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SUMMARY

The Pneumonia Etiology Research for Child Health (PERCH) study seeks to use modern measurement
technology to infer the causes of pneumonia for which gold-standard evidence is unavailable. Based on
case-control data, the article describes a latent variable model designed to infer the etiology distribution for
the population of cases, and for an individual case given her measurements. We assume each observation
is drawn from a mixture model for which each component represents one disease class. The model
conisidered here addresses a major limitation of the traditional latent class approach by taking account of
residual dependence among multivariate binary outcomes given disease class, hence reducing estimation
bias, retaining efficiency and offering more valid inference. Such “local dependence” on each subject
is induced in the model by nesting latent subclasses within each disease class. Measurement precision
and covariation can be estimated using the control sample for whom the class is known. In a Bayesian
framework, we use stick-breaking priors on the subclass indicators for model-averaged inference across
different numbers of subclasses. Assessment of model fit and individual diagnosis are done using posterior
samples drawn by Gibbs sampling. We demonstrate the utility of the method on simulated and on the
motivating PERCH data.

Keywords: Bayesian methods; Case-control studies; Etiology; Latent class model; Local dependence.

1. INTRODUCTION

Clinicians routinely use measurements to differentially diagnose a patient’s unknown disease etiology and
then choose a treatment from among those available. More often than not, the differential diagnosis is a
qualitative process based on judgment and experience.As clinical measurements become more precise and
complex and as the number of possible known etiologies grows, such qualitative processes are less likely
to be optimal. An important question therefore is whether formal probabilistic calculations can improve
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2 Z. WU AND OTHERS

clinical decisions when the relevant information is quantitative. For example, in the Pneumonia Etiology
Research for Child Health (PERCH) study of childhood pneumonia (Levine and others, 2012), a vector
of presence/absence indicators for a large number of pathogens is measured on each child by polymerase
chain reaction (PCR) using specimens from the nasopharyngeal (NP) cavity. A clinical goal is to use the
multivariate binary response to infer the pathogen in the child’s lung causing pneumonia.

In addition, public health researchers are interested in estimating the population fraction of cases caused
by each pathogen, referred to as the etiologic fractions or population etiology distribution (Feikin and
others, 2014). Knowledge of the etiology distribution is essential for planning prevention and treatment
programs. Because the lung cannot be directly sampled, except in cases of critical illness, imperfect
measurements from the periphery are used to infer the latent state of the disease.

PERCH intends to infer for an individual case her latent lung infection status (Ii, the latent state)
by collecting multivariate binary measurements M i from the periphery. The joint distribution for M i

is characterized by the true- and false- positive rates and the distribution of the latent disease-causing
infection. Covariates such as age and HIV status can also influence the chance for each pathogen causing
her disease.

In general terms, the PERCH scientific questions require inference about latent random variables.
The same is true for many other problems, for example, biomarkers for disease diagnosis (e.g., Jokinen
and Scott, 2010), words for learning topics of a text (e.g., Hofmann, 2001), and questionnaire items for
evaluating severity of depression (e.g., Kroenke and Spitzer, 2002). One way of classifying latent variable
models is by the discrete or continuous nature of their latent and manifest (observed) variables. Among
them, “latent class” models (LCM) for discrete latent and discrete manifest variables were developed and
widely applied since the 1950s (e.g., Lazarsfeld, 1950; Goodman, 1974).

LCMs constitute a family of distributions for correlated discrete measurements. The conventional
LCM generally makes local independence (LI) assumption that observed variables are independent of one
another given the latent class (e.g. Lord, 1952). In the multivariate binary case, individual i’s measurement
vector, M i = (Mi1, ..., MiJ )

′, is thus linked to her latent class (Ii) by the simple product likelihood P(M i |
Ii = �, θ) = ∏J

j=1 P(Mij | Ii = �, θ), where θ represents the collection of unknown measurement
parameters — sensitivities and specificities if � = 1, 0 denotes the presence or absence of disease. We
then obtain the observed likelihood by summing over all the possible values of Ii, i.e., P(M i | θ ,π) =∑L

�=1 π�
∏J

j=1 P(Mij | Ii = �, θ), where π is a vector of unknown mixing weights of length L. The LI
assumption implies that the latent membership Ii completely explains the marginal dependence in M i.
Under local identifiability conditions (Jones and others, 2010), we can then estimate π and θ by maximum
likelihood to find the values that optimally reduce the observed dependence among measurements given
latent class, e.g., through the expectation-maximization (EM) algorithms. Individual classification can
then proceed by applying Bayes rule using the estimated parameters.

When classes are observed for some subjects, for example, motivated by the known control infection
status Ii = 0, Wu and others (2016) introduced a “partially latent” class model (pLCM). The control
sample provides the requisite information to estimate the specificities of the measurements. In the original
formulation, they assumed LI for the multivariate binary measurements within each class. However,
within cases or controls, several pairs of pathogens had observed log odds ratios that are inconsistent
with their model-based predictive distributions based on LI. To address this lack of fit in the covariances,
one approach is to extend pLCM by introducing dependence among measurements for persons within the
same class. These associations have scientific value in their own right, for example, in studying patterns
of pathogen–pathogen stimulation or inhibition.

Deviations from LI, or “local dependence” (LD) can occur in many applications, for example, in
medical diagnostic tests when most severely diseased patients and the healthiest patients are easiest to
correctly classify (Albert and others, 2001), or when tests target on similar genetic molecules (Qu and
Hadgu, 1998). Many authors have noted that not accounting for LD can bias estimates of model parameters
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Nested partially latent class models for dependent binary data 3

(e.g., Pepe and Janes, 2007). Therefore, in many applications where the LI model for [M i | Ii] is assumed,
authors use model diagnostics to ensure valid model-based conclusions (e.g., Garrett and Zeger, 2000;
Wu and others, 2016).

Ideas for relaxing LI can be distinguished by whether or not extra latent variables are introduced
to induce correlation for [M i | Ii]. Without doing so, for example, Harper (1972) modeled associations
between pairs, triples, and higher order combinations of variables among M i given an latent class;
Haberman (1979) used log-linear models for the vector (M i, Ii) to extend LCM viewing the latent class
indicator as one of the category variables.

An alternative approach allows for dependence by using extra latent variables of continuous or discrete
types or a mixture. For example, Qu and Hadgu (1998) used Gaussian random intercepts to induce
within-subject symmetric and positive correlations among multiple diagnostic tests. Albert and others
(2001) proposed to nest one extra unobserved subclass within each of two latent classes (diseased or
non-diseased) to represent subjects measured without error. Dendukuri and others (2009) hierarchically
layered extra mixed latent variables in a Bayesian framework. Adding extra latent variables can account
for LD because any multivariate discrete distribution can be represented by a locally independent LCM
with sufficiently many latent classes (Dunson and Xing, 2009, Corollary 1). However, when a satisfactory
fit requires many classes — especially with high dimensions of manifest variables— interpreting inferred
classes remains a difficult task.

The scientific background for this work points us toward the second strategy. LD could arise from multi-
ple sources given the disease class. First, a pair of tests could be positively correlated if they cross-react for
their respective targets, e.g., the probe for pathogen A will sometimes detect pathogen B, and vice versa.
The PERCH study has carefully chosen the PCR targets to minimize cross-reactivity. For example, Borde-
tella parapertussis, a sister pathogen of B. pertussis, has not been included to avoid their cross-reactions.
However, extra latent variables within each disease class can model such cross-reactivity if present. Second,
correlations among tests can be induced by unobserved heterogeneity among subjects in the propensity
for colonizing pathogens in their nasal cavities. We can also represent it empirically by a second level
of latent variable within each disease class. With control data, we can estimate one or both sources of
dependence (Section 2.2). Third, given a case’s disease class, pathogen interactions (mutual stimulation
or inhibition) will induce test dependence that would be difficult to distinguish from the prior sources.

In this article, we develop a novel latent variable model for multivariate binary data obtained from a
case-control study. Using control data with a known class and assuming the covariation among control
measurements is partly shared among the other latent classes for cases, we extend the traditional latent
class approach to avoid the LI assumption. The proposed model is a natural extension of pLCM (Wu and
others, 2016) and can be used to test its LI assumption.

We assume each child’s measurements comprise an observation from a mixture model with component
classes that represent the L different pathogens that can cause her pneumonia. One primary goal of analysis
is to estimate the probability distribution for these classes. To allow for LD, we introduce latent subclasses
nested within each of the L + 1 (L case, 1 control) disease classes. Measurements within a subclass are
assumed independent. We refer to the model as a “nested partially latent class model” or npLCM and
use a prior to encourage small but variable numbers of subclasses that parsimoniously approximate the
multivariate discrete dependence and avoid overfitting (Section 2.5).

We show that the proposed model is partially identifiable (Gustafson, 2015) and incorporate prior
knowledge about measurement sensitivities to facilitate Bayesian estimation of the etiologic fractions. The
npLCM is estimated via Markov chain Monte Carlo (MCMC) with designed precision to approximate the
posterior distributions of the population etiologic fractions, individual latent state, as well as functions of
them, such as the fraction of pneumonia cases caused by bacteria.

In Section 2, we formulate our model and discuss its statistical properties. Section 3 provides details
on the posterior sampling algorithm to draw inference based on our model. Section 4 illustrates through

 at Johns H
opkins U

niversity on A
ugust 24, 2016

http://biostatistics.oxfordjournals.org/
D

ow
nloaded from

 

http://biostatistics.oxfordjournals.org/


4 Z. WU AND OTHERS

asymptotic evaluations and finite-sample simulations the benefits of the new model relative to a version
that ignores LD. Section 5 applies the proposed method to PERCH study data. Section 6 concludes with
remarks on the method’s advantages, limitations, and future extensions.

2. NESTED PARTIALLY LATENT CLASS MODEL

In this section, we specify the nested partially latent class model (npLCM) and consider its statistical
properties using the PERCH study example to make the ideas concrete. Let M i = (Mi1, ..., MiJ )

′ comprise
a J -dimensional multivariate binary measurement collected for subjects i = 1, ..., n1+n0, where the first n1

subjects are cases and the remaining n0 are controls. Let Yi = 1 denote a case and Yi = 0 denote a control.

2.1. Measurement likelihood

Figure 1 pictures the general structure of the npLCM with J = 5 measurements, one pathogen per row
in the matrix. With 5 pathogens, there are 6 classes: one for the control state (pathogen-free) on the left
of the dashed vertical line; and L = 5 case states, one for each possible cause on the right. In the figure,
the control measurements have joint distribution that is approximated by a mixture of K = 2 subclasses,
with K-dimensional mixing weights ν = (ν1, ..., νK)

′. Here ψ k = {ψ(j)
k }J

j=1 is the column vector of false
positive rates for measurements j = 1, ..., J , for subclass k = 1, ..., K . The mixing weights of the K
subclasses in the case population (right of dashed line) are assumed to be η = (η1, ..., ηK)

′. The etiologic
fractions are the mixing weights for the L(= J ) classes in the case population, denoted π = (π1, ...,πL)

′

with
∑L

�=1 π� = 1.
Throughout the article, we rely on the scientific assumption that each child’s pneumonia is caused by

a single primary pathogen. The more general case where disease can be attributed to multiple pathogens
is a natural extension (Section 6).

Fig. 1. Borrowing measurement characteristics from controls to cases using K = 2 subclasses for each disease class.
Five pathogens (A–E) are measured in this example. Ii for latent state or disease class; M i for multivariate binary
measurements; � (in shaded boxes) and � (in blank dashed boxes) for true- and false-positive rates.
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Nested partially latent class models for dependent binary data 5

2.2. Control likelihood

The control measurement distribution is assumed to take the form in Goodman (1974). Mutual dependence
is induced by the existence of multiple subclasses, with each subclass having possibly distinct positive
rate profiles. Given an unobserved subclass, measurements are assumed to be mutually independent.
Marginalizing over the latent subclasses produces dependence for pathogens with different rates across
subclasses. The formulation is natural for PERCH given the heterogeneity in the health status of controls.
For example, the subclasses can represent the subjects’ strength of immunity that could affect the rates of
pathogen detection.

For control i, we introduce subclass indicator Zi that takes value in {1, ..., K} and let Zi ∼
Categorical({1, ..., K}, ν), and Mij | Zi = k ∼ Bernoulli(ψ(j)

k ), independently for j = 1, ..., J , where
νk = P(Zi = k | Yi = 0) and ψ(j)

k = P(Mij = 1 | Zi = k , Yi = 0). Here ν comprises of the probabilities of
a control falling in the subclasses; ψ(j)

k is the probability of a positive response within subclass k viewed
as an event of false detection for controls and hence is termed the false positive rate (FPR); the FPRs for
subclass k are collected in the FPR profile vector ψ k which is then combined by column into the matrix
� = [ψ1|...|ψK ] for all subclasses. The control distribution of the 2J measurement patterns (∀m ∈ {0, 1}J )
are then given by

P0(m) = P(M i = m | ν,�, Yi = 0) =
K∑

k=1

νk

J∏
j=1

{
ψ
(j)
k

}mj
{

1 − ψ
(j)
k

}1−mj
. (2.1)

2.3. Case likelihood

For a case with known cause, her vector of binary measurements is again assumed to be generated
from a latent K-subclass model as for the controls. In PERCH context, motivated by the observation
that cases and controls have similar correlation patterns for many pathogen pairs (e.g., Figure S2 of
supplementary material available at Biostatistics online), we let the cases share controls’ measurement
characteristics. To be more precise, given a case’s disease class Ii = � ∈ {1, . . . , L}, with L = J , she falls
into subclass k with probability ηk , for k = 1, ..., K . Then subclass k’s response probabilities are assumed
equal to ψ(j)

k as in controls for j �= �, and equal to a new parameter θ(j)k for j = �. That is, an infection
by pathogen � may alter the response probabilities in the �-th dimension but not others. Since the disease
class for case i is in fact unknown, her measurement distribution is a mixture across all L states given by
P1(m) = P(M i = m | π , η,�,�, Yi = 1), ∀m ∈ {0, 1}J ,

P1(m) =
L∑
�=1

π�

K∑
k=1

⎡
⎣ηk

{
θ
(�)

k

}m�
{

1 − θ
(�

k

}1−m� ∏
j �=�

{
ψ
(j)
k

}mj
{

1 − ψ
(j)
k

}1−mj

⎤
⎦, (2.2)

where � is a parameter matrix with (j, k)-th element θ(j)k .
We can reformulate (2.2) by a three-stage generative process similar to controls by indicators of case

disease classes Ii and the nested subclasses Zi: Ii | Yi = 1 ∼ Categorical({1, ..., L},π); Zi | Ii =
� ∼ Categorical({1, ..., K}, η), � = 1, ..., L; and Mij | Zi = k , Ii ∼ Bernoulli

(
θ
(j)
k 1{Ii=j} + ψ

(j)
k 1{Ii �=j}

)
,

independently for 1 ≤ j ≤ J . At the first stage, the vector π comprises probabilities of a case in class
1 to L and is the primary target of inference in this article. Then, the cases’ subclass mixing weights
η = (η1, . . . , ηK)

′ determines the probability of a case falling into each subclass. The final stage generates
the measurement at the j-th dimension: positive with probability θ(j)k or ψ(j)

k according as the realized
values of Ii and Zi in previous steps. Because θ(j)k is the probability of true detection for infections caused
by pathogen j, we term it true positive rate (TPR) and collect them in θ k = (θ

(1)
k , . . . , θ(J )k )′ for subclass k .
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6 Z. WU AND OTHERS

Importantly, case and controls’ subclass mixing weights (η and ν) need not be identical. This admits
different measurement dependence structures for cases than controls, which could arise, for example, if
stronger pathogen interactions appear in cases’NP cavity due to presence of the lung infection. We refer to
the special case η = ν (element-wise equality) as non-interference submodels, under which controls and
cases of class j have identical distributions of the leave-one-dimension-out measurement vector M i[−j].
Setting η1 = ν1 = 1, or K = 1, gives the pLCM.

We have assumed cases’ latent state categories take value from a complete list of J measured pathogens
(i.e., L = J ). The case likelihood (2.2) can be extended to account for other causes by adding an extra term:

πJ+1
∑K

k=1 ηk

(∏J
j=1{ψ(j)

k }mj {1 − ψ
(j)
k }1−mj

)
, where πJ+1 = P(Ii = J + 1) is the total etiology fraction of

other causes. For a clinically confirmed pneumonia case, negative responses on J pathogens by highly
sensitive assays indicate the possibility of other etiologic pathogens.

Combining (2.1) and (2.2), the joint likelihood across independent subjects is given by
L(π ,�,�, ν, η; D) = ∏

i:Yi=0 P0(M i)
∏

i:Yi′=1 P1(M i′), where D collects all the data.

2.4. Properties

The proposed model extends pLCM in Wu and others (2016) by adding (2J + 2)(K − 1) additional
parameters compared to the original formulation with the total number of parameters linear in J when
K 	 J providing a parsimonious approximation to the case and control joint distributions that require
2(2J − 1) parameters in a saturated model. We further reduce the effective number of parameters using a
stick-breaking prior (Section 2.5).

We assumed that the LD of measurements within each case class can be explained by allowing the
same number of LI subclasses as in the controls, so that the case subclass measurement parameters can be
partly informed by their control counterparts (Stage 3 of case data generating process). Additional case
subclasses can be included once Ii is directly observed for some cases.

In Appendix S1 of supplementary material available at Biostatistics online, we provide expressions of
the marginal means and pairwise associations for multivariate binary measurements given the npLCM
likelihood. These formulas are used to study the magnitude of dependence given true parameters and
to generate marginal posterior distributions for observables used in model checking, as illustrated in
Section 4.1 and 5.

2.5. Prior specifications

In Appendix S2.1 of supplementary material available at Biostatistics online, we specify the priors for
the unknowns in npLCM (π ,�,�, {Zi}n0+n1+1

i=1 , ν, η)′. Given our primary interest in π , the dependence
structures within each disease class are nuisance parameters. Appendix S2.2 of supplementary material
available at Biostatistics online discusses the use of stick-breaking prior to encourage random small
numbers of subclasses that prevents model overfitting in finite samples by approximating the dependence
structure parsimoniously. The specified priors are conjugate to the likelihood of unknown parameters,
making the Gibbs sampler in Section 3 conveniently constructed.

3. POSTERIOR COMPUTATIONS

The posterior distributions of the population etiology fraction vector (π ), TPRs (�) and FPRs (�)
can be estimated by simulating approximating samples from the joint posterior via MCMC algorithms.
Figure S1 of supplementary material available at Biostatistics online presents the directed acyclic graph
(DAG) for the model structure. Appendix S3 of supplementary material available at Biostatistics online
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Nested partially latent class models for dependent binary data 7

details the sampling algorithms. All model estimations are performed by the R package “baker"
(https://github.com/zhenkewu/baker).

4. ASYMPTOTIC AND SIMULATION STUDIES OF NESTED PARTIALLY LATENT CLASS MODELS

This section presents asymptotic and simulation studies to show that for cases like PERCH (i) when the LI
assumption is incorrect, a working LI model will estimate π with asymptotic bias; (ii) fitting the LD model
to data generated with LI does not lose too much efficiency using sparse priors on subclass indicators; and
(iii) compared to the LI model, the LD model produces 95% credible intervals for π with better actual
coverage rates.

4.1. Asymptotic bias evaluations

We first evaluate the asymptotic bias of the maximum likelihood estimator (MLE) for π obtained from the
working LI model (pLCM) using data generated by npLCM. Let	o = (π o,�o,�o)

′ be the true etiologic
fractions, FPRs and TPRs. Let {(M i, Yi)}N

i=1 be the data, where N = n1 +n0 is the total number of cases and
controls. Fewer parameters fully specify pLCM: given disease class � = j, the marginal TPRs and FPRs
are functions of 	o defined by θM

j = ∑K
k=1 θ

(j)
k ηk and ψM

j = ∑K
k=1 ψ

(j)
k νk , j = 1, . . . , J , respectively. We

fix θM
j at the true value θM

oj = ∑K
k=1 θ

(j)
ok ηk , to eliminate the partial-identifiability issue and to focus on

asymptotic bias evaluations. We then estimate the etiologic fractions π , as well as {ψM
j }J

j=1. In this case,
with large sample sizes, it must be expected that the Bayes estimate will behave in a similar way to the
MLE. We study the performance of the Bayes estimates in Section 4.2 when the TPRs are not fixed.

Under LI, let π̂N = {
π̂Nj

}J

j=1
be the MLE for the etiology fractions, where the last element equals

1 − ∑
��=J π̂N�. Let ψ̂

M
N =

{
ψ̂M

Nj

}J

j=1
be the MLE for the marginal FPRs. Collected into one vector,

ω̂N = (
{
π̂Nj

}J−1

j=1
, ψ̂

M
N )

′ jointly converges to ω∗ = (
{
π∗

j

}J−1

j=1
,ψM∗

)′, possibly different from the truth

ωo = (
{
πoj

}J−1

j=1
,ψM

o =
{
ψM

oj

}J

j=1
)′.

We obtain the limit ω∗ by minimizing the Kullbac–Leibler information criterion, or equivalently, by

solving the equation, limN→∞ E	0

[∑N
i=1

{
∂

∂ω
log Pω(M i | Yi)

∣∣∣
ω∗

}]
= 0. It is a weighted average for cases

(Yi = 1) and controls (Yi = 0) with weights determined by their sample fractions in the limit as N → ∞.
The expectation E	0(·) is taken with respect to [M i | Yi]. Finally, Pω(M i | Yi) is the pLCM likelihood
(Wu and others, 2016) parameterized by ω. We use 107 Monte Carlo samples from the true distribution
[M i, Yi] to evaluate the expectation and the limit above and then numerically solve for its root ω∗. Our
calculation assumed equal case and control sample sizes when N → ∞, and could be easily modified for
other sampling ratios.

We also characterize the true uncertainty of the MLE obtained from a possibly mis-specified work-
ing model. White (1982) established its asymptotic normality and provided the exact form of the

asymptotic variances. Applied to our investigation here, the estimator ω̂N satisfies
√

N (ω̂N − ω∗)
d→

N (
0, A(ω∗)−1B(ω∗)A(ω∗)−1

)
, where A(ω∗) = − limN

1
N

∑N
i=1

∂2

∂ω2 log Pω(M i | Yi)

∣∣∣
ω∗ , and B(ω∗) =

limN
1
N

∑N
i=1 V	0

∂

∂ω
log Pω(M i | Yi)

∣∣∣
ω∗ . We compute the robust variance of ω̂N defined by V ∗

R =
N −1A−1BA−1 |ω∗ as follows: (i) plug the ω∗ obtained above into the first and second partial derivatives
and (ii) approximate A and B using 107 Monte Carlo samples.

The strength of LD given disease class determines the estimation bias. When the true data generating
mechanism is close to independence, the working LI model estimates ofπ are close to being asymptotically
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8 Z. WU AND OTHERS

unbiased. To illustrate, we quantify the asymptotic bias for J = 5 binary measures (pathogens A to E).
We generate Monte Carlo samples from the true data generating mechanisms with varying degrees of LD,
while fixing the etiologic fraction π o = (0.5, 0.2, 0.15, 0.1, 0.05)′ to mimic what is seen in PERCH. We
create associations among measurements by defining two subclasses (K = 2) for each of the 6 disease
states (controls plus 5 disease classes for cases). We consider two scenarios of measurement parameters
(�,�): little (I) and substantial (II) LD — small versus large between-subclass differences in positive
rates (see Appendix S5.1 of supplementary material available at Biostatistics online.).

The subclass weights characterize the degree of LD. We assume controls and cases fall into the first
subclass with probability νo = 0.5 and ηo increasing from 0 to 1, respectively. A grid of ηo values are used
to draw Figure 2; ηo = 0, 0.25, 0.5, 0.75, 1 are used in Section 4.2. Row (a) of Figure 2 summarizes both
the marginal and within-class dependence for Scenario I and II. The marginal associations are stronger in
Scenario II (solid curves). Note that the within-class odds ratio curves leave and return to 1 and remain
above or below 1 as ηo increases from 0 to 1 (non-solid lines labelled by A–E in small panels), because
when all the case subclass weight is on one of the two subclasses, the true case data generating mechanism
satisfies LI. In particular, the equality ηo = νo(= 0.5) represents identical LD structures (non-interference
submodels) for cases and controls, with deviations from it indicating differential dependence patterns.

Row (b) of Figure 2 shows the Percent Relative Asymptotic Bias (PRAB) for each etiologic fraction,
(π∗

� − πo,�)/πo,� × 100%, at all ηo values. The working LI model produces PRABs less than 13% in
magnitude in Scenario I. Given small asymptotic biases, we also obtain good estimates of precision
produced by the working LI mode,l with the ratios for model-based variance V ∗

M = N −1A−1(ω∗) versus
the robust variance V ∗

R between 0.972 and 1.052 for A–E. The two variances are mathematically identical
at arbitrary parameter values if the marginal FPRs (ψM) are known.

The asymptotic bias is large under strong LD. For example, in Scenario II, the working LI model
overestimates πoC with 121.3% relative bias at ηo = 0 for its failure to account for the strong control
LD. When the case LD is more similar to controls at ηo = 0.5, the PRAB is 40.5%. This is because the
measurement on C is negatively associated with the measurements on B, D, or E given disease class B, D, or
E, i.e. mutual inhibition (see shaded cells in Figure 2, a–II), leading to the case pattern M i = (1, 0, 1, 1, 0)′

observed twice as frequently as expected by an LI model. When they are further assigned with the highest
likelihood to cause C under the working LI model, the upward bias results.

4.2. Bayesian fitting in finite samples

Appendix S5.2 of supplementary material available at Biostatistics online presents extensive finite-sample
simulations to show that npLCM has much smaller biases in estimating the etiologic fractions under strong
LD and negligible biases if under weak LD.When the truth is close to LI, the npLCM is comparably efficient
to pLCM for almost all settings. It also produces 95% credible intervals (CI) with near-nominal empirical
coverage rates.

5. ANALYSIS OF PERCH DATA

The Pneumonia Etiology Research for Child Health (PERCH) study is a case-control study with 4000
patients hospitalized for severe or very severe pneumonia and over 5000 controls aged 1–59 selected
randomly from the community, frequency-matched on age in each month. Its objective is to evaluate
etiologic agents causing severe and very severe pneumonia among hospitalized children in seven low and
middle income countries with a significant burden of childhood pneumonia (Levine and others, 2012).
PERCH will enable estimation of the population fraction of cases caused by each pathogen (Feikin and
others, 2014) that is essential for planning prevention and treatment programs. Because the lung cannot
be directly sampled, except in cases of critical illness, imperfect measurements from the periphery are
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Nested partially latent class models for dependent binary data 9

Fig. 2. In Scenario I–II, Top (a): The true data generating mechanism summarized by pairwise odds ratios for cases
(upper right, solid lines) and controls (lower left, solid lines) as the cases’first subclass weight (η0) increases from 0 to 1.
The pairwise odds ratios within each case class are shown by non-solid lines (legend at bottom). Pairwise independence
is represented by the dotted horizontal lines for reference. The correlations of C with others are highlighted in shaded
cells. Bottom (b): PRAB for estimating etiology fractions using working LI model when the truth varies across a range
of LD settings parametrized by ηo.

used to infer the latent state of the disease for each case that collectively comprise the population. More
details about the PERCH design and objectives can be found in Deloria-Knoll and others (2012).

Using preliminary PERCH data from one site, we focus on PCR assays on NP specimens for cases and
controls. We illustrate the advantage of the npLCM in accounting for measurement LD, with improved
efficiency, better empirical fit, and more valid etiology estimation. Results for all seven countries will be
reported elsewhere upon study completion. Included in the current illustrative analysis are NPPCR data
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10 Z. WU AND OTHERS

for 592 cases and 613 controls on 6 species of pathogens (abbreviations and full names in Appendix S6
of supplementary material available at Biostatistics online).

We have compared the population etiology fractions, π , estimated separately by two methods: the
pLCM and the npLCM with subclass truncation level K∗ = 10. The npLCM results are similar when
larger values of K∗s are used. Note that the MCMC algorithm always assign non-zero weights to all the
K∗ subclasses, but most weights are almost always negligible (< 0.001) in our analyses. As discussed in
Section 2.5, we need expert prior knowledge on the sensitivities for posterior inference by both methods;
we used elicited sensitivity priors from laboratory experts with range 0.5 ∼ 0.99. Given our focus on 6
leading pathogens, we include the “other” cause for completeness as discussed in Section 2.3.

Strong LD is present in the analyzed data, with statistically significant log odds ratios observed for 6 out
of 30 pathogen pairs among cases and controls, ranging from −2.47 (s.e.: 1.01) to 1.67 (s.e.: 0.39), and also
by noting that under LI assumption we expect 0.05 × 30 = 1.5(±2.4) such pairs. In addition, as noted in
Berger and Sellke (1987) and Dunson and Xing (2009), the interval null hypothesis H0 : maxk ηk > 1−ε,
is useful for detecting deviations from the point null of exact LI for cases. We choose ε = 0.05 based
on experience in simulation studies and to permit deviations from LI so small as to be non-significant
in our application. The largest subclass weight is estimated with 95% CI (0.65, 0.89) for the cases and
(0.46, 0.75) for the controls, again suggesting non-negligible LD in the data.

Figure 3(a) compares the results obtained from the pLCM (left boxes) and npLCM (right boxes). Each
vertical box-and-whisker shows the marginal posterior mean (solid dot) and median (segment within box),
with 95% credible interval (CI; between whisker endpoints) and 50% CI (between top and bottom box
edges) of the etiologic fraction for each pathogen listed on the horizontal bar. The two approaches produce
differences in the posterior means of etiologic fractions between −9.9% and 9.5%. Half of the largest
increase in RHINO, from 5.2 (95% CI: 0.3 ∼ 17.9)% to 15.1 (5.9 ∼ 27.5)% is explained by its increase
in predicted individual etiologies for cases with the NPPCR data 000010 (Figure 4, bottom left).

The npLCM also provides a better empirical fit. We have compared the posterior predictive distributions
(PPD) (Gelman and others, 1996) of the frequencies of common NP measurement patterns to the observed
values separately in the cases and the controls. Among cases (left panel in Figure 3(b)), for example,
the npLCM adequately predicts the observed frequencies of the 2nd and 6th most common case patterns
(000001: 12.5%; 000100: 5.4%) by accounting for the negative associations of RSV with other pathogens
with the log odds ratios ranging from −3.37 to −0.12 (3 out of 5 statistically significant).

We also examine the pairwise associations by calculating the standardized LOR difference (SLORD)
defined to be the observed LOR for a pair of measurements minus the mean LOR for the predictive
distribution value from each method divided by the standard deviation of the LOR predictive distribution.
Figure S3 of supplementary material available at Biostatistics online shows nine pairs of pathogens that
have statistically significant deviations of model predicted LORs from the observed ones for the pLCM
and only three pairs for the npLCM. A blank cell indicates a good model prediction for the observed
pairwise LOR (|SLORD| < 2). The npLCM achieves a better fit by noting that, for a well-fitting model,
we expect 1.5(±2.4) non-blank cells. The associations between pairs of measurements (HMPV-A/B,RSV)
and (PARA-1,RSV) are not expected in either model, although npLCM does better. In the PERCH study,
we observed that seasonal variation in the rate of detection for RSV, HMPV-A/B and PARA-1 were out
of phase and seasonal regression adjustment, discussed elsewhere, can sensibly account for this negative
association.

6. DISCUSSION

In this article, we derived and tested a nested pLCM to allow for local dependence among binary obser-
vations given class membership. We compare this new model with a special case that depends on local
independence in terms of asymptotic and finite sample size properties. The npLCM reduces large-sample
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Nested partially latent class models for dependent binary data 11

(a)

(b)

Fig. 3. Top: Comparison of the posterior distributions of π between the pLCM (left) and npLCM (right); The numbers
above are the posterior means (×100). Bottom: PPD for 10 most frequent multivariate binary patterns separately for
cases (left panel) and controls (right panel). The observed frequencies are overlayed as short segments across pairs
of box-and-whiskers; the means of the PPDs (×100) are shown above them in actual numbers.

estimation bias, retains the estimation efficiency and gives more valid inferences about π than the pLCM.
The npLCM family also makes it possible to study the sensitivity of scientific findings to the LI assumption
when pLCM is used.

The model first approximates the probability distribution for the control measurements by a mixture of
product Bernoulli distributions with mixing weights encouraged towards a mixture with few components.
The estimated control dependence structure is then applied to the case model with modifications that
represent the influence of the latent disease state. This valuable information from controls may help
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12 Z. WU AND OTHERS

Fig. 4. Individual disease etiology predictive distributions. Here four NPPCR data patterns are represented by the
binary codes at the top (no measurements on “other” causes hence left as “-”), with its observed frequency marked
beneath. The height of a bar represents the probability of a case caused by each of the seven causes labelled on the
horizontal axis. For each cause, paired bars compare the estimates from the pLCM (left) and the npLCM (right); Extra
predictions are in Figure S4.

distinguish competing models for the local dependence among measurements and warrants further studies
(e.g. Albert and others, 2001).

In the analysis of six leading pathogens from the PERCH study, RSV is estimated to be the most
prevalent infectious cause of childhood pneumonia except the “other” category. That evidence is robust to
the LD assumption. Accounting for LD structure leads to notable increases in etiologic fraction estimates
of two pathogens and decrease in another. The npLCM can also integrate extra measurements of better
qualities, for example, blood culture tests for bacteria that have near-perfect specificities to inform TPRs
and improve efficiency (Hammitt and others, 2012).

In this article, we assumed a single primary cause for each pneumonia case in the npLCM. This
framework can be extended from a single to multiple causes by using a latent vector for case i, I i ∈ {0, 1}J ,
where Iij = 1 indicates pathogen j is a component cause. For example, Hoff (2005) used Dirichlet process
mixture models to identify multiple abnormal genomic locations that are jointly responsible for each case’s
disease, but using case-only data with LI assumption. Alternatively, one can place an exponential decaying
prior on the number of causes, or use conditionally specified models [Iij = 1 | I i[−j], X ij] to characterize the
interactions among pathogens (Besag, 1974), where X ij is a vector of covariates predictive for pathogen j
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Nested partially latent class models for dependent binary data 13

being a cause in case i. The computational cost to fit these models increases substantially because the search
space for the latent vector I i expands exponentially in J . Development of efficient and reliable posterior
sampling algorithms can allow investigators to assess the evidence of multiple-pathogen etiologies as
more measurements accrue.

A second extension of the npLCM family motivated by PERCH is to allow the etiology distribution and
false positive rates to depend upon covariates. For example, season, child’s age and HIV status. Regression
versions for npLCM have been implemented and are the subject of current study.

A critical assumption on which the model depends is that the source of within-class associations is
similar for cases and controls, that is P(Mij = 1 | Ii = �, Zi = k) = P(Mij = 1 | Ii = 0, Zi = k),
for � /∈ {0, j} and k = 1, · · · , K . If the sources of correlations are substantially different for cases than
controls, it would impair the proposed model’s capacity to draw valid inferences.

Finally, Wu and others (2016) derived the pLCM model to be used with a combination of direct
measurements of cases’ lungs without error and peripheral measures of cases and controls with error. With
gold-standard data, this analyses is an example of supervised learning. The npLCM can be used in the
same way. In the PERCH application, we rely entirely on peripheral samples, so the analyses is largely
unsupervised. Robustness of inferences to model assumptions is critical.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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