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S1 Additional Results for Simulation Studies

S1.1 Convergence diagnostics

We examine the convergence of our algorithm in Section 6 of Main Paper through the likelihood

trace plot and ensure convergence likelihood from different initializations. Specifically, given the

same dataset, we run the same algorithm with two chains initiated by two different trees and plot

the likelihood over iterations. We randomly chose five likelihood trace plots, each from different

sample sizes of n ∈ {30, 50, 100, 250, 500}, as shown in Figure S1. Obviously, the likelihood

increases rapidly and remains at a relatively high plateau. More importantly, both chains converge

to a similar level of likelihood, indicating the convergence of the algorithm.

S1.2 Comparing different algorithms

We compare our algorithm to the algorithm from Nye (2020) and empirically investigate the rate

of convergence through the likelihood trace plot shown in Figure S2. The algorithm from Nye
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Figure S1: Convergence diagnostics for the algorithm using the likelihood trace plot. Two chains of the

same algorithm are initiated by different trees, shown by two colors, across five different sample sizes of

n ∈ {30, 50, 100, 250, 500}.

(2020) enables the algorithm to propose a candidate edge set that is the same as the edge set from

the previous iteration, resulting in slower convergence. We briefly describe Nye’s algorithm and

refer the reader to the original paper for more details. Essentially, Nye’s algorithm is still an MH

update and changes the proposal function illustrated in Step 1 to 4 in Algorithm 1. Instead of

directly removing the internal split in Step 1, Nye’s algorithm generates an edge length difference

from a normal distribution of δ ∼ N(0, σE) and lets c = |eA| + δ. When c > 0, the algorithm

will stay in the same edge set with eB = eA and |eB| = c. Otherwise, when c ≤ 0, the algorithm

will propose a candidate split eB from nearby orthants and assign the edge length of |eB| = −c.

However, Nye’s algorithm does not exclude the original split from the candidates, resulting in

a positive probability of staying in the same edge set and, therefore, slower convergence. We

implement Nye’s algorithm and compare it to our algorithm. Figure S2 empirically compares the

rate of convergence. Obviously, our algorithm converges faster than Nye’s algorithm under five

different sample sizes.
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Figure S2: Empirical comparison of our proposed algorithm (blue) and the algorithm from Nye (2020)

(red) in terms of the rate of convergence under five different sample sizes of n ∈ {30, 50, 100, 250, 500}.

S1.3 Element-wise coverage for t-distribution

We show the nominal coverage for element-wise 95% credible intervals under the mis-specified

t-distribution. Specifically, the results of nominal coverage for t4 and t3 for five different sizes are

shown in Figure S3 and S4, respectively. We observe that the nominal coverages for t-distribution

are moderate when the sample size is small (n = 30). However, when the sample size increases,

the nominal coverage worsens. Unfortunately, when our algorithm is mis-specified, it does not

generate posterior matrices that converge to the true matrix. We suspect that our algorithm

converges to incorrect edge lengths when the model is mis-specified. This conjecture is supported

by Table 1 in the Main Paper, which indicates that our algorithm still generates posterior samples

with the correct topology for t-distribution when the sample size is larger with n = 100 for t4 and

n = 250 for t3.

S1.4 Topology trajectory for the proposed method

In this section, we examine the trajectory of our proposed algorithm in Up. Specifically, we initiate

our algorithm with matrices that are far away (in terms of distance d of Equation (3) in the Main
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Figure S3: Element-wise coverage from the 95% credit interval for the mis-specified t-distribution of

degree of freedom four under five different sample sizes. The true underlying covariance is shown in the

lower right panel.

Paper) from the true matrix and track the topologies generated by our algorithm over iterations.

Consider a dataset of sample size n = 500 that is generated from an underlying normal distri-

bution with a true ultrametric matrix of dimension p = 10. For the ultrametric matrices of p = 10,

over 34 million possible topology exists, and we index each topology with a natural number. We

initiate our algorithm with trees that share no common split with the true matrix and run the

algorithm with correct specified normal likelihood for 10,000 iterations.

Figure S5 presents the trajectory of our algorithm applied on the same dataset with 15 different

initial trees in terms of the distance d between the estimated matrices and the true matrix. Each

Panel is initiated by the matrix with different topology. For example, Panels in the top row shows

the results for the algorithm initiated by matrices with five different topology 2, 27, 52, 72 and 91,

from the left to right. For each Panel, different colors represent different topologies. Obviously,

all initial matrices are distant from the true matrix with a higher distance d. Over iterations, our

algorithm traverses different nearby orthants and quickly moves to the correct topology (topology

1) with a smaller distance d to the true matrix. For example, the top-left Panel shows the distance

d for the algorithm initiated by the matrix with topology 2. Since the initial topology 2 share
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Figure S4: Element-wise coverage from the 95% credit interval for the mis-specified t-distribution of

degree of freedom three under five different sample sizes. The true underlying covariance is shown in the

lower right panel.

no common split to the true matrix, a larger distance d is obtained. The algorithm then quick

traverses the topologies 3 to 26 and lingers in the correct topology 1 within the first 150 iterations

with a rapid decrease in distance d. After reaching the true topology 1, we observe that our

algorithm sometimes moves to the nearby orthants of topologies 25 and 26, but moves back to the

correct topology 1 soon after a short period.

S1.5 Simulation results for the tree with the same edge lengths from

the root

In this Section, we demonstrate additional simulation results when all leaves in the true under-

lying tree are equidistant to the root. Specifically, we obtain a tree from the coalescence model

implemented by the function rcoal in the R package ape and generate the data from the normal

and t-distribution described in the Main Paper Section 6. We run Algorithm 1 without restricting

the prior on the edge lengths for 10, 000 iterations and discard the first 9, 000 iterations. We sum-

marize the posterior samples by the point estimation and the quantify the uncertainty through the
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Figure S5: Trajectory of our algorithm in terms of distance d. Over iterations, distances d between

each posterior matrix and the true matrix are measured. Each posterior sample is colored according to

the corresponding topology. The same algorithm is initiated by 15 different matrices that are far away

(in terms of the distance d) from the true matrix. Our algorithm traverses different orthants and arrives

at the true topology (topology 1) quickly after a few iterations.

element-wise 95% credible interval. The performance of the point estimator is compared to the

projection-based method of Bravo et al. (2009) and the sample covariance under the measurement

of the distance d from Equation (3) in the Main Paper and the matrix norm. For the uncertainty

quantification, we calculate the nominal coverage of the 95% credible interval. All results were

obtained from 50 independent replicates.

Figure S6 demonstrates the nominal coverage of the element-wise 95% credible interval with

the true generating covariance in the Panel (F). As we expected, the diagonal elements in the

true underlying covariance are equivalent, implying that all leaves in the true underlying tree are

equidistant to the root. Similar to the results shown in Main Paper Section 6, the 95% credible

interval gives a high nominal coverage (around 0.73 to 1), and the estimated coverage is higher

when the sample size increases. In summary, our algorithm can efficiently draw posterior samples

of matrices under different conditions imposed on the edge lengths of the true underlying tree.

The results of the point estimators are shown in Figure S7. For the point estimator, the mean

and MAP trees from our method are comparable to the estimated matrix from Bravo et al. (2009)
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Figure S6: Element-wise coverage from the 95% credit interval for the correct specified normal distri-

bution with five different sample sizes with the true underlying matrix in the Panel (F). Equal diagonal

elements in the true matrix indicate that all leaves in the true underlying tree are equidistant to the root.

and sample covariance in terms of distance d and matrix norm across different data generating

mechanisms and sample sizes. When the model is correctly specified, all methods benefit from

the increase in the sample size, resulting in a smaller distance to the true matrix. For the mis-

specified scenario, the advantage from the larger sample size is moderate. Essentially, when all

leaves in the true underlying tree are equidistant to the root, our algorithm still generates posterior

samples that are comparable to existing methods with a similar level of performance in terms of

the distance d and matrix norm.

S1.6 Scalability of the proposed method

We assess the scalability of the proposed method by considering a larger dimension of p ∈

{10, 20, 30} for the true matrix ΣT 0
. We repeat the same data generating mechanism of the

normal distribution of Xi
i.i.d.∼ N(0,ΣT 0

) with i = 1, . . . , n and n = 50p. We measure the running

time of the proposed Algorithm with 10, 000 iterations and compare it to the running time of the

competing method MIP (Bravo et al., 2009). All results are executed on Linux-based cluster with

a CPU 2x 3.0 GHz Intel Xeon Gold 6154 and varying memory sizes required for different methods.
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Figure S7: Distances between the estimated matrix and the true matrix under different data generating

mechanism and sample sizes. The mean (red) and MAP tree (green) from our method is comparable to

competing methods (blue for MIP and purple for sample covariance) in terms of the distance d (top row)

and matrix norm (bottom row).

Specifically, we assign 1GB of memory for the proposed method and 25GB of memory to MIP.

The results of the running time are shown in Figure S8. For p = 10, MIP is faster than the

proposed MCMC (median running time in seconds for MIP: 154 and MCMC: 511). However,

when considering a larger dimension of p = 20, the proposed MCMC takes around 30 minutes

(median: 1, 788 seconds), which is 1.75 times faster than the time required for MIP (median:

3, 080 seconds). If we increase the dimension to p = 30, the proposed method spends 66 minutes

(median: 3, 976 seconds), while MIP fails after running for 3 days due to memory and computation

limits. In conclusion, our method scales better in p with a much efficient memory requirement.
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Figure S8: Computation time (in seconds) required for the proposed method (MCMC) and the com-

peting method (MIP) under three different number of leaves p ∈ {10, 20, 30}. The computation time of

MIP for p = 30 is missing for the MIP fails after running for 3 days due to the memory and computation

limits.

S2 Additional Results for the Real Data Application

We run the convergence diagnostics of our algorithm through the likelihood trace plot. Specifically,

given the PDX dataset, we run the same algorithm with two chains initiated by two different trees

and plot the likelihood over iterations. When the algorithm is converged, the likelihood initiated

by two different chain should reach a similar level. Obviously, the likelihood increases rapidly and

remains at a relatively high plateau. More importantly, both chains converge to a similar level of

likelihood, indicating the convergence of the algorithm.
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Figure S9: Convergence diagnostics for the algorithm on PDX dataset by using the likelihood trace

plot. Two chains of the same algorithm are initiated by different trees, shown by two colors.
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