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Abstract

Ultrametric matrices arise as covariance matrices in latent tree models for multivariate data with
hierarchically correlated components. As a parameter space in a model, the set of ultrametric matrices
is neither convex nor a smooth manifold, and focus in literature has hitherto mainly been restricted
to estimation through projections and relaxation-based techniques. Leveraging the link between an
ultrametric matrix and a rooted tree, we equip the set of ultrametric matrices with a convenient
geometry based on the well-known geometry of phylogenetic trees, whose attractive properties (e.g.
unique geodesics and Fréchet means) the set of ultrametric matrices inherits. This results in a novel
representation of an ultrametric matrix by coordinates of the tree space, which we then use to define a
class of Markovian and consistent prior distributions on the set of ultrametric matrices in a Bayesian
model, and develop an efficient algorithm to sample from the posterior distribution that generates
updates by making intrinsic local moves along geodesics within the set of ultrametric matrices. In
simulation studies, our proposed algorithm restores the underlying matrices with posterior samples
that recover the tree topology with a high frequency of true topology and generate element-wise
credible intervals with a high nominal coverage rate. We use the proposed algorithm on the pre-clinical
cancer data to investigate the mechanism similarity by constructing the underlying treatment tree
and identify treatments with high mechanism similarity also target correlated pathways in biological
literature.

1 Introduction

Structured covariance and inverse covariance matrices abound in statistical models for data exhibiting

specific forms of dependencies (Lauritzen, 1996). The focus of this work is on Gaussian models on

trees parameterized by a class of structure covariance matrices known as ultrametric matrices. The

class constitutes a special case of covariance graph models first studied by Cox and Wermuth (1993)

with additional constraints on the covariance matrix, and are intimately related to multivariate totally

positive of order two distributions (Karlin and Rinott, 1983; Lauritzen et al., 2019). Gaussian models

parameterized by ultrametric matrices are also referred to as Gaussian tree models (Felsenstein, 2003)

and latent tree models (Wang et al., 2008; Choi et al., 2011), and are widely used in various applications,

including psychology (Lauritzen et al., 2019), cancer biology (Yao et al., 2023), and finance (Agrawal

et al., 2020); see Zwiernik (2016) for a comprehensive survey of latent tree models. Ultrametric matrices

first appeared in the potential theory of finite state Markov chains (Dellacherie et al., 2014), and have

also appeared in the literature as tree-structured matrices (McCullagh, 2006; Bravo et al., 2009).
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The set Up of p × p ultrametric matrices is characterized by semialgebraic inequalities, and, aided

by techniques from combinatorics and polyhedral geometry, there is a substantial body of work that

focuses on their estimation (e.g., Zwiernik et al., 2017; Sturmfels et al., 2021). Work on developing

inferential methods for them, however, has not experienced the same level of progress. Central to the

set of challenges that are stymieing progress for inference is the non-trivial geometry of Up. This can

be intuited through the link between an ultrametric matrix ΣT ∈ Up and a rooted tree T with p leaves:

the tree T possesses both topological (graph structure) and geometric (edge lengths) information that is

encoded in ΣT , and varying T by altering both sources of information varies the structure of ΣT (e.g.,

pattern of zeros; magnitude of entries) in a non-trivial manner.

For ultrametric matrices that are correlation matrices with entries in [0, 1], a subset of Up, the inequal-

ities in Definition 1 engender an embedding within symmetric matrices through their link to tree-based

metrics on {1, 2, . . . , p} (Buneman, 1974), leading to the embedded geometry of the edge-product space

or phylogenetic oranges (Kim, 2000; Moulton and Steel, 2004). The recently developed Wald space for

phylogenetic trees by Garba et al. (2021) and Lueg et al. (2022) is built on this embedded geometry. The

embedded geometry of ultrametric correlation matrices was used Shiers et al. (2016) to assess adequacy

of a Gaussian tree model for data, however with an Inverse Wishart prior with support on all positive

definite matrices. Based on their work, Leung and Drton (2018) developed a Bootstrap-based procedure

for testing for a more general class of latent tree models. We are unaware of a similar embedding for Up

based on its semialgebraic characterisation.

There are two important desiderata for sampling-based inference for Bayesian models with parameter

space Up that possesses non-trivial geometry: (i) definition of and sampling from a flexible prior distri-

bution on Up; (ii) efficient exploration of Up by algorithms for posterior sampling that use the intrinsic

geometry of Up, without requiring expensive projections onto Up from a larger space. An intrisic metric

geometry of Up that provides tools (e.g., geodesics, distances) to characterise and quantify how changes

in the tree T manifests in corresponding changes in ΣT , and vice versa, will constitute a significant step

towards designing inferential methods that satisfy (i) and (ii). Such a geometric framework is unavailable

in the literature. The goal of this paper is to fill this gap, and demonstrate the framework’s benefits in

performing inference for ultrametric matrices in Bayesian Gaussian latent tree models.

Our approach is based on pulling back the intrinsic stratified geometry of the well-studied phylogenetic

treespace (Billera et al., 2001) onto Up. The CAT(0) geometry of the treespace, the useful space for the

development of several statistical tools for tree-structured data, is then inherited by Up. The result is

a novel representation of an ultrametric matrix ΣT as a linear combination of a set of basis matrices,

which characterizes the set of possible topologies for the tree T . The representation complements the

well-known decomposition of ΣT by Nabben and Varga (1994) in the literature on ultrametric matrices,

and may be of independent interest. The coordinates thus obtained for ΣT elucidate on how topology

of the tree T is encoded via choice of the stratum and edge lengths determine its location within a

stratum. Shortest paths, or geodesics, on Up between two ultrametric matrices then signify geometric

and topological deformations between the corresponding trees. Of key inferential consequence is the fact

that the geometry enables us to:

(i) specify a class of Markovian and consistent prior distributions on Up that allows for decoupled
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control over induced distributions on tree topology and edge lengths;

(ii) design an efficient algorithm for posterior inference on Up in a latent tree model that makes updates

using local moves along geodesics within Up, without requiring any projection or relaxation;

(iii) compute statistical summaries (e.g., sample Fréchet mean) from posterior samples.

Since a tree is also a graph, we note that the class of Gaussian models parameterized by covariance

matrices that are ultrametric is subsumed under the class of Gaussian covariance graph models, where

(in)dependence between nodes are specified through zeros of the covariance matrix and not its inverse.

General conjugate and non-conjugate Bayesian methods developed (Dawid and Lauritzen, 1993; Letac and

Massam, 2007; Khare and Rajaratnam, 2011) for such models based on prior distributions on structured

covariance matrices with pre-specified zeros can in principle be adapted to the covariances in Up. However,

information on how topology and geometry of the tree T manifests in ΣT is not transparent, and it is

unclear how one extracts benefits such as (i)-(iii) above from such general frameworks for graphs.

The rest of the paper is organized as follows. Section 2.1 reviews ultrametric matrices and properties

of Up, and section 2.2 reviews the phylogenetic treespace of Billera et al. (2001). Section 3 develops the

intrinsic geometry of Up (Theorem 1) and the ensuing representation of an ultrametric matrix (Corollary

1), and discusses how the stratified geometry of Up with identified boundaries manifests in the ultrametric

matrices (Proposition 1 and Corollary 2). In Section 4, we construct a Markovian and consistent prior

on Up. Section 5 delineates an algorithm (Algorithm 1) that draws posterior covariances effectively via

the intrinsic geometry of Up. In Section 6, we present results from extensive simulations that assess

quality of recovery of an ultrametric matrix covariance in Gaussian and misspecified models, along with

uncertainty quantification. In Section 7, we demonstrate utility of the developed Bayesian algorithm on

pre-clinical data obtained from studies on cancer treatment. Section 8 offers concluding remarks and

future directions. General purpose code in R with packages and datasets for the proposed method is

available at https://github.com/bayesrx/ultrametricMat.

2 Preliminaries

In this Section, we introduce and briefly review properties of ultrametric matrices, and the challenges

involved in their estimation and inference. One of the main objectives of our work is to equip the set of

ultrametric matrices with a geometry that enables sampling-based inference, and our approach is based

on establishing a bijection with the phylogenetic treespace by Billera et al. (2001), henceforth known as

the BHV space. We briefly review the BHV space and its salient properties.

2.1 Ultrametric matrices

Let Sp be the set of p× p real symmetric matrices and L = {0, 1, 2, . . . , p}.

Definition 1. A matrix ΣT ∈ Sp is strictly ultrametric if

(i) every element of ΣT is non-negative;

(ii) for all i ∈ L, ΣT
ii > max{ΣT

ij : j ∈ L \ {i}};
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(iii) for all i, j, k ∈ L

ΣT
ij ≥ min{ΣT

ik,Σ
T
kj} . (1)

Matrices satisfying the definition are referred to as ultrametric since reverse of the inequality in (1)

signifies ultrametricity of a metric once elements ΣT
ij are interpreted as the distance between leaves i and

j of tree T , defined to be the sum of edge lengths from the root to the most recent common ancestor of

i and j. Property (ii) in the definition ensures that the diagonal element is the largest in each row and

column, and that such ΣT are nonsingular (Nabben and Varga, 1994). We denote by Up the set of p× p

strictly ultrametric matrices and by S+
p := {Σ ∈ Sp : x⊤Σx > 0, x ∈ Rp} the convex cone1 of symmetric

positive definite matrices in Rp×p; note that Up ⊂ S+
p .

If property (ii) in the definition above is relaxed to “≥”, then ΣT is referred to an ultrametric matrix

(Dellacherie et al., 2014). Denote by U∗
p the set of ultrametric matrices, which contains singular matrices

that lie on the boundary of the non-negative cone {Σ ∈ Sp : x⊤Σx ≥ 0, x ∈ Rp}. We primarily focus on

the set Up of strictly ultrametric matrices in this work, and sometimes refer to them as ultrametric when

the context is clear.

Matrices in Up are inverses of the so-called M -matrices (Ostrowski, 1937), matrices with non-positive

off-diagonal and positive diagonal entries that are used to model conditional dependencies in Gaussian

models (Karlin and Rinott, 1980, 1983). Nabben and Varga (1994) determined the following decomposi-

tion of an ultrametric matrix in U∗
p when studying its relationship with a particular M -matrix:

ΣT =

2p−1∑
j=1

djvjv
T
j = V DV T, (2)

where {vj} are p-dimensional binary vectors with values in {0, 1} with v1 = 1, the vector of ones, and

{dj} are non-negative real numbers. The matrix V = (v1, . . . , v2p−1)
⊤ is known as the basis matrix of

ΣT with the partition property (Bravo et al., 2009) that associates with a rooted tree structure (Nabben

and Varga, 1994). Starting from the root of the tree pertaining to v1, it encodes a recursive partition of

{1, . . . , p} such that every column vi with more than one non-zero elements there exists two other columns

vj , vk such that vi = vj + vk. The matrix V determines topology of the tree T , while the diagonal matrix

D with entries dj stores the edge lengths. The matrix ΣT is made strictly ultrametric by enforcing d1

and the dj ’s pertaining to leaf edge lengths to be strictly positive.

The set of M -matrices is a convex subset of S+
p and this was used by Slawski and Hein (2015)

to compute the maximum likelihood estimate (MLE) of the (inverse) covariance matrix in a Gaussian

graphical model. However, existing approaches to estimation on Up are dominated by optimization

methods based on projections or relaxations, since the inequalities in Definition 1 are non-convex. For

example, Lauritzen et al. (2019) and Agrawal et al. (2020) handle the inequalities by considering a

dual problem. On the other hand, ultrametric matrices are a special case of linear covariance matrices

introduced by Anderson (1970) and occur as covariance matrices of Brownian tree models introduced

in phylogenetics (Felsenstein, 1973), and more generally as covariance matrices of marginal likelihoods

in generative models for hierarchically correlated multivariate data (Neal, 2003; Yao et al., 2023). As a

1We use AT with a roman letter “T ” as superscript to highlight dependence of the matrix A on the tree T , and distinguish

this from AT to denote its transpose.
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special case of linear covariance matrices, the MLE of ΣT can be computed given the basis matrix V

(Zwiernik et al., 2017); this corresponds to fixing the topology of the tree T apriori, and the corresponding

set of ultrametric matrices can be identified with a simplicial cone within a spectrahedron in Sp (Sturmfels

et al., 2021). However, the basis matrix V is part of the parameter space and needs to be estimated.

Despite being a subset of the convex set of inverse M -matrices, the set Up is neither convex nor a

smooth manifold (McCullagh, 2006). However, to carry out sampling-based inference on Up under a

Bayesian setting, it is important to enable algorithms to make intrinsic local moves that do not leave

the parameter space. Extrinsic geometries for Up based on embeddings into Sp or S+
p require projections

to ensure that samples always assume values in Up. Computing such projections can be computationally

expensive. An intrinsic metric geometry of Up that facilitates development of such sampling algorithms is

currently unavailable, and we aim to develop an algorithm that leverages the geometry to draw posterior

samples efficiently.

2.2 Geometry of the BHV space for trees

Tree structure. Every ultrametric matrix ΣT ∈ Up encodes a unique rooted tree T on p leaves, or

p+ 1 leaves if the root is counted as one, with its branching structure and edge lengths. It is possible to

endow a geometry on Up via one on the set of rooted trees, and one such geometry is available through

that of the BHV space.

Consider the set of acyclic graphs T known as trees with a unique vertex of degree one refereed to as

the root. Nodes with degree one are referred to as leaves and all other nodes have degree greater than

two and are known as internal nodes. The root is thus viewed as a leaf node, and a statistical rational

for this is provided in Remark 3. We consider trees T on p + 1 leaves labeled L = {0, 1, . . . , p}, where
0 labels the root. Vertices are connected by edges from the set ET , which is the union of the set EI

T of

edges connecting internal vertices with the set EL
T of edges connecting internal vertices to the p+1 leaves.

Resolved trees T are those with internal vertices of degree three and 2p− 1 edges in ET , while unresolved

trees are trees T with fewer than 2p − 1 edges and containing internal vertices of degree four or higher.

The vector LT ∈ R2p−1
>0 stores lengths of edges in ET . Thus every tree has an edge of positive length

connected to the root and p leaf edges of positive length.

Split and compatibility. The topology of a tree T is characterized in the connectivity between its

internal edges in EI
T , encoded in the set of partitions into two of L = {0, 1, . . . , p} called splits pertaining

to each internal edge in EI
T . Precisely, each edge e ∈ EI

T uniquely determines a split L = A ∪ Ac upon

its removal from a tree T , where A contains leaves on the descendant subtree of e and its complement

Ac = L−A contains the rest of the leaves; thus the edge emanating from the root 0 determines the split

L = {0} ∪ {1, . . . , p}. Denote by eA the corresponding edge with length |eA|. For example, eL\{0} is the

root edge, and |eL\{0}| is the root edge length. The set A ⊂ L identifies a split L = A ∪ Ac, and we use

split to refer to A or the edge eA interchangeably; context will disambiguate the two.

Arbitrary collections of splits do not characterize a valid tree topology, but only a collection of com-

patible ones do: two distinct edges eA1
and eA2

are compatible if exactly one of A1∩A2, A1∩Ac
2, A

c
1∩A2

from the associated splits is empty set (Semple et al., 2003, Theorem 3.1.4)(upon noting Ac
1 ∩Ac

2 always
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Figure 1: Three examples for demonstrating the compatibility of internal edge sets for p = 4 with the corre-

sponding tree topology. Two compatible sets are shown in Panel (A) and (B) with the concordant tree topology.

Panel (C) exhibits incompatible edge set that characterizes no tree topology.

contains the root); identical edges are by default compatible. Again, we interchangeably refer to compat-

ibility of splits A1 and A2 to sometimes mean compatibility of the edges eA1
and eA2

, and this extends

to a collection {A1, . . . , Ak} of subsets of L, e.g., we say {eA1
, eA2

} is compatible with {eA3
, eA4

} if any

edge from the first set and any edge from the second set are compatible. Leaf edges eA ∈ EL
T , including

the one from the root, associated with singleton splits A ⊂ L are compatible with all internal edges in

EI
T , and thus do not contribute to the topology of T . A compatible edge set ET thus fully characterizes

the topology of a tree T . There are (2p − 3)!! distinct topologies on fully resolved trees on p + 1 leaves

where the root is a leaf node labeled 0.

Three internal edge sets with p = 4 are shown in Figure 1. Panel (A) and (B) demonstrate two

compatible internal edge sets. Two trees with different topology are characterized based on the corre-

sponding compatible internal edge set. Contrarily, Panel (C) shows an incompatible edge set for none

of the intersect is empty ({1, 2, 3} ∪ {1, 4}, {0, 4} ∪ {1, 4}, {1, 2, 3} ∪ {0, 2, 3} and {0, 4} ∪ {0, 2, 3}), which
implies no tree topology can be characterized by the edge set.

Geometry of BHV space. The BHV space T I
p+1 parameterizes the space of such rooted, labeled,

resolved and unresolved trees T on p + 1 leaves and prescribes a continuous geometry based on the

lengths |eA| of internal edges eA ∈ EI
T , where A is associated with a split of L. A fully resolved topology

is parameterized by Rp−2
>0 , where each axis corresponds to one of the p−2 internal splits that characterize

the topology and the coordinates encode the corresponding lengths of the internal edges. The boundary

of Rp−2
>0 consists of unresolved trees with internal nodes of degree greater than 3, obtained by shrinking

the internal edges to zero. Each of the (2p − 3)!! topologies is identified with a copy of Rp−2
≥0 , known as

an orthant, and the BHV space T I
p+1 is defined by the (2p− 3)!! orthants glued isometrically along their

common boundaries comprising unresolved trees. Panel (A) of Figure 3 illustrates that two neighboring

orthants share a common edge in T I
5 . By accounting for lengths of p + 1 leaf edges, space of rooted,

labeled trees on p+ 1 leaves is the product space

Tp+1 = T I
p+1 × Rp+1

>0 ,

where we do not allow for zero-length leaf edges. A tree T is thus characterized by the pair (ET ,LT ) of

a compatible edge set and vector of edge lengths. The (common) origin in the BHV space T I
p+1 consists
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of trees with p+ 1 leaf edges of positive lengths and no internal edges.

The distance dBHV(T1, T2) between two trees T1 and T2 on p+ 1 leaves is defined to be the infimum

of lengths of paths between T1 and T2 in T I
p+1, which are straight lines within each orthant. It is known

that the space (T I
p , dBHV) is a geodesic metric space (Billera et al., 2001). A natural distance metric on

Tp+1 then is

dtree(T1, T2) := dBHV(T1, T2) + ∥x− y∥2,

where x, y ∈ Rp+1
>0 are the vectors of leaf edge lengths in T1 and T2, respectively.

3 An intrinsic stratified geometry of ultrametric matrices

Armed with the requisite constructs from the BHV space, we present a key result that equips the set Up

of strictly ultrametric matrices with a convenient geometry for statistical modelling.

Theorem 1. There is a homeomorphism Φ : Up → Tp+1 such that when quipped with the metric

d(ΣT
1 ,Σ

T
2 ) := dtree(Φ(Σ

T
1 ),Φ(Σ

T
2 )), (3)

the space (Up, d) is a CAT(0) stratified geodesic metric space.

Remark 1. An important consequence of the bijection Φ is that the preimage of every tree in Tp+1,

including those on the boundary with one or more internal edges of zero length, is a positive definite

strictly ultrametric matrix (see Lemma 1 in the Appendix). It is possible to establish a similar bijection

between the larger set U∗
p , containing positive semi-definite ultrametric matrices, and a suitably modified

Tp+1, but we focus on Up in this work.

Let Ψ := Φ−1 be the inverse of Φ. Theorem 1 enables us to pullback the CAT(0) geometry from

the tree space Tp+1 onto the set Up of ultrametric matrices using Ψ. CAT(0) spaces are spaces with

non-positive curvature in the Alexandrov sense, and corresponding geometry equips Up with following

properties that are particularly important in the sequel:

(i) There is a unique geodesic between any two ultrametric matrices that lies within Up, which enables

us to develop a sampling algorithm that makes intrinsic local moves along straight lines in Up;

(ii) Fréchet means of probability measures exist and are unique; this enables computation of an estimate

of the posterior mean using samples from the posterior distribution on Up.

For details on CAT(0) spaces, we refer to Bridson and Haefilger (1999). Additionally, the CAT(0)

structure of Up opens up the possibility of using the plethora of statistical tools for the BHV space T I
p+1

(e.g., means and variances (Brown and Owen, 2020), principal component analysis (Nye, 2011)) and

transfer results on to Up with Ψ; most relevant to our work is computation of the geodesic distance d on

Up using the polynomial-time algorithm for computing dBHV on T I
p+1 (Owen and Provan, 2011) and fast

computation of the Fréchet mean (Miller et al., 2015).

The proof of Theorem 1 uses the decomposition of ΣT in (2) to provide a constructive definition of Φ

as

Φ(ΣT ) = (ΦV (V ),ΦD(D)), ΣT ∈ Up, (4)
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based on V 7→ ΦV (V ) = ET that maps a V with the partition property to a compatible edge set ET
and D 7→ ΦD(D) = LT that maps D to a vector LT ∈ R2p−1

>0 . An algorithmic definition of Φ can be

obtained upon observing a key property of strictly ultrametric matrices in Up that can be gleaned from

an alternative decomposition to (2) obtained by the inverse Ψ of Φ in the following result.

Corollary 1. For every edge eA in a collection ET of compatible edges/splits corresponding to a tree

T , there is a unique p × p symmetric binary matrix EA containing ones at all pairs of indices obtained

from A (the set of leaves on the descendent subtree of the edge eA) and zeros elsewhere, such that the

ultrametric matrix ΣT can be expressed in coordinates (ET ,LT ) via the decomposition

ΣT = Ψ((ET ,LT )) :=
∑

eA∈ET

|eA|EA . (5)

The topology of T is characterized through the pattern of zeroes in the matrix

Σ̃T := ΣT − |eL\{0}|11T ,

where eL\{0} represents the root edge.

From the above Corollary, we observe that Ψ can be expressed component-wise such that ΨV (ET ) =
{EA} and ΨD(LT ) = (|eA|, . . . , |eA2p−1

|)T, from which the corresponding basis matrix V with partition

property and D are uniquely obtained. Proof of the decomposition (5) follows from the proof of Theorem

1. The claim concerning topology of T is proved upon noting that an element ΣT
ij of ΣT is additive with

respect to the sequence of edge lengths from the root to the most recent common ancestor of leaves i and

j, and this ensures that |eL\{0}| is the smallest possible value in ΣT . In fact, the topology of not just T

but also any of its subtrees TA, A ⊂ L is encoded in the pattern of zeros of ΣTA − |eA\{0}|1A1
T
A, where

ΣTA is the ultrametric matrix corresponding to the tree TA and 1A is the vector of ones of dimension

|A|. This is evident from the role of the rank-one binary matrices in the decomposition (5).

Returning to how Φ works on ΣT , consider the following procedure. Given ΣT , compute Σ̃T , whose

zero entries divide it into multiple submatrices representing different subtrees. Recursively, repeat this

process on each submatrix until all submatrices reduce to either 2 × 2 diagonal matrix or a scalar,

corresponding, respectively, to two leaves or a single leaf of T . At each stage of the recursion, add to the

resulting submatrix a matrix of ones of appropriate dimension scaled by the minimum value that was

subtracted. This value is the length of the edge emanating from the root of the corresponding subtree.

The map Φ reduces to ΦV when every coefficient in the decomposition (5) is set to one and T reduces to

a combinatorial tree with unit edge lengths. In this case the smallest element in ΣT is necessarily one.

Figure 2 illustrates how Φ works on a five-dimensional ΣT . Given ΣT in Panel (A), we compute Σ̃T

with the minimum element c0, which corresponds to the single edge from the root with the edge length

c0. The resulting Σ̃T is divided by zero elements into two submatrices in blue and yellow boxes. These

submatrices represents corresponding descendant subtrees shown in blue and yellow triangle in Panel

(A). For each submatrix, we repeat the same process until all submatrices reduce to either 2× 2 diagonal

matrix or a scalar. Consequently, Panel (B) and (C) represent the result of using the same process for

two submatrices from (A). Specifically, blue triangle in (A) becomes a subtree with the single edge with

length a, which is the minimum element in the submatrix highlighted by blue box in (A). Similarly, Panel
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(C) resolves the yellow triangle into a subtree with the single edge of length b, which is the minimum

element of the submatrix in yellow box in (A). The same process is repeated and results in the whole

tree in Panel (D).

Figure 2: Panels (A)-(D) demonstrate how Φ maps ΣT ∈ U5 to T ∈ T6: draw an edge of length |eL\{0}| given
by the minimum element of ΣT and compute Σ̃T = ΣT −|eL\{0}|11T. Pattern of zeroes of this matrix determines

subtrees. Repeat this process until all submatrices are of dimension at most two, which then determines the

overall branching structure. Colored triangles in the trees represent subtrees corresponding to subsets of leaves.

Remark 2. The representation (5) provides a complementary formulation to that in equation (7) of

Sturmfels et al. (2021), and matrices {EA} of binary matrices are linearly independent basis vectors

that characterize the uncovered simplicial cone structure of the subset of ultrametric matrices for trees

with a fixed topology within the set of p× p symmetric matrices. Each such collection ET of compatible

edges/splits that identifies one of (2p − 3)!! possible tree topologies determines a unique basis {EA} of

rank-one binary matrices that are the extremal rays of the simplicial cone within the set of p×p symmetric

matrices.

Remark 3. From Corollary 1, we note that the presence of a matrix of ones corresponding to the edge

eL\{0} attached to the root 0 ensures that ΣT does not contain any zeroes. Since zero covariance between

Gaussian random variables implies independence, the absence of zeroes is a desideratum when using a

parametric Gaussian model {Np(0,Σ
T ) : ΣT ∈ Up} for modelling hierarchically correlated components

of a random vector. This further explains consideration of the root labeled by 0 as a leaf node. For

covariance graph models (e.g., Dawid and Lauritzen, 1993; Letac and Massam, 2007), where the graph

is a tree and zeroes of the covariance matrix determine the corresponding graph, it is more convenient

to consider trees with p leaves and (2p− 2) edges, where there is no single edge connecting the root; this

results in the ultrametric matrix Σ̃T whose pattern of zeroes encodes the graph.

For every ΣT , the image Φ(ΣT ) is a tree with p + 1 leaves (including the edge attached to the root

0), each with non-zero edge lengths. The tree consists of (p− 2) internal edges, some of which may be of

length zero. The preimage Ψ(T ) of every tree T ∈ Tp+1 is a positive definite strictly ultrametric matrix

in Up. The preimage of each of the (2p− 3)!! orthants of dimension (2p− 1) in Tp+1 is in Up and forms a

simplicial cone within Sp. The simplical cone is spanned by rank-one basis matrices {EA} corresponding

to a collection ET of compatible splits. Each of these simplicial cones is referred to as a stratum of Up.

The subset of (p − 2) internal splits identifies a stratum within Up and maps via Φ to the orthant in
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the BHV space T I
p+1 pertaining to the topology of T . This is achieved by noting that the set of (p − 2)

internal splits is a subset of ET , determining (p− 2) binary matrices within the collection of p× p binary

matrices {EA : eA ∈ ET } corresponding to the internal edges. Of the remaining p + 1 binary matrices

within {EA}, there is a single matrix of ones corresponding to the edge emanating from the root and the

rest contains a single non-zero entry on the diagonal. Together, they represent the (p+ 1)-axes in Rp+1
>0

that identify splits associated with the leaf edges in Tp+1.

Consequently, the ultrametric matrix Ψ(T ) =
∑

eA∈ET
|eA|EA is located within a stratum identified

by {EA : eA ∈ ET } coordinatized by the point (|eA|, . . . , |e2p−1|)T in R2p−1. Figure 3 illustrates the

decomposition of an ultrametric matrix ΣT in U4 with corresponding tree T ∈ T5 and a compatible edge

set ET = {e123, e23, e1, e2, e3, e4}. An ultrametric matrix Ψ(T ) corresponding to a fully resolved tree T

Figure 3: Bijection between the tree space T5 and the space U4 of ultrametric spaces in Theorem 1 and the

corresponding decomposition in Corollary 1: Panel (A) shows the BHV tree space T I
5 with axes identified with

two compatible internal splits; Panel (B) shows how a rooted labeled tree in T5 uniquely identifies an ultrametric

matrix ΣT in U4.

lies in the interior of one of the (2p− 3)!! strata of dimension (2p− 1) coordinatized by Rp−2
>0 × Rp+1

>0 . If

T is unresolved with a single node of degree four, Ψ(T ) lies within the (2p − 2)-dimensional boundary

of a stratum reached by shrinking a coefficient |eA| corresponding to an internal edge eA ∈ EI
T to zero

in the decomposition (5). Ultrametric matrices on the boundary of codimension s ≥ 1, corresponding to

unresolved trees with p− 2− s internal nodes, are obtained by shrinking s coefficients corresponding to

the internal edges in (5) to zero.

There are clearly many paths from the interior of a stratum to a codimension s ≥ 1 boundary of Up;

in other words, there are many copies of Uq within Up for q < p. Moreover, an ultrametric matrix in Uq

on the boundary is still positive definite and full rank. It is then natural to query: How do ultrametric

matrices on the boundaries ‘look’? Are they sparser in some appropriate sense to those in the interior?

To answer this in a relative sense, note that boundaries in the BHV space are identified (glued) isomet-

rically along their common faces. Pulling this structure back onto Up engenders a similar identification

of the boundaries of Up. With vec : Rp×p → Rp2

as the vectorization map, consider the half-vectorisation

map vech(x) := Avec(x), where the matrix

A :=
∑
i≥j

(uij ⊗ eTj ⊗ eTi ) ∈ Rp(p+1)/2×p2

picks out the lower triangular part of the vectorization, {ej} is the standard basis in Rp2

, and uij is a

p(p+1)/2-dimensional unit vector with 1 in position (j − 1)p+ i− j(j − 1)/2 and 0 elsewhere. Consider
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a partial order ⪯ on Up defined as A ⪯ B if vech(A) ≤ vech(B), and x ≤ y on Rp(p+1)/2 if every element

of x is utmost its corresponding element in y.

Proposition 1. For 1 < k ≤ (p− 2), an ultrametric matrix ΣT on a (2p− 1− k)-dimensional boundary

can be reached along geodesics from distinct ultrametric matrices lying in the interior of (2k+ 1)!! strata

such that ΣT is smaller with respect to ⪯ to each of the (2k + 1)!! ultrametric matrices. Here (2k + 1)!!

is the number of binary trees with k + 2 leaves.

From Proposition 1, we note that each codimension one boundary of Up is thus obtained by gluing,

or identifying, three distinct codimension one boundaries of Rp−2
≥0 × Rp+1

>0 pertaining to the first factor,

which coordinatize three different tree topologies. This structure plays an important role in development

of sampling algorithms for inference in the sequel. For I = {1, . . . , (2p− 3)!!}, we introduce the notation

Up =
⋃
i∈I

U i
p

to represent Up as a disjoint union of (2p− 3)!! spaces U i
p = Rp−2

≥0 ×Rp+1
>0 , i ∈ I with common boundaries

glued as described above. The origin common to each stratum U i
p consists of matrices of the form

α(11T − Ip) + D, where α > 0 and D is a diagonal matrix with entries dii > α, which as discussed in

Remark 1 is positive definite and strictly ultrametric.

Recall that, by virtue of the definition, no matrix ΣT ∈ Up has a zero, but every matrix Σ̃T =

ΣT − |eL\{0}|11T does, whose pattern determines topology of the corresponding tree T . The following

result states that matrices Σ̃T get sparser, in terms of number of zeroes, with increasing codimension of

boundaries of Up. Proof follows from that of Proposition 1.

Corollary 2. An ultrametric matrix on a stratum of dimension j is smaller with respect to ⪯ than any

other on a stratum of dimension k, where j < k.

From the decomposition of ΣT in Corollary 1, we thus note that sparsity of Σ̃T is controlled by the

number of non-zero coefficients in LT , and Corollary 2 implies that the (co)dimension of the boundary

component Σ̃T lies in quantifies the level of sparsity of Σ̃T .

Remark 4. Coefficients in the sum (5) are lengths of edges in the set ET of edges given by compatible

splits of L. There are a total of N = 2p − 2 possible nonempty splits of L of which N − p correspond

to the internal edges. Thus, using Φ, the set Up can be given extrinsic coordinates via an embedding of

Tp+1 into RN−p where each set {|eA|, eA ∈ ET } of edge lengths can be identified with a vector in RN−p,

obtained upon choosing an ordering of the N − p splits; the jth split is associated with the jth standard

basis vector consisting of a one in the jth position and zero everywhere else. Such an embedding results

in an alternative representation of ΣT as very sparse vector in RN−p, since only a small subset of vectors

correspond to compatible splits. The geometric picture of Up hence obtained with such an embedding is

not transparent.

4 Prior distributions on ultrametric matrices

From Theorem 1 and Corollary 1, we note that an ultrametric matrix ΣT ∈ Up can be given coordinates

(ET ,LT ) corresponding to the tree T via Ψ . We can thus define a prior distribution on Up pushing forward
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one on Tp+1 under Ψ. Consider the product measure dη := dNdx, where dN is the counting measure on

N := {0} ∪ {1, 2, . . .} and dx is the Lebesgue measure on R2p−1
>0 . Consider the probability distribution

µ = πdη on Tp+1 with density π := πE πL|E that factors into a density πE on sets of compatible splits and

a density πL|E on edge lengths conditional on the splits; π can always be chosen to be a valid probability

density since
∫
Tp+1

πdη < ∞ by the CAT(0) property of Tp+1. Define the distribution

ν(A) = µ ◦ Φ(A), A ⊂ Up,

on Up. The distribution ν need not be absolutely continuous with respect to µ and may hence not have

a density. Under this setup, we specify a prior distribution ν by first doing so on Tp+1 via the density π.

The density πE can be specified to have mass on resolved trees in the interior and unresolved trees on

the boundaries of Tp+1. For the former, we can consider a binary fragmentation model based on a rule

for recursively splitting ET into two blocks such that

πE(ET ) =
∏

eA,eB∈ET

πsplit(eA, eB | eA∪B), (6)

where πsplit(eA, eB | eA∪B) is a symmetric function that captures the chance of a block A ∪ B splitting

into two blocks of A and B. The model is rendered Markovian if πsplit depends only on the sizes of

blocks A and B, and is consistent when the distribution πE when restricted to subtrees of T is the same

as that of a tree that equals the subtree. Berestycki and Pitman (2007) considered a time-irreversible

Markovian fragmentation process in order to define the splitting function πsplit, while Pitman (2006)

defined a Gibbs-type alternative which defines πsplit as a product of weights that depend only on the

size of sub-blocks. For such a Gibbs-type alternative, Theorem 2 of McCullagh et al. (2008) showed that

the beta-splitting model of Aldous (1996) is the only one that results in a consistent Markovian binary

fragmentation-based prior πE on topology. The beta-splitting model prescribes the specification

πsplit(eA, eB | eA∪B) ∝
Γ(nA + β + 1)Γ(nB + β + 1)

Γ(nA + nB + 2β + 2)
, (7)

where nA is the cardinality of the set A and β ∈ (−2,∞] is the hyper-parameter. The consistency here

refers to when πE remains the same when restricted to subtrees TA, A ⊂ L. The Markov property of

πE implies that if for a fixed partition {A1, . . . , Ak} of L, the k subtrees restricted to A1, . . . , Ak are

independently distributed as πETA1
, . . . , πETAk

. For example, β = −1.5 leads to the uniform density
1

(2p−3)!! on topology, while β = 0 corresponds to the Yule model (Yule, 1925). For unresolved non-binary

trees on the boundary of Up, a Poisson-Dirichlet model based on multifarcating Gibbs fragmentations

can be used to define a consistent Markovian prior πE (McCullagh et al., 2008, Theorem 8).

For simplicity, we decouple the density specifications for ET and LT and thus consider options for the

choice of density πL. If the density is to have support only on fully resolved trees, several options are

available for the prior, including products of (2p−1) one-dimensional densities on R>0. For a specification

with mass on the boundary of Tp+1 corresponding to unresolved trees with zero edge lengths, the Lebesgue

component dx of the dominating measure dµ can be chosen to be a mixture of appropriate lower-

dimensional Lebesgue measures with disjoint supports such that πL will be mixture density consisting of

individual components with disjoint supports.
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Summarily, the decomposition in Corollary 1, made possible by the geometry inherited from Tp+1,

enables definition of prior distributions separately or jointly on the graph structure and the corresponding

edge lengths encoded by ΣT , as interpreted through the corresponding tree T . Moreover, the homeomor-

phic property of Φ ensures that we are able to define a prior on ΣT that inherits the attractive Markov and

consistency properties of the tractable binary fragmentation prior on the combinatorial tree T without

edge lengths.

5 Posterior inference under a Gaussian latent tree model

We focus on the Gaussian latent tree model
{
Np(0,Σ

T ) : ΣT ∈ Up

}
for multivariate data where correla-

tions between components of a random vector is modeled through a tree T . The model is a special case

of covariance graph models (Cox and Wermuth, 1993) in that a tree is a type of graph, and has received

considerable attention (e.g., Choi et al., 2011; Shiers et al., 2016; Zwiernik, 2016; Leung and Drton, 2018),

however, mostly restricted to estimation strategies. Our formulation of the Gaussian latent tree model

differs from existing works in that the ultrametric covariance ΣT we consider does not contain any zeros

owing to the presence of an edge from the root.

Using the prior distribution from Section 4, we consider the following Bayesian model:

X1, . . . ,Xn |ΣT i.i.d.∼ Np(0,Σ
T );

ΣT ∼ ν,

where ν = µ ◦ Φ = πdη ◦ Φ. The density π is chosen with πE corresponding to the density from a

binary Gibbs fragmentation model with β = −1.5, and πL|E = πL such that the priors on topology and

edge lengths are independent; πL is taken to to be a product of (2p − 1) one-dimensional exponential

densities Exp(a) with a common mean a. Our choice implies that π(∂Tp+1) = 0 so that there is no

mass on the boundary of Tp+1. Extensions to non-Gaussian likelihoods (e.g., multivariate t-distribution

and elliptical distributions) and presence of additional parameters (e.g., mean), can be carried out along

similar lines once the advantages in the geometry-driven approach to sampling for the Gaussian case is

well-understood.

The homeomorphism Φ in Theorem 1 enables us to consider the equivalent reparameterised model

X1, . . . ,Xn |Ψ(T )
i.i.d.∼ Np(0,Ψ(T )); (8)

T ∼ µ ,

which is the model we use in what follows. The relatively simple choice for µ on Tp+1 is chosen to clearly

demonstrate benefits of the stratified geometric structure of Up for developing an efficient sampler for

the posterior distribution ν(·|X1, . . . ,Xn) on Up corresponding to the consistent and Markovian prior ν.

Sampling schemes that allow for moves between boundary components of varying codimensions within Up

can get quite complicated, and will obfuscate the main benefits of incorporating geometric information

into the scheme. However, the geometric framework does allow for exploration of the boundary of Up for

certain applications, and we will take this up in future work.
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5.1 Metropolis-Hastings algorithm

Denote by ΣT(l) = Ψ(T(l)) ∈ Up the lth iterate of an algorithm to sample from the posterior distribution

ν(ΣT |X1, . . . ,Xn). More generally, an (l) in either the subscript or superscript of any quantity is used

to denote its value at the lth iteration. An algebraic approach to explore Up involves exploiting the

semigroup structure of Up under the operation of taking element-wise minimum (McCullagh, 2006): the

matrix ΣT1 ∧ΣT2 obtained by taking element-wise minimum of corresponding elements of two ultrametric

matrices ΣT1 and ΣT2 is again ultrametric, and this can be used to propose a new ultrametric matrix

ΣT(l+1) by computing ΣT(l) ∧ ΣT , where ΣT is a sample from the prior ν. However, it may happen that

the resulting matrix lies on the boundary of Up, where the chosen prior π has no mass.

An alternative is to exploit the fact that Up is closed under the action PΣTPT of any p×p permutation

matrix P (McCullagh, 2006), and one can propose ΣT(l+1) = PΣT(l)PT for a random permutation P .

While such updates ensure that one stays within Up, there is no control over the topological component,

and moves may result in large jumps across strata in Up.

Specification of the density π on Tp+1 was facilitated by the decomposition (5) of an ultrametric

metric into its constituent topological component {EA} of binary matrices which encode information of

the set of compatible splits ET , and geometric component LT consisting of edge lengths. From Theorem

1, since Up is a geodesic metric space with respect to the pullback geometry under Φ, it is possible to

design a sampling scheme that makes moves along geodesics in Up. However, since Up contains (2p− 3)!!

strata glued along their common boundaries, speed of mixing of the algorithm will highly depend on the

probability of ΣT(l+1) = Ψ(T(l+1)) possessing a topology different from that of ΣT(l) .

Our approach is based on an algorithm that makes a local move from ΣT(l) along a geodesic in Up that

is informed by the map Φ. Such a move might involve change in topology and/or edge lengths, where

‘locality’ is determined the distance from ΣT(l) along a geodesic. More precisely, suppose that the current

iterate ΣT(l) lies in stratum U i
p for some i:

(i) Compute Φ(ΣT(l)) = (ET(l)
,LT(l)

), and determine the orthant of Tp+1 the tree T(l) lies in;

(ii) Randomly choose an internal edge/split eA ∈ EI
T(l)

and set |eA| = 0 so that T(l) now lies on a

codimension one boundary of Tp+1; identify, via the corresponding changes to ET(l)
, the two nearest

neighbours, distinct orthants j and k of Tp+1 with j ̸= i and k ̸= i, of T(l) (there exist two and only

two neighboring orthants distinct from the one where T(l) lies; see Proposition 1 with k = 1);

(iii) Randomly choose between orthants j or k of Tp+1 to decide on the updated topology ET(l+1)
of

T(l+1);

(iv) Update LT(l)
to LT(l+1)

to obtain T(l+1) = (ET(l+1)
,LT(l+1)

);

(v) Compute Ψ(T(l+1)) = ΣT(l+1) .

Summarily, the update ΣT(l+1) is obtained from ΣT(l) by implementing a nearest neighbour interchange

along a geodesic that starts in stratum U i
p and ends in stratum U j

p with i ̸= j by passing through the

codimension one boundary shared by the two strata. If the topology update in steps (ii) and (iii) is re-

jected, then a local move constitutes moving along a geodesic within the same orthant by merely updating
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edge lengths. This is the benefit of endowing Up with a continuous BHV geometry of combinatorial trees

with edge lengths. The motivation behind making a mandatory change in topology (which indeed can

be rejected) is to make many computationally cheap local moves over a large number of iterations rather

than a few computationally expensive moves, resulting in better exploration of the space of rooted trees.

To illustrate the local moves, we detail the update step in the space T5 of four-leaf trees in Figure

4. Given a tree T(l) with four leaves at the lth iteration, we propose a candidate via a geodesic move

from T(l) to T 1
cand,(l+1) with every matrix on the path being ultrametric; this is highlighted by a path (red

dashed line) in panel (F). Five matrices in U4 on the geodesic path from T(l) to T 1
cand,(l+1) are shown in

panels (A)-(E). Our algorithm is an adaptation of the random walk algorithm on the BHV space T I
p+1 by

Figure 4: Updating topology in T I
5 using Algorithm 1: Given tree T(l) at the lth iteration in orthant i, the

proposal function randomly shrinks an internal edge and moves to an intermediate unresolved tree T̃ 2
(l) on a

codimension one boundary common to two other distinct orthants j and k with two candidate trees T 1
cand,(l+1)

and T 2
cand,(l+1), one of which is chosen with equal probability, and reached by following geodesics (red and black

dashed lines) from T(l). Panels (A)-(E) show three ultrametric matrices along the geodesic connecting Ψ(T(l)) to

candidate Ψ(T 1
cand,(l+1)) (red dashed line).

Nye (2020), where there is an equal chance to change or remain within an orthant. The objective in their

work was to construct a Brownian motion on T I
p+1 as the limit of a geodesic random walk, and as such

may lead to a slower mixing of a Markov chain to sample from the posterior owing to the rather large

probability of not changing topology within an update; see Section S1.2 of the Supplementary Material

for evidence of this.

The ability to make local geometry-driven moves on Up leads to a geometric Metropolis-Hastings

algorithm that explores Up via the image of an exploration of Tp+1 under Ψ, where two acceptance prob-

abilities, both under the reparameterised Bayesian model (8), corresponding to the decoupled topology

and edge length updates are computed to first update the topology and then the edge lengths. The

acceptance probability is

max

{
1,

π(T ′)Np(0,Ψ(T ′))q(T | T ′)

π(T )Np(0,Ψ(T ))q(T ′ | T )

}
, (9)
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where q(· | ·) is a transition kernel on Tp+1, applies to updates of both ET and LT with suitable changes

to π and q. When updating ET for a fixed LT , the transition kernel q is symmetric since because of

the uniform probabilities assigned to first choosing an an internal edge to shrink to zero, and second in

choosing a new orthant to move to from the codimension one boundary. This implies that (9) reduces to

αE := max

{
1,

πE(E ′
T )Np(0,Ψ(T ′))

πE(ET )Np(0,Ψ(T ))

}
. (10)

where πE(ET ) is the density is defined in (6). For updating an edge length |eA| ∈ LT , for a fixed ET ,
evidently,

αL := max

{
1,

Exp(|e′A|; a)Np(0,Ψ(T ′))TN(0,∞)(|eA|; |e′A|, σL)

Exp(|eA|; a)Np(0,Ψ(T ))TN(0,∞)(|e′A|; |eA|, σL)

}
, (11)

where Exp(·; a) is the exponential density with mean parameter a, and the transition kernel q is taken

to be TN(0,∞)(·;µ, σL), the truncated normal density on (0,∞) with mean µ and standard deviation σL.

The Metropolis-Hastings algorithm is summarized in Algorithm 1.

5.2 Posterior summaries

Algorithm 1 outputs posterior samples of ΣT(l) , l = 1, . . . ,M , from the posterior distribution ν(ΣT |X1, . . . ,Xn).

We consider estimates of two functionals of ν(ΣT |X1, . . . ,Xn): (i) the maximum aposteriori (MAP) ul-

trametric matrix; (ii) Fréchet mean of ν(ΣT |X1, . . . ,Xn) defined as a minimizer of

Ψ(T̃ ) 7→
∫

d2(Ψ(T ),Ψ(T̃ )) dµ(Ψ(T )|X1, . . . ,Xn) (12)

under the reparameterised model (8). Existence of the Fréchet mean minimising the above functional

depends on the support of the posterior distribution; when it exists, it will be unique owing to the

inherited CAT(0) geometry of Up. On Tp+1, the sample Fréchet mean T̃ , obtained by minimising

Tp+1 ∋ T̃ 7→
M∑
l=1

d2tree(T̃ , T(l))

with respect to the empirical measure on trees {T(l)}, exists and is unique owing to the CAT(0) geometry

of Tp+1 (Bridson and Haefilger, 1999). From Theorem 1, we thus note that Ψ(T̃ ) estimates the Fréchet

mean of the posterior ν(ΣT |X1, . . . ,Xn), when its exists. On Tp+1, T̃ is a consistent estimator of the

Fréchet mean of µ(T |X1, . . . ,Xn) (Barden et al., 2018), and by continuity of Ψ, Ψ(T̃ ) consistently

estimates the Fréchet mean of ν(ΣT |X1, . . . ,Xn).

The estimate Ψ(T̃ ) is computed using the algorithm by Miller et al. (2015), and accuracy of approxi-

mations is ascertained chiefly with respect to the intrinsic distance d using the polynomial-time algorithm

of Owen and Provan (2011) to compute dtree. Using these tools, we summarise the posterior by quanti-

fying the proportion of subtrees present in ΣT(l) , l = 1, . . . ,M , and construct 95% credible intervals for

each element of the true data generating ultrametric matrix.
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Algorithm 1. Geometry-driven Metropolis-Hastings algorithm for posterior sampling

Input :

(a) Initialization: Current iterate ΣT(l);

(b) Probability densities πE and πL;

(c) Number of iterations M and standard deviation σL.

Output: Samples from posterior distribution ν(ΣT |X1, . . . ,Xn).

for l = 1 to M do

Update topology

1 Compute Φ(ΣT(l)) = (ET(l)
,LT(l)

);

2 Randomly remove a split eA ∈ EI
T (l);

3 Randomly choose an internal split, say eB, between two splits {eA′, eA′′} different

from eA that are compatible with EI
T(l)

\ {eA} (Proposition 1 ensures that there

exist two and only two such splits by setting k = 1 with one internal edge eA

shrunk to zero);

4 Set edge length |eB | = |eA|;
5 Compute acceptance rate αE from (10) and generate u ∼ Unif(0, 1);

if u ≤ αE then

Return ET(l+1)
= {eB} ∪ ET(l)

\ {eA};
else

Return the edge set ET(l+1)
= ET(l)

;

Update edge lengths

for eA ∈ ET(l+1)
do

6 Generate the new edge length |e′A| from TN(0,∞)(eA, σL);

7 Compute acceptance rate αL from (11) and generate u ∼ Unif(0, 1);

if u ≤ αL then

Update |eA|=|e′A| and return LT(l+1)
= {|e′A|} ∪ LT(l)

\ {|eA|};
else

Return LT(l+1)
= LT(l)

;

Return ΣT(l+1) = Ψ(T(l+1)).

6 Simulation

We empirically demonstrate the utility of the proposed method through a series of simulation studies

and show that the proposed method can restore the underlying ultrametric matrix under different true

data generating mechanisms. By incorporating the geometry of ultrametric matrices, our method enables

inference based on the posterior samples from the MCMC algorithm that makes local geometry-driven

moves across on Up and is robust to mis-specified data generating mechanisms with a heavier tail.

Data generating mechanism. We generate a tree structure of p leaves as the true underlying tree

T 0 and map the true tree structure to an ultrametric matrix of dimension p. Given the true ultrametric

matrix ΣT 0

, we consider three data generating mechanisms of (i) correct specified normal distribution

Xi
i.i.d.∼ N(0,ΣT 0

) and (ii) mis-specified t distribution Xi
i.i.d.∼ tν(0,Σ

T 0

) with degrees of freedom four and
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three (ν = 3 and 4). We generate the data with five different sample sizes of n ∈ {3p, 5p, 10p, 25p, 50p}
and 50 independent independent replicates. In this simulation, we obtain the true tree by the function

rtree from the R package of ape (Emmanuel Paradis, 2012) and map the tree to the true ultrametric

matrix shown in Panel (F) in Figure 5. We consider the dimension of p = 10 due to the intensive

computation requirement for the competing method. (See Supplementary Material Section S1.6.)

We summarize the posterior samples by using the statistics in Section 5.2 in two aspects: (i) un-

certainty quantification via the frequency of splits and element-wise 95% credible interval and (ii) point

estimation with the representative matrices. For the uncertainty quantification, we first focus on the

topology of the matrix of ET = ΦV (V ) and measure the topology recovery in terms of the splits fre-

quency. For each split in posterior matrices, we compute the frequency of the tree topologies in the

posterior samples that contain the true splits. We also investigate the coverage for each element in the

matrix for the element-wise 95% credible interval. To our best knowledge, no existing method can directly

quantify the uncertainty and be considered as the competing method. For the point estimation, we calcu-

late the MAP tree and the mean tree (Miller et al., 2015) as representative trees, map the representative

trees via Ψ(T̄ ), and measure the matrix norm and the distance d of (3) between the true underlying ma-

trix and the estimated matrices from representative trees. We compare the estimated matrices from our

method to Bravo et al. (2009), which formulates the matrix estimation as a mixed-integer programming

(MIP) problem. Under the matrix norm, we also consider the sample covariance which does not preserve

ultrametric property. We assign priors of β = −1.5 as the uniform prior on all topology and independent

exp(1) on the edge lengths. We run the MCMC in Algorithm 1 for 10, 000 iterations and discard the first

9, 000 iterations.

Uncertainty quantification. We quantify the uncertainty for ultrametric matrices by examining split-

wise recovery in Table 1 and element-wise coverage in Figure 5. In Table 1, true splits with the corre-

sponding edge lengths from the underlying true matrix are listed in the first row of Table 1. For each

true split, we calculate the proportion of the posterior samples that contain the true split shown by each

column. The split-wise recovery performs better when the sample size increases for all data generating

mechanisms. For different data generating mechanisms, the correct specified model performs the best

with sample size of n = 50 to ensure around 90% of the posterior samples having correct splits. On

the other hand, to achieve a similar level of 90% split recovery, the mis-specified t-distribution requires

sample size over 100 and 250 for t4 and t3, respectively. Among all splits, we also observe that the

split with a smaller length (|e1,2,4| = 0.231) has the worst recovery (mean recovery of |e1,2,4| is 67.8%

while the recovery for other split are around 90% for correct specified model with n = 50). We present

the results of element-wise coverage of the 95% credible interval for the normal distribution in Figure

5. The results for t-distribution are available in Supplementary Material Section S1. Overall, the esti-

mated coverage are high but slightly lower than the nominal coverage (around 0.75 to 0.94) and is higher

when the sample size increase (medians of the coverage rates for sample size of (30, 50, 100, 250, 500) are

(0.84, 0.78, 0.88, 0.82, 0.90)).

Point estimation. We show the distance from the estimated matrices to the true matrix in Figure 6.

We observe that the matrices mapped from the mean and MAP trees from our method are comparable to
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Table 1: Split-wise recovery for the proposed algorithm with exp(1) prior on the edge lengths under different

sample size, data generating distribution. Each column shows proportion of posterior splits that contains specific

split in the true underlying matrix. The average and the standard deviation of the proportion are obtained from

10, 000 iterations with first 9, 000 iterations discarded over 50 independent replicates.

Sample

Size

Generating

Distribution

1,2,3,4,5,

6,7,8,9
3,5,6,7,8,9 3,5,6,8,9 3,9 5,6,8 5,6 1,2,4 2,4

True Edge Lengths 0.701 0.872 0.712 0.88 0.878 0.854 0.231 0.869

30

Normal 79.7(23.7) 67.8(28.1) 82.3(20.3) 80.3(22.6) 83.2(22.7) 81.5(20.5) 43.8(27.6) 78.7(26.9)

t4 60.4(35) 72.2(32.6) 70.8(29.6) 55.5(37.8) 65.1(39.4) 68.4(33.1) 37(26.9) 74.2(31.7)

t3 59(38.8) 60.7(36.2) 72.2(30.2) 66.6(38.1) 68.5(36.7) 68(33.8) 42.9(33.7) 67.1(37.7)

50

Normal 86.1(18.8) 90.6(16.6) 94.8(10.1) 87.6(19) 90.5(18.4) 88.5(22) 67.8(25.2) 95(12.8)

t4 78(26.4) 82.8(27.5) 78.7(28) 76.8(30.4) 76.1(31.8) 85.9(23.2) 69.2(30.2) 90.2(22.9)

t3 72.9(31.5) 78.3(32.7) 85.7(23.3) 72.3(36.9) 75.4(37.6) 79.5(32.5) 46.8(36.4) 77.6(32)

100

Normal 95.2(9) 99.6(1) 98.6(4.4) 95.1(11.1) 98.5(4.3) 98.7(4.5) 87.2(17.9) 99.9(0.3)

t4 88.5(20) 93.2(18.3) 96.1(13.2) 87.5(23.8) 90(25.3) 95.2(13.9) 74.7(34.5) 93.2(23.9)

t3 71.4(37.3) 80.4(37.4) 80.9(37) 75.9(38.9) 76.1(39.5) 87.3(30.4) 62.8(40.8) 83.2(35)

250

Normal 99.6(3) 100(0.1) 100(0) 99.9(0.3) 100(0) 100(0) 98.3(6.4) 100(0)

t4 95.7(17.4) 100(0.1) 99.5(3.1) 98.9(6.7) 100(0.1) 97.9(14.1) 89.7(20.3) 100(0)

t3 79.3(38) 90.4(26.1) 89.6(29.6) 90.7(28.5) 87.8(31.3) 93.2(23.5) 86.8(30.3) 93(24)

500

Normal 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)

t4 100(0) 98.1(13.4) 100(0) 100(0) 100(0) 100(0) 95.8(16) 100(0)

t3 92.9(24.8) 91.1(26.3) 94.1(23.4) 92.3(26.4) 95.5(19.8) 98(14.1) 88.2(30.6) 98(14.1)

the estimated matrix from Bravo et al. (2009) and sample covariance in terms of matrix norm (Panel (A)

to (C)) and distance d from (3) (Panel (D) to (F)) across different data generating mechanisms and sample

sizes. When the model is correctly specified (Panel (A) and (D)), all methods benefit from the increase

of the sample size with a smaller distance to the true matrix (medians of matrix norm and distance d for

sample sizes of (30, 50, 100, 250, 500) are (6.75, 5.89, 3.91, 2.50, 1.56) and (2.01, 1.53, 0.987, 0.627, 0.435),

respectively). For the mis-specified scenario (Panel (B) and (E) for t4, and (C) and (F) for t3), the

advantage from the larger sample size is moderate (medians of matrix norm and distance d for sample

sizes of (30, 50, 100, 250, 500) are (21.9, 24.6, 25.2, 23.7, 24.8) and (4.97, 4.46, 3.97, 3.25, 3.28) for t4, and

(31.6, 39.5, 42.5, 44.0, 47.5) and (7.00, 6.70, 7.39, 6.10, 6.28) for t3).

We also provide additional results for simulation including (i) convergence diagnostics, (ii) element-

wise coverage for mis-specified t-distribution, (iii) the topology trajectory for the proposed method, and

(iv) the simulation results for the data generated from a underlying tree with the same sum of the edge

lengths from the root the all leaves. Comparing to other methods (e.g. MIP), we also observe that our

proposed MCMC is relative scalable in terms of the number of leaves. Specifically, when the number of

leaves is doubled from p = 10 to p = 20, the time required for MIP is 21.5 times, while it is only 3.5

times for the proposed method. All additional simulation studies are provided in Supplementary Material

Section S1.

In summary, the geometry of the set Up provides three main inferential and computational advantages
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Figure 5: Element-wise coverage rates of the nominal 95% credible intervals for the correctly specified normal

distribution with five different sample sizes. Panel (A) to (E) show the empirical coverage of 95% credible interval

for sample size of 30, 50, 100, 250, and 500. The true underlying covariance is shown in Panel (F).

comparing to existing models: (i) enables the uncertainty quantification on ultrametric matrices along

with the point estimator, (ii) is robust to mis-specified model, and (iii) is computational efficient in terms

of convergence and scalability of number of leaves.

7 Analysis of Treatment Tree in Cancer

We demonstrate the proposed method on a pre-clinical patient-derived xenograft (PDX) data to discover

promising cancer treatments. Due to the impracticality of testing multiple treatments on the same patient,

PDX is a experiment design that evaluates multiple treatments administered to samples from the same

human tumor implanted into genetically identical mice. The mice are then treated as the “avatars”

to mimic potential responses to different treatments. In this analysis, we leverage a PDX dataset of

Novartis Institutes for BioMedical Research - PDX Encyclopedia [NIBR-PDXE, (Gao et al., 2015)] that

has collected over 1, 000 PDX lines across multiple cancers with a 1× 1× 1 design (one animal per PDX

model per treatment).

For our analysis, we focus on cutaneous melanoma, which consists of 14 treatments and 32 PDX

lines. The primary response is the tumor size difference before and after treatment administration,

following the approach by Rashid et al. (2020), with the untreated group as the reference group. Positive

responses indicate that the treatment shrunk the tumor more than the untreated group with a higher

value representing a better efficacy. We assume that treatments with similar mechanism should induce

similar levels of responses, and we aim to construct a tree structure to reveal the mechanism similarity

based on the main responses. We ran our method with 10, 000 iterations and discarded the first 9, 000
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Figure 6: Distances between the estimated matrix and the true matrix under different data generating mechanism

and sample sizes. The mean (red) and MAP (green) from our method is comparable to competing methods (blue

for MIP and purple for sample covariance) in terms of the distance d from (3) ((A) to (C)) and matrix norm (

(D) to (F)).

iterations. The convergence diagnostics of the algorithm are shown in Supplementary Material Section

S2. We summarize the results with the MAP and mean trees and highlight subtrees with the frequency

over 90%.

Figure 7 shows the mean (Panel (A)) and MAP trees (Panel (B)) with subtrees that consistently

appear in the posterior samples. Two subtrees with frequencies higher than 90% are emphasized by

boxes: blue (91%), and yellow (98%). We observe that the MAP and mean trees share many subtrees

with the same topology. For example, the subtrees in the boxes are identical in both the mean and

MAP trees. Additionally, two combination treatments highlighted by blue box form a tight sub-tree that

appears over 90% of posterior samples, indicating a high level of mechanism similarity of two combination

therapies. Two combination therapies consist of two agents, with one agent being encorafenib and

the other targeting one of the following pathways: phosphoinositide 3-kinases (BKM120), and cyclin-

dependent kinases (LEE011). As these pathways are closely related and share common downstream

mechanisms (e.g., Repetto et al., 2018; Kurtzeborn et al., 2019), it is not surprising to see that all

combination therapies form a tight subtree in the tree structure.
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Figure 7: The mean (Panel (A)) and MAP trees (Panel (B)) for the melanoma. Two boxes emphasize the

subtrees with high frequencies (> 90%) in the posterior samples: blue: 91%, and yellow: 98%.

8 Discussion

In this paper, we develop a novel Bayesian framework that allows the inference on ultrametric matrices

that makes local geometry-driven moves along geodesic within the set of ultrametric matrices Up. Lever-

aging the bijection map of the ultrametric matrix and the tree structure, we characterize the geometry

of Up by pulling back the intrinsic stratified geometry of the BHV space onto Up. The homeomorphism

further constructs the decomposition of (5) that represents the ultrametric matrices by coordinates of

BHV space. The “pulling back” also allows Markovian and consistent priors on ultrametric matrices.

By utilizing the geometry of the BHV, we design an algorithm that draws posterior ultrametric matrices

without relaxation or projection, which allows us to summarize the posterior samples through existing

tree modeling tools. In simulation studies, our proposed algorithm produces element-wise credible inter-

vals with nominal coverage rates, while having point estimates comparable with existing projection-based

method in terms of matrix recovery errors. As a byproduct, the posterior samples of the tree topology

also affords direct calculation of the posterior probability of any split as another way of assessing recovery.

We demonstrate our method in a preclinical dataset and discover that subsets of treatments sharing high

mechanism similarities which aligns with existing literature.

The present work considered trees with strictly positive leaf lengths. Choice of the Euclidean distance

on Rp+1
>0 resulted in using the Lebesgue measure dx when defining the prior distribution on Up, via one on

Tp+1. If it is desired for the prior distribution to place negligible mass on trees with infinitesimally small

leaf lengths, one can use a Riemannian volume measure related to an alternative distance arising from

a Riemannian metric on the positive orthant Rp+1
>0 under which trees with leaf lengths zero, or close to

zero, are infinitely far away. An example is the induced Riemannian metric on Rp+1
>0 obtained by pulling

back the standard metric on Rp+1 under the map F (x) = (log x1, . . . , log xp+1)
T:

⟨a, b⟩x =

p+1∑
i=1

aibi
x2
i

,

for two vectors a, b in the tangent space Tx(Rp+1
>0 ). Such a specification would results in a new geometry

on Up, and the proposed inferential framework would need to be suitably modified.

We list five important future directions that may further improve the utility of the proposed method.
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First, in certain contexts, latent tree models for phylogenetic studies assume that trees have edge lengths

proportional to the length of time between speciation events represented by each node. This results in a

sum constraint on the edge lengths from the root to leaves. Geometry of the BHV treespace is unsuitable

for such trees. Suitable modification (e.g., Gavryushkin and Drummond, 2016) that results in a similar

stratified space, to which the current geometric framework can be extended, can be used.

Second, the bijection Φ : Up → Tp+1 may lead to a useful set of coordinates in terms of the matrices

(V,D) for further study of (Tp+1, dtree), especially in simplifying computations presently used on the

popular treespace.

Third, from a modelling perspective, for trees containing a large number of leaves (large p), the prior

construction in Section 4 makes possible development of Bayesian models based on principled variable

selection priors that decouples topology and edge length information on latent trees. For example, spike-

and-slab priors on the coefficients in the representation (5) will allow modelling of sparse representations

of ΣT corresponding to trees T of a fixed topology.

Fourth, it is possible to develop variants of Algorithm 1 that explicitly makes moves to or between

boundary components of positive codimensions. This will extend the utility of the proposed algorithm

for use on latent tree models with non-binary trees. Such algorithms require specifying a prior with full

support on Up, including the boundaries. For example, the two-parameter Poisson-Dirichlet distribution

from a Gibbs fragmentation model (McCullagh et al., 2008) is appropriate in this context.

Finally, a natural extension to the latent tree model is to introduce covariates z through the decom-

position (5) that leads to case-specific ultrametric covariance matrices ΣT (z). A prior distribution using

the construction in Section 4 will assign weights on different tree topologies and edge lengths depending

on z, while its fragmentation process-based definition will allow borrowing of information as z varies. We

leaves these topics for future research.
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Appendix

We need the following Lemma on the ultrametric matrix corresponding to any tree T ∈ Tp+1, including

those on the boundary.

Lemma 1. ΣT corresponding to any tree T ∈ Tp+1 is a positive definite strictly ultrametric matrix.

Proof. The origin {0}×Rp+1
>0 of Tp+1 is the set of trees with a single edge of positive length emanating from

the root 0 and p edges of positive lengths connecting the same parent to p leaves. From decomposition

(2) the ultrametric matrices for such tree are of the form

d111
T +

p∑
i=1

djiuiu
T
i ,
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where {ui, i = 1, . . . , p} is the standard basis vectors in Rp with one in the ith position and zero elsewhere,

and dj1 , . . . , djp is a subsequence from {di} in (2) corresponding to leaf edges. Clearly, such matrices

satisfy property (ii) in Definition 1, and are strictly ultrametric. They are also positive definite. To see

this, note that the second term in the sum gives rise to positive definite diagonal matrices with positive

entries. For such a diagonal matrix W , note that W + d111
T is its rank-one perturbation with scale

d1 > 0, and symmetric. From the Sherman-Morrison formula, |W + d111
T| > 0 since 1 + d11W

−11 > 0

when d1 > 0.

Growing an internal edge to a tree at the origin to move to the boundary component of codimension

(p− 1) translates to the operation

d111
T +

p∑
i=1

djiuiu
T
i + djp+1

vvT,

where v is a binary vector and vvT is of rank 1 (Nabben and Varga, 1994) with djp+1
> 0, on ultrametric

matrices. Using the argument from above, such matrices are positive definite and strictly ultrametric.

Adding additional internal edges amounts to performing repeated rank-one perturbations of a positive

definite matrix with positive djk , k = p+ 2, . . . , 2p− 1, which preserves strict ultrametricity and positive

definiteness.

Proof of Theorem 1

Proof. We prove the result for fully resolved binary trees T and the corresponding strictly ultrametric

matrices ΣT ; the proof for unresolved trees on the boundary of Tp+1 follows along similar lines once

identifications, or gluing, of the common boundaries are accounted for.

We first establish that Φ is a bijection by using the representation ΣT = V DV ⊤ in (2), where

V ∈ {0, 1}p×2p−1 possesses the partition property and D ∈ R(2p−1)×(2p−1) is a diagonal matrix with

positive entries. We then show that Φ is continous with a continuous inverse with respect to the pullback

or quotient topology from Tp+1, which will imply that Φ is indeed a homeomorphism.

Consider two maps V 7→ ΦV (V ) = ET and D 7→ ΦD(D) = LT that, respectively, map a V with

the partition property to a compatible edge set ET and D to a vector in LT
∼= R2p−1

>0 . We note that

ΦD(D) =
∑2p−1

i=1 eTi Deiei, where {ei} is the standard basis in R2p−1.

The map ΦV will be defined implicitly via a construction described below. Note first that the repre-

sentation ΣT = V DV ⊤ decouples V and D, and thus

Φ(ΣT ) = (ΦV (V ),ΦD(D)), ΣT ∈ Up.

For each edge eA associated with a split A define the unique p-dimensional binary vector bA with ones

at indices that are in A and zero for indices in Ac. Arrange the vectors into a p× (2p− 1) binary matrix

B = (bA1 , . . . , bA2p−1)
⊤ corresponding to the (2p − 1) edges in a fully resolved T . In order to relate

the columns of B to those of V possessing the partition property, we use the logical and operator ∧ on

columns of B. In other words, the compatibility criterion that one of A1∩A2, A1∩Ac
2, A

c
1∩A2 associated

with two splits eA1
and eA2

be empty translates to one of bA1
∧ bA2

, b̄A1
∧ bA2

, bA1
∧ b̄A2

equalling the

zero vector 0, where b̄ denotes the negation of b. The construction defines the map ΦV .
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Every column vector v of V maps to an edge of a tree T the matrix ΣT uniquely determines (Dellacherie

et al., 2014, Proposition 3.14), and thus to an edge eA associated with a split L = A ∩ Ac on the leaves

indexed by L = {0, 1 . . . , p} of T . Clearly, every point in LT is the image of some D. Thus to every tree

T ∈ Tp+1 in orthant j there exists an ultrametric matrix ΣT = V DV ⊤ such that V uniquely identifies

stratum j and D the point within it. The maps ΦV and ΦD are surjective, and when combined with

Lemma 1 the map Φ is surjective.

The map ΦD is clearly injective. Injectivity of ΦV is established once it is shown that V , which

encodes topology of a tree T , uniquely determines an edge set ET of compatible splits that identifies an

orthant in Tp+1. From the partition property of V we thus need to prove that any triplet (vi, vj , vk) of

columns vectors in V satisfy vi = vj + vk if and only if there exists a unique triplet (eAi , eAj , eAk
) of

edges/splits in T that are mutually pairwise compatible.

Each column vi of V has ones at component indices corresponding to the set of leaves that are

descendants of edge i, and maps to a column in B, since they are of the same dimension. Owing to the

compatibility condition amongst the edges, such a column in B is then necessarily unique. Every triplet

(vi, vj , vk) of columns in V thus map to a unique triplet (bAi , bAj , bAk
) of columns in B. Then, with ∨ is

the logical or operator, we note that vi = vj + vk if and only if bAi
= bAj

∨ bAk
and bAj

∧ bAk
= 0 while

each of b̄Aj
∧ bAk

, bAj
∧ b̄Ak

does not equal 0, rendering the splits corresponding to the pair (bAj
, bAk

)

compatible. Similarly, bAi
∧ bAj

̸= 0, and only one of b̄Ai
∧ bAj

, bAi
∧ b̄Aj

equals 0, since otherwise

bAi ̸= bAj ∨ bAk
. The splits corresponding to pair (bAi , bAj ) are hence compatible; a similar argument is

used to show compatibility of (bAi , bAk
). This shows that ΦV is injective. Since both ΦD and ΦV are

injective, the map Φ is injective. We have thus established that Φ is bijective with inverse Ψ.

Consider the metric topology on Tp+1 consisting of open sets defined by open balls with respect to

the metric dtree. Define the quotient topology

τUp
= {Ψ(A) : A is open in Tp+1}.

By definition, τUp is a topology of open sets on Up. Φ is bijective and continuous with respect to τUp

since the preimage of an open set is open. It is an open map, since by definition, Φ(U) is open in Tp+1

for every U ∈ τUp
. This implies that Φ is a homeomorphism.

To turn (Tp+1, dBHV) into a geodesic metric space we need to ensure that geodesics in Tp+1 map to

geodesics in Up with respect to the pullback metric d. This is true if it is shown that Up is a length space

with the induced metric d. Define

d̃(ΣT
1 ,Σ

T
2 ) := inf

{
Len(Φ ◦ γ) : a continuous curve γ : [0, 1] → Up, γ(0) = ΣT

1 , γ(1) = ΣT
2

}
;

here Len measures the length of a curve σ : [0, 1] → Tp+1 defined as

Len(σ) := sup

k∑
i=1

dtree(σ(ti−1), σ(ti)),

where the supremum is taken over all k and all sequences t0 ≤ t1 ≤ · · · ≤ tk in [0, 1]. Note the d̃ is indeed

a metric since Tp+1 is Hausdorff. The homeomorphic property of Φ ensures that it is a covering map of

Tp+1 and turns (Up, d̃) into a length space with d̃ = d (Bridson and Haefilger, 1999, Chapter I.3).
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The BHV space (T I
p+1, dBHV) is a CAT(0) space (Billera et al., 2001, Lemma 4.1). The space (Rp+1

>0 , ∥·
∥2) is Euclidean and hence CAT(0), and (Tp+1, dtree) as a product of two CAT(0) spaces is thus CAT(0)

(Bridson and Haefilger, 1999). In addition to being a homeomorphism the map Φ is an (local) isometry

(Bridson and Haefilger, 1999, Proposition 3.25), and we can hence pull back the nonpositive curvature of

Tp+1 onto Up making it globally CAT(0).

Inclusion of the leaf edge lengths ensures that each stratum of Tp+1 can now be identified with the

product Rp−2
≥0 ×Rp+1

>0 , a stratified space with the strata glued isometrically along their shared boundaries

of only the first factor in the product. Then Up is prescribed a stratification under Ψ with the same

(2p− 3)!! number of strata each of the same dimension as that of Tp. The proof is now complete.

Proof of Proposition 1

Proof. On a codimension one boundary, from the decomposition in (5), we note that the unresolved tree

corresponding to Σ̃T is obtained by creating a degree 4 vertex. Starting from such an unresolved tree

there are exactly three possible ways to grow an edge and create a fully resolved tree. This procedure

identifies the three unique ultrametric matrices ΣT
p ,Σ

T
q ,Σ

T
r on three distinct strata p, q, r. The claim

on k-codimensional boundaries follows from the corresponding picture in the BHV space (Billera et al.,

2001). The order inequality on Σ̃T follows upon noting that an element ΣT
ij of ΣT is the sum of edge

lengths from the root to the most recent common ancestor of i and j.
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