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Summary. We address estimation of intervention effects in experimental designs in which (a) interventions are assigned at
the cluster level; (b) clusters are selected to form pairs, matched on observed characteristics; and (c) intervention is assigned
to one cluster at random within each pair. One goal of policy interest is to estimate the average outcome if all clusters in all
pairs are assigned control versus if all clusters in all pairs are assigned to intervention. In such designs, inference that ignores
individual level covariates can be imprecise because cluster-level assignment can leave substantial imbalance in the covariate
distribution between experimental arms within each pair. However, most existing methods that adjust for covariates have
estimands that are not of policy interest. We propose a methodology that explicitly balances the observed covariates among
clusters in a pair, and retains the original estimand of interest. We demonstrate our approach through the evaluation of the
Guided Care program.
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1. Introduction

Experimental designs often have the following three features:
interventions are assigned at the cluster level; clusters are
selected to form pairs, matched on observed covariates; and
interventions are assigned to one cluster at random within
each pair. One goal of policy interest is to estimate the average
outcome if all clusters in all pairs are assigned control versus if
all clusters in all pairs are assigned to intervention. The effect
of such a policy is easy to understand, because its definition or
estimation does not have to depend on models. Such designs
are useful when individual-level randomization is not feasible
due to practical constraints, and when cluster assignment also
reflects how the assignment would scale in practice.

The Guided Care program is a recent example of such a
study (Boult et al., 2013). The study’s goal was to assess the
effect of Guided Care versus a control condition on functional
health and other patient outcomes among clinical practices
serving chronically ill older adults. In Guided Care, a trained
nurse works closely with patients and their physicians to pro-
vide coordinated care. The control group does not have access
to such a nurse. To assess the effect of the Guided Care inter-
vention, the study recruited 14 clinical practices and matched
them in 7 pairs using clinical practice and patient character-
istics, and within each pair assigned randomly one clinical
practice to Guided Care and the other to control.

A problem with cluster-level assignment is that it can leave
substantial imbalances in the covariates within pairs. How-
ever, existing methods to estimate effects in such designs
rarely use covariates in order to adjust for these imbalances.
As a consequence, such methods, including nonparametric as
well as hierarchical (meta-analysis) approaches, although use-
ful in other ways (Imai, King, and Nall, 2009), can leave large

uncertainty in the results. Methods that do use covariates usu-
ally estimate effects conditionally on covariates and cluster-
specific random effects (Thompson, Pyke, and Hardy, 1997;
Feng et al., 2001; Hill and Scott, 2009). With such methods,
the estimands are no longer of policy interest and lack mean-
ing when the modeling assumptions are misspecified.

We propose an approach that explicitly balances the ob-
served covariates between clusters in a pair and still estimates
causal effects of policy interest. In Section 2, we formulate
the matched-pair cluster randomized design through potential
outcomes. We then characterize in Section 3 the existing ap-
proaches to causal effects estimation and their complications.
In Section 4, we propose a covariate-calibration approach and
develop inferences with and without the need for assumptions
for a hierarchical second level. Throughout these sections, the
arguments are demonstrated through the evaluation of the
recent Guided Care program. Section 5 concludes with dis-
cussion.

2. The Goal and Design Using Potential
Outcomes

Consider a design that operates in pairs p = 1, . . . , n of clus-
ters. In each pair p, the design recruits two clusters (e.g.,
clinical practices) indexed by i = 1, 2, matched on qualitative
and quantitative characteristics, such as percentage of pa-
tients with private insurance, and where each clinical practice
serves a community, say with a large number of Np,i patients.
The design then assigns to each clinic one of two treatments,
namely control (t = 1) or intervention (t = 2). If clinical prac-
tice i of pair p is assigned treatment t, then potential outcomes
Yp,i,k(t) (Rubin, 1974, 1978) are to be measured on a random
sample of k = 1, . . . , np,i patients from the Np,i patients served
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in that clinical practice. We label Fp,i(y; t), μp,i(t), and σ2
p,i(t)

the distribution (at value y), mean and variance of the poten-
tial outcome Yp,i,k(t) within clinical practice i of pair p. The
average outcomes in pair p are

μp(t) := μp,i=1(t)πp,i=1 + μp,i=2(t)πp,i=2, (1)

where “ := ” means “define,” πp,i=1 is the fraction of patients
served by clinic i = 1, that is, Np,i=1/(Np,i=1 + Np,i=2), and
similarly for πp,i=2. One goal of policy interest is to estimate
the average outcome if all clinical practices in all pairs are
assigned control versus if all clinical practices in all pairs are
assigned intervention. In terms of the model, the goal is to
estimate a contrast between

μ(1) := E{μp(t = 1)} and μ(2) := E{μp(t = 2)},
for example δeffect := μ(1) − μ(2), (2)

which is the average outcome if all clusters had been assigned
treatment 1 versus if all clusters had been assigned treatment
2. Here, the expectations are taken over a larger population
P of pairs from which p = 1, . . . , n can be considered a ran-
dom sample. Alternative estimands (e.g., conditionally on the
sample of pairs, Imai et al., 2009) can be considered, although
this does not change the main issues discussed here.

Within each pair, the design assigns at random the inter-
vention to one clinical practice and the control to the other,
independently across pairs. Because in this design the origi-
nal ordering i is arbitrary, and in order to ease comparisons
with the existing meta-analytic approach (e.g., Thompson et
al., 1997), for each pair p we relabel by c = 1 the clinical
practice that is assigned control, and by c = 2 the clinical
practice that is assigned intervention. The quantities Yp,c,k(t),
Fp,c(y; t), μp,c(t) and σ2

p,c(t) are then redefined based on this
relabeling and the above definitions. Then, the paired cluster
randomized design implies the following:

Condition 1. The potential outcomes under treatments 1
and 2 in clinical practice c, and the number of patients served
by clinical practice c are exchangeable (in distribution over
pairs) between clinical practices c = 1 and c = 2, that is,

pr (Fp,c(·; 1), Fp,c(·; 2), Np,c)c=1 , (Fp,c(·; 1), Fp,c(·; 2), Np,c)c=2

pr (Fp,c(·; 1), Fp,c(·; 2), Np,c)c=2 , (Fp,c(·; 1), Fp,c(·; 2), Np,c)c=1
=

where the arrows connect equal entries in arguments, and
distribution pr is over pairs p in the larger population P of
pairs.

Condition 1 implies, for example, over population of pairs,
the joint distribution of the “means and variances of poten-
tial outcomes under exposure to intervention (t = 1)” is the
same for the clinical practices that are actually assigned the
intervention (c = 2) as it is for the clinical practices that are
actually assigned the control (c = 1). Figure 1 illustrates the
structure of pairs, clinical practices, and assigned treatments
in this paired cluster randomized design, along with means
and variances of potential outcome distributions.

Figure 1. The underlying structure of the paired-cluster
randomized design. The top part (observed pair p) and bot-
tom part (observed pair p′) are the two possible ways in which
a single pair can be manifested in the design. Observed pair
p has two clinical practices (represented by the two squares).
For each clinical practice, the first row shows the mean and
variance of patient outcomes if the clinical practice is assigned
control and the second row shows the mean and variance if
assigned intervention. The clinical practice actually assigned
control is indicated by its placement in column “1” , and the
clinical practice actually assigned intervention is in column
“2”. The solid (nonsolid) ellipsoids show the means and vari-
ances that can (cannot) be estimated directly. Observed pair
p′ shows how the same pair would be manifested in the de-
sign if the assignment of treatment to clinical practices were
in reverse (a line with arrows connects the same clinical prac-
tice in these two different assignments). Condition 1 means
that each of the two manifestations, p and p′ has the same
probability.

Here we connect the observed data and existing methods
to the above framework of potential outcomes, because this
helps understand the meaning of the assumptions, explicit or
implicit, required by the existing methods.

In order to estimate an effect such as δeffect of (2), con-
sider first a particular pair p: we can directly estimate the
average potential outcome under control for the clinical prac-
tice assigned to the control, namely μp,c=1(t = 1); and the
average potential outcome under intervention for the clinical
practice assigned to the intervention, namely μp,c=2(t = 2).
Specifically, for the control clinical practice (c = 1) of pair
p, let μ̂p,c=1(t = 1) := 1

np,c=1

∑np,c=1
k=1

Yp,c=1,k(t = 1) denote the

average of the observed outcomes, that is, the potential out-
comes under t = 1; and for the intervention clinical practice
(c = 2) of pair p, let μ̂p,c=2(t = 2) := 1

np,c=2

∑np,c=2
k=1

Yp,c=2,k(t =
2) denote the average of the observed outcomes, that is,

the potential outcomes under t = 2. Then, letting δ̂crude
p =

μ̂p,1(1) − μ̂p,2(2), and conditionally on pairs p whose clinical

practices have particular values of (δcrude
p , vcrude

p ), we have
that

pr(δ̂crude
p | δcrude

p , vcrude
p ) =̇Normal(δcrude

p , vcrude
p ), (3)
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where

δcrude
p := μp,1(1) − μp,2(2) and vcrude

p = σ2
p,1(1)

np,1

+ σ2
p,1(2)

np,2

.

Here, “=̇” means “approximately,” the notation pr(Ap | Bp)
and E(Ap | Bp) means the distribution and expectation, re-
spectively, of characteristic Ap among pairs in the larger pop-
ulation P that have characteristic Bp (if Bp is empty, the dis-
tribution and expectation are over all pairs).

Remark 1. In a pair p, the directly estimable (crude) con-

trast δcrude
p is not a causal effect because it compares different

clinical practices under different treatments (Thompson et al.,

1997). However, the average, E(δcrude
p ), over pairs is a causal

effect, because the exchangeability of potential outcomes and
between clinical practices 1 and 2 (Condition 1 above) implies
(proof omitted) that

E(δcrude
p ) = E{μp(t = 1)} − E{μp(t = 2)} = δeffect . (4)

Thus, one can use the estimated differences, δ̂crude
p , within

each pair as in (3), and expression (4), to estimate δeffect ,
either with no additional assumptions (i.e., by simply aver-

aging δ̂crude
p over pairs), or under a hierarchical second level

model.

Remark 2. The objective meaning that the potential out-
comes assign to the terms in the model (3) implies the follow-

ing, subtle fact: if the pair-specific δcrude
p are to be eliminated

(i.e., marginalized over) from the distribution (3), then δcrude
p

should be first integrated out of (3) based on the conditional

distribution pr(δcrude
p | vcrude

p ), that is,

pr(δ̂crude
p | vcrude

p ) =
∫

pr(δ̂crude
p | δcrude

p , vcrude
p )

·pr(δcrude
p | vcrude

p ) · d(δcrude
p ).

(5)

This becomes relevant when examining the existing hierarchi-
cal modeling methods.

We next discuss complications of existing methods for esti-
mating the effect of intervention δeffect . We demonstrate the
arguments by assessing the effect of the Guided Care inter-
vention on the functional health outcome of the patients as
measured by the physical component summary of the Short
Form (SF)-36 version 2 (Ware and Kosinski, 2001).

3. Complications with Existing Methods

3.1. Consequences When Ignoring Covariates

Table 1 displays the observed average SF-36 scores for each
of the seven pairs of practices in the Guided Care study (see
outcome rows denoted as uncalibrated). Also displayed are
the within pair differences in average SF-36 outcomes between
control and intervention.

Table 1
Summary of average SF36 outcomes for uncalibrated versus
calibrated approaches. The first row block displays sample
sizes; the second row block displays average outcomes that

are uncalibrated and calibrated, respectively.

Pair p

1 2 3 4 5 6 7

Sample size
np,c=1 17 16 42 23 52 23 28
np,c=2 38 44 43 33 42 31 43

Outcome
Uncalibrated on covariates

μ̂p,1(1) 36.4 36.5 39.6 39.1 39.7 33.8 39.6
μ̂p,2(2) 37.3 36.6 39.3 35.3 35.2 36.4 40.9

δ̂crude
p -0.8 -0.1 0.3 3.8 4.5 -2.6 -1.3(
vcrude

p

)1/2
2.7 2.6 2.0 2.7 2.1 2.6 2.2

Calibrated on covariates

∗μ̂calibr
p,1 37.6 38.8 39.5 38.0 38.7 35.5 40.9

∗μ̂calibr
p,2 36.7 35.8 39.4 36.0 36.4 35.1 40.0

δ̂calibrp 0.9 3.0 0.1 1.9 2.3 0.5 0.8

†
(
vcalibr

p

)1/2
2.1 2.4 1.5 2.0 1.7 2.2 1.7

∗Calibration based on np,1 and np,2 observations in pair p.

†vcalibrp is the pth diagonal element of �̂δ̂calibr in expression (14).

Using these outcome data and ignoring covariates, we first
obtain the estimate of the overall effect δeffect based only on
the design-derived fact (4) that the average of δcrude

p across

pairs equals the effect of interest δeffect (see Table 2, 1st
level, “uncalibrated on covariates”). Because this first-level
approach makes no further assumptions about the joint dis-
tribution of pr(δcrude

p , vcrude
p ), the MLE of δeffect is simply

the unweighted sample average of δ̂crude
p , with its standard

error estimated by the jackknife. Table 2 also reports the per-
mutation test of no true effect for any person, by randomly
permuting the labels of treatment within each pair.

For a hierarchical second-level (meta-analytic) inference,
the current approach for paired-clustered designs (e.g.,
Thompson et al., 1997; Feng et al., 2001; Hill and Scott, 2009)
is based on integrating the likelihood in (3) over the marginal

distribution pr(δcrude
p ), to obtain:

pr∗(δ̂crude
p | vcrude

p , δeffect )

=
∫

pr(δ̂crude
p | δcrude

p , vcrude
p )

·pr(δcrude
p ) · d(δcrude

p ); (6)

where pr(δcrude
p ) = Normal(δeffect , v2).

Table 2 (see 1st+2nd level, “uncalibrated on covariates”)

shows inference for the effect δeffect using the above like-
lihood (6), namely, the method of Thompson et al. (1997)
with and without profiling out the variance v2 (see rows 3
and 4); and also inference based on the mean of the posterior
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Table 2
Results from MLE, profile MLE, Bayes estimates and permutation test in the Guided Care program study. The covariates
used for calibration are listed in the first column of Table 3; the outcome is the physical component summary of the Short

Form 36 (SF36).

p-Value

δ̂effect 95% CI s.e.(δ̂effect ) v̂ar(δ∗
p) (two-sided)

Uncalibrated 1st level
on covariates MLE 0.5 (−1.4, 2.5) 1.0 − 0.59

permutation − − − − 0.61
1st+2nd level

MLE 0.6 (−1.2, 2.5) 0.9 0.7 0.50
pMLE 0.6 (−1.5, 2.7) − 0.7 −
Bayes 0.6 (−1.7, 3.0) 1.2 4.3 0.60
permutation − − − − 0.60

Calibrated 1st level
on covariates MLE 1.4 (0.5, 2.2) 0.4 − <0.01

permutation − − − − 0.02
1st+2nd level

MLE 1.2 (−0.2, 2.6) 0.7 0.0 0.08
pMLE 1.2 (−0.2, 2.6) − 0.0 −
Bayes 1.3 (−0.4, 2.9) 0.9 1.5 0.13
permutation − − − − 0.02

∗represents δcrude
p for the uncalibrated approach and δcalibrp for the calibrated approach.

distribution of δeffect using the uniform shrinkage prior on
v2 as suggested by Daniels (1999) (see row 5). For compar-
ison, we also obtained the two-sided tail probability from the
distribution of the MLE from (6) as obtained from all the per-
mutation possibilities of the intervention and control labels
of clinical practices independently across pairs. None of these
results suggest any substantial effect for the intervention.

In general, the hierarchical and non-hierarchical methods
without covariates can be inaccurate for at least one of the
following two reasons. First, any substantial covariate imbal-
ances between clinical practices within a pair can result in
substantial uncertainty, which is reflected in the variance of
the estimators of the effect, and which may have influenced
the point estimate. For the Guided Care study, Table 3 shows
that a number of covariates show substantial imbalance be-
tween intervention and control groups. For example, the con-
tinuous covariate Chronic Illness Burden has severe imbal-
ances between the clinical practices in pairs 2, 5, and 7, with
t-statistics being −3.07, −4.81, and 2.52, respectively.

Second, the hierarchical model approach, in addition to its
normality assumption, can be questioned for the following
subtle reason. In order to integrate out δcrude

p from the likeli-
hood (3) to obtain a likelihood that, like (6), still depends on

the variances vcrude
p , one must integrate δcrude

p with respect

to the conditional distribution of the estimand δcrude
p given

the variance vcrude
p , as in (5) of Remark 2, and not with re-

spect to the marginal distribution pr(δcrude
p ) as in (6). The

comparison of (6) to (5) shows that (6) implicitly assumes the
following:

Condition 2. The estimand δcrude
p and the variance vcrude

p

of δ̂crude
p at the first level are independent across pairs p.

The motivation for using the likelihood (6) can be traced
to Thompson et al. (1997, Section 5, Paragraph 2). There, in-
ference for the paired-clustered design is assumed to have the
same random-effects structure as that of DerSimonian and
Laird (1986), who also assume Condition 2 but for a design
that first randomly samples subjects from the population that
a pair serves and then completely randomizes them, regard-
less of their clinical practice. We call this simpler design, a
“paired-strata” design. We show below that violation of Con-
dition 2 has more severe implications for the paired-clustered
than for the paired-strata design.

In the paired-strata design, the observed difference, say δ̂′
p,

in average outcomes between intervention and control indi-
viduals within a pair has mean, say δ′

p, equal to the causal
effect μp(2) − μp(1) of (2). This means that, if the interven-
tion has no effect in any pair, that is, the null hypotheses,
μp(1) = μp(2) for all p, is correct, then δ′

p is a constant (0)
and so Condition 2 is satisfied. As a result, an approach based
on (6) is valid for testing μp(1) = μp(2) for all p because Con-
dition 2 is correct under the null hypothesis being tested in
that design.

In the paired-clustered design, however, the mean, δcrude
p ,

of δ̂crude
p is not a causal effect (see Remark 1 above) even if

the intervention has no effect in any cluster, that is, even if the
null hypotheses, μp,c(1) = μp,c(2) for all p and c, is correct.

In particular, under this null, the mean δcrude
p is μp,1(1) −

μp,2(1), that is, the difference between clinical practices 1 and
2 if they had both been assigned control. In practice, even
after matching, the two clinical practices are expected to have
imbalances in characteristics of the patients or the doctors, so
that δcrude

p is expectedly not zero, and, hence, Condition 2
can be violated. We then have the following result (proof in
Appendix):
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Table 3
Checking covariate imbalances within each pair. For a continuous covariate (indicated by (a)), we calculate effect size as

difference divided by pooled standard deviation. For a categorical covariate (indicated by (b)), odds ratio is calculated
comparing rates of occurrence of each category between two clusters in a pair. To prevent infinite odds ratio, 0.5 is added to

all the cells when calculating sample odds ratios.

Pair

1 2 3 4 5 6 7

age at interview(a) 0.3 −0.3 0.1 0.6 0.0 0.1 −0.1
Chronic Illness Burden(a) 0.5 −0.6 0.0 0.0 −1.1 0.1 0.6
SF36 Mental(a) −0.3 0.1 0.3 0.2 0.3 −0.6 −0.5
SF36 Physical(a) −0.1 −0.4 0.1 0.5 0.4 −0.6 −0.3

lives alone(b) 1.4 0.8 0.7 0.7 1.6 0.9 0.5
>high school education(b) 0.4 0.5 0.7 1.4 0.8 0.8 1.1

Female(b) 2.4 0.6 1.0 0.6 1.0 2.5 1.1

race(b)

Caucasian 0.5 0.2 0.9 0.8 1.5 0.5 0.7
African American 2.2 0.9 1.2 1.2 0.8 1.6 1.2
other 2.2 15.0 1.0 1.4 0.6 1.3 1.5

finances at end of month(b)

some money left over 0.0 0.7 1.4 0.7 1.5 0.7 0.6
just enough to make ends meet 8.9 1.0 0.3 1.3 0.6 1.2 1.4
not enough to make ends meet 18.2 8.4 7.0 1.0 1.2 2.0 1.6

self rated health(b)

≥very good 0.3 0.3 0.8 2.2 0.3 0.8 0.6
good 2.6 3.4 1.4 0.4 2.5 0.8 1.4
fair 0.9 0.9 0.4 0.3 2.5 4.2 0.5
poor 6.8 1.5 3.1 4.4 2.0 4.2 2.1

Result 1. If the intervention has no effect, μ(1) = μ(2), but
Condition 2 is violated, then the MLE of the causal effect
δeffect based on (6) can converge to a non-zero value as the
number of sampled pairs increases.

Therefore, it is important to try to assess the plausibility of
Condition 2. For the Guided Care study, Figure 2 (left) plots

the estimated values of

√
vcrude

p against δcrude
p . Here there

appear no noticeable warnings against independence. How-

Figure 2. Checking second level dependence. Left: esti-
mates of

√
vcrude

p versus δcrude
p ; Right: estimates of

√
vcalibr

p

versus δcalibr
p , where vcalibr

p are the diagonal elements of
�δ̂calibr .

ever, the covariate imbalances shown in Table 3 could still be
contributing to inaccurate estimates through large variances
as discussed earlier.

3.2. Complications with Existing Covariate Methods

Some existing proposals do incorporate covariates into the
model for pr(δcrude

p ) on the right-hand side of likelihood (6).
However, these approaches stop short of addressing the goal
of estimating effects of policy interest. In particular, such ex-
isting approaches (e.g., Thompson et al., 1997, Section 5.5;
Feng et al., 2001) define the treatment effect to be a con-
trast in the treatment coefficients of the posited model after
conditioning on a particular value of the covariates and/or of
random effects specific to the clusters. The first problem with
such a treatment effect is that, its meaning is not objective:
if, for example, the model is misspecified, then an effect set
equal to a contrast of coefficients in the model does not have
a well defined physical interpretation. The second problem is
that, even if the model is correct, a treatment effect that is
conditional on the covariates and/or the clusters is not usually
equal to the overall effect.

4. Addressing the Problems

4.1. Calibration of Observed Covariate Differences
between Clinical Practices

In order to use covariates to estimate the treatment effects
in (2), we propose to first construct calibrated pair-specific
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averages, for each treatment t = 1, 2, in the sense that the
distribution of the covariates reflected in the averages will be
the same as the distribution of covariates combined from both
clinical practices of the pair. Inference for these calibrated av-
erages will then lead to inference for overall effects (2) with the
gained precision of accounting for the difference in observed
covariates between the matched clinical practices.

This section uses notation for the following additional
structure for pair p:

◦ Xp,c,k, for the measurement of a covariate vector before
treatment administration, for the kth sampled patient of
clinical practice c.

◦ Gp,c(x), for the joint cumulative distribution function of
the covariate vector Xp,c,k in clinical practice c, evaluated
at value x; and Gp(x) for the joint cumulative distribution
function (evaluated at x) of the covariate vector of a
patient selected at random from pair p (i.e., from the two
clinical practices of that pair, combined).

◦ Fp,c(y | x; t), for the cumulative distribution function of the
potential outcome Yp,c,k(t) in clinical practice c, evaluated
at value y among covariate levels x, if clinical practice c is
assigned treatment t; and let μp,c(x; t), for the mean of the
latter distribution.

For pair p, consider now the estimable quantity, labeled as
μcalibr

p (t = 1), that is constructed by, first, stratifying the av-
erage outcome into the covariate levels of the clinical practice
c = 1 (assigned to treatment 1), namely μp,c=1(x; t = 1), and
then re-calibrating it with respect to the covariate distribu-
tion of the two clinical practices combined (and similarly for
t = 2):

μcalibr
p,c=1 :=

∫
x

μp,c=1(x; t = 1)dGp(x),

(7)

μcalibr
p,c=2 :=

∫
x

μp,c=2(x; t = 2)dGp(x)

To understand the above estimand, consider for example
two clinical practices in a pair, that, although matched as
closely as possible with respect to, say, the percentage of
patients with a “low” or “high” risk covariate (x = low or
high), the percentage of low risk in clinical practices 1 and
2 is 75% and 85%, respectively, that is, still differs apprecia-
bly between the clinical practices. Suppose also that clinical
practice 2 serves twice as many patients as clinical practice
1. Ignoring covariates, the quantity that can be directly esti-
mated from the data for representing the average outcome if
both clinical practices are assigned treatment 1 is simply the
average outcome within clinical practice 1, μp,c=1(1), which
can be expressed in terms of the covariate as 0.75 · μp,c=1(x =
low; t = 1) + 0.25 · μp,c=1(x = high; t = 1). When using covari-

ates, the calibrated average μcalibr
p,c=1 is 0.82 · μp,c=1(x = low; t =

1) + 0.18 · μp,c=1(x = high; t = 1), because it generalizes the
covariate-specific outcome averages under treatment 1 to the
covariate distribution for both clinical practices in which
0.75 1

3
+ 0.85 2

3
= 0.82 have low risk.

More generally, one should expect that the calibrated con-
trasts μcalibr

p,c=1 − μcalibr
p,c=2 , though still not equal to the target

causal effect μp(t = 1) − μp(t = 2) of (1) in each pair, should,
(a) share the property with the uncalibrated estimands, that
is, that their average over pairs equals the average causal ef-
fect δeffect of (4); and (b) provide a basis for more efficient
estimators than the uncalibrated contrasts. This is true if the
design is more carefully formalized as follows:

Condition 3. The characteristics of a clinical practice, that
is, the distribution of potential outcomes under treatments 1
and 2 conditionally on covariates, the distribution of covari-
ates, and the number of people served by clinical practice c,
namely the vector of functions

[
Fp,c(· | ·, t = 1), Fp,c(· | ·, t =

2), Gp,c(·), Np,c

]
, is exchangeable (in distribution over pairs)

between clinical practices c = 1 and c = 2.

Then we have the following:

Result 2. (a) Under Condition 3, the average over pairs of

the covariate-calibrations, μcalibr
p,c=1 , that is, based on the clin-

ical practice assigned to treatment 1 in each pair (see (8))
equals the average of the potential outcomes if the entire pop-
ulation had been assigned treatment 1 (similarly for treatment
2); hence the estimable contrast

E{μcalibr
p,c=1 } vs. E{μcalibr

p,c=2 } (8)

equals the causal contrast (2); (b) if μp,c(x; t = c) are known,

then the MLEs of E{μcalibr
p,c=1 } in (8) (and of the target esti-

mands μ(t) in (2), due to (a) and the invariance property of
the MLE) are the averages, over the observed pairs, of the
empirical analogues of (8):

∫
μp,c(x; t = c)dĜp(x), c = 1, 2, (9)

where Ĝp is the weighted empirical distribution of covariates
in pair p (the weight is determined by Np,c).

Condition 3 implies Condition 1. The proof of Result 2
(a) follows by iterated expectations; the proof of (b) follows
because the empirical distribution Ĝp(x) as defined above is,
under no other assumptions, the MLE of Gp(x).

In practice, and simplifying the notation for the estimable
averages μp,c(x; t = c) to μp,c(x), one can consider modeling
μp,c(x) for each (pair p, cluster c), with μp,c(x; θ), where

h{μp,c(x, θ)} = θp,c + θ′
cov · x and h is a link function.

(10)

Since these models condition on the pairs and clusters, the
parameter θ can be estimated by weighted least squares
estimator θ̂, based on the first moment residuals Yp,c,k −
μp,c(Xp,c,k, θ), where approximately

θ̂ | θ, �θ̂ ∼ Normal(θ, �θ̂), (11)
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and where �θ̂ is the true variance-covariance matrix of θ̂,
which can be estimated by the robust variance-covariate ma-
trix denoted by �̂θ̂.

Based on these, the calibrated estimands in (8) can be es-
timated within each pair and clinical practice, by

̂μcalibr
p,c =

∫
μp,c(x, θ̂)dĜp(x), for all p, c, (12)

whose joint distribution can be approximated by the delta
method as

level 1 :

⎡
⎢⎢⎢⎣
̂

μcalibr
p=1,c=1

̂

μcalibr
p=1,c=2

...
...

̂

μcalibr
p=N,c=1

̂

μcalibr
p=N,c=2

⎤
⎥⎥⎥⎦ | θ, �μ̂calibr

∼ Normal

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

μcalibr
p=1,c=1 μcalibr

p=1,c=2

...
...

μcalibr
p=N,c=1 μcalibr

p=N,c=2

⎤
⎥⎥⎦ , �μ̂calibr

⎫⎪⎪⎬
⎪⎪⎭ ,

(13)

and where �μ̂calibr can be estimated by �̂μ̂calibr .

4.2. Estimation of Quantities of Original Interest

Expression (13) can be used for estimation of the causal con-
trast μ(1) vs. μ(2) (because of Result 2(a)); here we fo-

cus on δeffect = μ(1) − μ(2). Specifically, setting δcalibrp =
μcalibr

p,c=1 − μcalibr
p,c=2 and δ̂calibrp = ̂

μcalibr
p,c=1 − ̂

μcalibr
p,c=2 we can con-

sider the first or both levels of the following two-level model

level 1’:

⎡
⎢⎢⎣

δ̂calibr1

...

δ̂calibrN

⎤
⎥⎥⎦ |

⎡
⎢⎢⎣

δcalibr1

...

δcalibrN

⎤
⎥⎥⎦ , θ, �δ̂calibr

∼ Normal

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

δcalibr1

...

δcalibrN

⎤
⎥⎥⎦ , �δ̂calibr

⎫⎪⎪⎬
⎪⎪⎭ , (14)

level 2′ : δcalibrp | δeffect , τ2 ∼ Normal(δeffect , τ2),

p = 1, . . . , N, (15)

where expression (14) follows from (13), and the covariance
matrix �δ̂calibr , obtained by the delta method, can be estimated
by �̂δ̂calibr .

Table 1 shows the results for the calibrated estimates as
derived from expressions (13) and (14) (see rows for outcome
“calibrated on covariates”) for each of the seven pairs in the
Guided Care study. The covariates that are involved in the

calibration are listed in Table 3. It is notable that these cali-
brated differences, δ̂calibrp , are positive, in favor of the control
condition, for all pairs p.

Using these, Table 2 also reports the estimate of the over-
all effect δeffect , first based only on the design-derived fact
Result 2(a) that the average of δcalibrp over pairs equals the ef-

fect of interest δeffect and δcalibrp can be estimated by δ̂calibrp

as in (14) (see 1st level, “calibrated on covariates”). As with
the uncalibrated first-level approach, this first-level calibrated
approach makes no further assumptions about the joint dis-
tribution of pr(δcalibrp , �δ̂calibr), and the MLE of δeffect is the

unweighted sample average of δ̂calibrp (here, its standard error
is estimated by the jackknife, although in general it is difficult
to trust a confidence interval from a normal approximation
with seven pairs). For this reason, we also calculated the sig-
nificance level of the MLE by permutation of the treatment
labels, thus testing the hypothesis of no true effect in any pair.
In this case, and because all calibrated estimated differences
have the same sign, the permutation based significance level
is 2/(27) = 0.016 in favor of the control condition.

For a two-level approach based on (14) and (15), one can es-

timate δeffect , by first obtaining the marginalized likelihood,
say, L(δeffect , τ2, �δ̂calibr). After plugging in �̂δ̂calibr for �δ̂calibr ,

we estimated δeffect by three different methods: (i) the MLE;
(ii) the MLE after profiling τ2 out; and (iii) the posterior

distribution of δeffect using noninformative priors for τ2 and
δeffect . We use a uniform shrinkage prior for the second-level
variance τ2 advocated by Daniels (1999). These results for the
two-level approach are given in Table 2 (see rows 1st+ 2nd
level, “calibrated on covariates”; MLE, pMLE, and Bayes, re-
spectively).

As with the uncalibrated approach, the marginalized like-
lihood that uses (14) and (15) assumes that δcalibrp is inde-
pendent of �δ̂calibr . Figure 2, right panel, plots estimates of the

square root of the diagonals of �δ̂calibr ,

√
vcalibr

p , versus esti-

mates of δcalibrp . Although the plot can be to some degree
affected by measurement error, the R2 of 0.20 suggests that
some dependence exists. Although this dependence could be
modeled in a modified second level, it is unclear how con-
vincing such an approach would be as it would introduce
even more modeling assumptions. To avoid this, we calcu-
lated instead the significance level of the two-level MLE es-
timate when evaluated from the permutation distribution of
the treatment labels.

4.3. Assessment of the Hypothesis of No Effect

The proposed approach, in addition to being robust for
hypothesis testing when evaluated by permutation, is likely
to have a more general robustness property analogous to the
one arising in a simpler design. Specifically, in the design of
complete randomization of units (no pairing, no cluster-level
randomization), Rosenblum and van der Laan (2010) have
shown that a certain class of parametric models for covariates
yield MLEs for the causal effect that are consistent for the
null value if indeed there is no effect on any person, even if
the models are incorrect. Shinohara, Frangakis, and Lyketsos
(2012) showed that an extended class of models has this



8 Biometrics

robustness property if the models satisfy an easy-to-check
symmetry criterion.

For the matched-paired clustered-randomization design,
analogous classes of models with such robustness property
may also exist. Specifically, suppose that, more generally than
model (10), we conceptualize a parametric model as one that
allows distributions mp,c(y | x) for the outcome at value y

given covariate at value x for each (pair,cluster) labeled (p, c).
Many flexible models mp,c(· | ·) (or, for brevity, mp,c), includ-
ing (10), have the property that if, for two pairs and their
clusters

(
p1c1 p1c2

p2c1 p2c2

)
,

the model allows the distributions

(
m1,1 m1,2

m2,1 m2,2

)
,

then it also allows the distributions

(
m2,2 m1,2

m1,2 m2,2

)
and

(
m1,1 m2,1

m2,1 m1,1

)
.

The intuition of this property is that the model allows ex-
changeable distributions between any two observed pairs. Fol-
lowing a similar reasoning to that of Shinohara et al. (2012),
we hypothesize that if (a) there is no effect of intervention in
the distribution of any cluster, that is, in the true distribu-
tions defined in Condition 3, Fp,c(· | ·; t = 1) = Fp,c(· | ·; t = 2)
for all p, c, and (b) a model that has the above symmetry
property is used, then the limit of the MLE of the causal
effect (8) is null even if the model is incorrect. A detailed
treatment of this issue can allow for combining validity with
increased efficiency in such designs as well.

5. Discussion

For the design that matches clusters of units and assigns in-
terventions to clusters within pairs, we proposed an approach
that estimates the average causal effect while also explicitly
calibrating possibly covariate imbalance between the clusters.
The approach can use only one level for inference, or can be
used in a hierarchical model.

In the Guided Care study, a first-level inference with the
new approach reports estimates of the causal effect with
smaller estimated variance than that without using covariates
(see Table 2). Although it is difficult to know if this is objec-
tively true in this small sample of pairs, the results from the
permutation tests between the two approaches are also consis-
tent with this conclusion. A simple two-level approach, with
or without covariates, makes an implicit assumption which
can invalidate causal comparison of the interventions, and
explicitly addressing the assumption would introduce addi-
tional modeling. The covariate-calibrated approach reports
that the control condition leads to higher, albeit clinically in-
significant, average overall SF36 score compared to that under
Guided Care Nurse intervention, using either a single-level

(approximate or permutation-based) analysis or a two-level
permutation-based analysis (see Table 2).

The proposed approach is expected to be more generally
robust to model misspecification when assessing the hypothe-
sis of no effect, if the model (10) belongs in a relatively broad
class. This expectation needs formal verification, but, if con-
firmed, can lead to more efficient estimation, and, hence, more
efficient use of resources.

An alternative to the proposed approach can be to break
the matching and then use regression-assisted (Donner,
Taljaard, and Klar, 2007) or doubly robust estimators
(Rosenblum and van der Laan, 2010) to estimate the treat-
ment effect. Based on Rubin’s (Rubin, 1978) theory, the
matched design is still ignorable (and so the matching can be
broken) if these variables that were used to create the match-
ing are still available and are included in the outcomes model.
In contrast, if these variables are not used in the model, then
the design is not ignorable if the matching is broken, and this
can generally lead to bias at least in the expression of the
uncertainty in inference.

6. Supplementary Materials

The R code that implements the method in this paper is avail-
able with this paper at the Biometrics website on Wiley On-
line Library.
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Appendix

Proof of Result 1

We show that the MLE of δeffect based on the standard
meta-analytic likelihood (6) is generally inconsistent. To do
this, consider the simple but informative case of a popula-
tion of pairs of practices as shown in Figure A.1, where μ

follows the positive half of the standard normal distribution
across such pairs. Because δcrude

p is μ or −μ with proba-

bilities ( 1
2
, 1

2
), marginally the normality of the distribution

of δcrude
p at the second level of (6) holds with δeffect (=

E(δcrude
p )) = 0 and with var(δcrude

p ) = 1. Consider also, for

simplicity, that var(δcrude
p ) is known, and that within clini-

cal practices, the number of patients sampled is a constant n

and the variances σ2
p,c(t) are known and are as given in Fig-

ure A.1. Then, the maximizer δ̂effect of the likelihood in (6)

is
∑

p
upδ̂

crude
p /

∑
p
up, where (up)

−1 = var(δcrude
p ) + vcrude

p ,
and

vcrude
p =

⎧⎪⎪⎨
⎪⎪⎩

w1 = 2

n
, if the practice p is of typep = 1;

w2 = 1 + σ2

n
, if the practice p is of typep = 2.
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Figure A.1. Structure for the example used in the proof
of Result 1 (Appendix). Shown is one true type of pair and
the two types of observed pairs to which it can give rise, de-
pending on which clinical practice is assigned control. In each
parentheses shown are the mean and variance of the poten-
tial outcomes of patients of the corresponding clinical practice
and under a give treatment, as denoted in Figure 1.

The probability limit of δ̂effect is E(upδ̂
crude
p )/E(up),

and its sign will be the sign of E(upδ̂
crude
p ). Here, al-

though E(δ̂crude
p ) = 0, Condition 2 fails because the sign

of δcrude
p depends on the magnitude of the variance

vp. In particular, E(upδ̂
crude
p ) = E{E(upδ̂

crude
p | typep)} =

μ

2
[{var(δcrude

p ) + w2}−1 − {var(δcrude
p ) + w1}−1] which is non

zero if σ2 �= 1. This means that even if the null hypothesis of
no intervention effect on the means is correct, the standard
meta-analytic approach (6) is inappropriate if the intervention
has an effect on the variance in at least one clinical practice.
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