics*. In Press. doi: 10.1093/biostatistics/kxx061

Wu Z, Zeger SL. Clustering Multivariate Binary Outcomes with Restricted Latent Class Models: A Bayesian Approach. Working paper.

Wu Z, Deloria-Knoll M, Hammitt LL, Zeger SL for the PERCH Core Team. Partially-latent class models (pLCM) for case-control studies of childhood pneumonia etiology. *Journal of the Royal Statistical Society, Series C.* 65: 97-114, 2016.

Wu Z, Deloria-Knoll M, Zeger SL. Nested, partially-latent class models for dependent binary data with application to estimating disease etiology. *Biostatistics* 18 (2), 200-213. 2016

Open Source Software

- spotgear: Subset Profiling and Organizing Tools for Gel Electrophoresis Autoradiography in R
- rewind: Reconstructing Etiology with Binary Decomposition

Available from *https://github.com/zhenkewu*

Thank you