
Biometrics DOI: 10.1111/biom.12362

Deductive Derivation and Turing-Computerization of Semiparametric
Efficient Estimation

Constantine E. Frangakis,* Tianchen Qian,** Zhenke Wu,*** and Ivan Diaz****

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.
∗email: cfrangak@jhsph.edu

∗∗email: tqian@jhsph.edu
∗∗∗email: zhwu@jhu.edu
∗∗∗email: idiaz@jhu.edu

Summary. Researchers often seek robust inference for a parameter through semiparametric estimation. Efficient semipara-
metric estimation currently requires theoretical derivation of the efficient influence function (EIF), which can be a challenging
and time-consuming task. If this task can be computerized, it can save dramatic human effort, which can be transferred,
for example, to the design of new studies. Although the EIF is, in principle, a derivative, simple numerical differentiation
to calculate the EIF by a computer masks the EIF’s functional dependence on the parameter of interest. For this reason,
the standard approach to obtaining the EIF relies on the theoretical construction of the space of scores under all possible
parametric submodels. This process currently depends on the correctness of conjectures about these spaces, and the correct
verification of such conjectures. The correct guessing of such conjectures, though successful in some problems, is a nondeduc-
tive process, i.e., is not guaranteed to succeed (e.g., is not computerizable), and the verification of conjectures is generally
susceptible to mistakes. We propose a method that can deductively produce semiparametric locally efficient estimators. The
proposed method is computerizable, meaning that it does not need either conjecturing, or otherwise theoretically deriving the
functional form of the EIF, and is guaranteed to produce the desired estimates even for complex parameters. The method is
demonstrated through an example.
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1. Introduction

The desire for estimation that is robust to model assumptions
has led to a growing literature on semiparametric estimation.
Approximately efficient estimators can be obtained in gen-
eral as the zeros of an approximation to the efficient influence
function (EIF) (Tsiatis, 2007). Semiparametric estimation is
useful, for example, for survival analysis (Cox, 1972), for esti-
mating growth parameters in longitudinal studies (Liang and
Zeger, 1986), and for estimating quantities under missing data
(Robins et al., 1994), including treatment effects based on po-
tential outcomes (Davidian et al., 2005; Crump et al., 2009).
Here, we focus on problems in which the distribution of the
observed data is, in principle, unrestricted, but where estima-
bility requires use of lower dimensional working models.

Theoretical derivation of the EIF in such problems can be
challenging. If this task can be computerized, it can save dra-
matic human effort, which can then be transferred, for exam-
ple, to designing new studies. The EIF for the unrestricted
problem can be written, in general, as a Gateaux derivative
(Hampel, 1974). However, if simple numerical differentiation
is used to calculate the EIF by a computer to avoid theo-
retical derivations, then the EIF’s functional dependence on
the parameter of interest is not revealed. For this reason, the
derivative approach has not been generally used. Instead, the
standard approach to obtaining the EIF is to construct the-
oretically the space of scores under all possible parametric

submodels (Begun et al., 1983). This process currently de-
pends on the correctness of conjectures about these spaces
and the correctness of their verification. The correct guess-
ing of such conjectures can succeed in some problems, but
is a nondeductive process, i.e., is not guaranteed to succeed
(e.g., is not computerizable) and, as with their verification, is
generally susceptible to mistakes.

We propose a method that can deductively produce semi-
parametric locally efficient estimators even for complex pa-
rameters. In Section 2, we formulate the goal of a deductive
method and show that it essentially requires numerical access
to the functional dependence of the EIF on the parameter
of interest. Section 3 shows how the concept of compatibility
solves the functional dependence problem, and derives a de-
ductive method. Throughout, we use the two-phase design as
a test problem where the EIF is known theoretically, and we
demonstrate our method with a study on asthma as an exam-
ple. Section 4 discusses extensions, and Section 5 concludes
with remarks.

2. The Problem of Deductive Computerization
of Semiparametric Estimators

2.1. The Goal of a Deductive Method

Suppose, we conduct a study to measure data Di, i = 1, . . . , n,
independent and identically distributed (iid) from an un-
known distribution F , in order to estimate a root-n estimable
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feature of the distribution

τ(F). (1)

Suppose τ has a nonparametric EIF denoted by φ(Di, F −
τ, τ), where F − τ denotes the remaining components of the
distribution, other than τ. The goal is to find a deductive
method that can derive φ and can compute estimators τ̂ that
solve ∑

i

φ{Di, (F − τ)w, τ} = 0 (2)

after substituting for (F − τ) estimates of a working model
(F − τ)w. Under some regularity conditions, estimators solv-
ing (2) are consistent and locally efficient if the working es-
timators of (F − τ)w are consistent with convergence rates
larger than n1/4 (van der Vaart, 2000). Our specific require-
ment that a method be “deductive and computerizable,”
means that the method should need neither conjecturing for,
nor otherwise theoretically deriving the functional form of φ,
and should be guaranteed to produce an estimate in the sense
of Turing (1937) (i.e., use a discrete and finite set of instruc-
tions, and, for every input, finish in discrete finite steps).

2.2. Conjecturing and Functional Form as Barriers
toward a Deductive Method

2.2.1. A Test Problem: Estimating the Mean in a Two-
Phase Design. To help make arguments concrete, we con-
sider the following example where the EIF is well known. Sup-
pose that in order to estimate the mean τ = E(Y) in a popu-
lation, the researcher first obtains a simple random sample of
individuals and records an easily measured covariate Xi. Then,
the researcher is to measure the main outcome Yi only for a
subset denoted with Ri = 1, where the missing data mecha-
nism is ignorable given X, i.e., pr(Ri = 1 | Yi, Xi) = pr(Ri =
1 | Xi) (Rubin, 1976). The final data Di are (Xi, Ri, YiRi),
i = 1, . . . , n, iid from a distribution F , and, by ignorability,
the parameter τ is identified from F as

τ(F) =
∫

y(x)p(x)dx, (3)

where p(x) is the density of Xi; and y(x) is the conditional
expectation E(Yi | Ri = 1, Xi = x). For this problem, the EIF
is known (e.g., Robins and Rotnitzky (1995) and Hahn (1998))
to be

φ{Di, (F − τ), τ} = Ri · {Yi − y(Xi)}
e(Xi)

+ y(Xi) − τ, (4)

where e(x) is the propensity score of selection into the second
phase, pr(Ri = 1 | Xi = x). The derivation has, so far, been
nondeductive because it is first based on conjectures on the
score space over all submodels, which are then verified to be
true (e.g., Hahn (1998)).

2.2.2. Current Estimation Methods Need the Functional
Form of the EIF. Most existing approaches to using (2) first
isolate a dependence of φ on τ, then replace the remaining

dependence on F with a working model, and finally solve for
τ. For example, in the test problem above, the most com-
mon approach to using (4) to estimate τ first obtains working
functions yw(Xi) and ew(Xi), for example, using parametric
MLEs, and estimates τ as the zero of the empirical sum of
(4), to obtain the following:

τ̂
nonde-
ductive = 1

n

∑
i

Ri · {Yi − yw(Xi)}
ew(Xi)

+ yw(Xi); (5)

See, for example, Robins et al. (1994), Davidian et al. (2005),
and Kang and Schafer (2007). While there also exist modified
estimators like the targeted minimum loss estimator (TMLE)
(van der Laan and Rubin, 2006), all methods that have been
presented so far have advocated that it is critical to know
the functional form dependence of φ on F , and so are nond-
eductive, hence, noncomputerizable without prior knowledge
of the functional form.

2.2.3. The Gateaux Derivative Approach to EIF. For a
general parameter τ, the EIF evaluated at an observation d ′

can be obtained as the Gateaux derivative

φ(d ′, F) = lim
ε→0

τ(Fd′,ε) − τ(F)

ε
,where (6)

Fd′,ε = (1 − ε)F + ε · 1 < d ′ >, (7)

where 1 < d ′ > denotes a point mass at d ′ (Hampel, 1974).
Calculating this derivative at a given d ′ and F is a deductive
and computerizable operation. To demonstrate the ease of its
derivation consider again the test problem with missing data.

Specifically, for a given observation d ′ = (x′, r′, y′r′) and a

distribution F , it follows from (3), (7), and Bayes rule, that

τ(Fd′,ε) =
∫

yd′,ε(x)pd′,ε(x)dx, (8)

where pd′,ε(x) = (1 − ε)p(x) + ε · 1(x = x′),

and

yd′,ε(x) = ε · 1(x = x′, r′ = 1) · y′ + (1 − ε) · p(x)e(x)y(x)

ε · 1(x = x′, r′ = 1) + (1 − ε) · p(x)e(x)
,

where 1(·) is 1 (or 0) if the logical statement · is true (or false).
Then, (6) becomes

φ(d ′, F)

=
∫ [

∂yd′,ε(x)

∂ε
pd′,ε(x)

]
ε=0

dx +
∫ [

yd′,ε(x)
∂pd′,ε(x)

∂ε

]
ε=0

dx.

The first and second terms of the above are r′{y′−y(x′)}
e(x′) and

y(x′) − τ, respectively, which is the result (4) above.
The problem with the derivative operation is that if sim-

ple numerical differentiation is used to calculate the EIF by
a computer to avoid theoretical derivations, then the EIF’s
functional dependence on the parameter of interest τ and F

is not revealed.
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3. A Deductive Estimation Method

3.1. Method

A start to finding a deductive method is to appreciate from a
new perspective a problem that nondeductive estimators such
as (5) have. Specifically, nondeductive estimators are usually
constructed from a dependence of the EIF φ on τ that is differ-
ent from the variation-independent partition into [(F − τ), τ]
(this is probably because of the limitations of closed-form ex-

pressions). For example, the estimator τ̂
nonde-
ductive of (5) is a sam-

ple analogue of (i) the expression of the last appearance “τ”
in the right hand side of (4), using (ii) a working expectation
yw(x); and (iii) the empirical estimator for p(x) to average
over quantities of Xi. However, the parameters underlying (i),
(ii), and (iii)—namely, τ, y(x), and p(x), respectively—are not
variation independent, because τ is the average of y(x) over
p(x). This creates an incompatibility: the value of the estima-

tor τ̂
nonde-
ductive from this method differs (almost surely) from its

defining expression τ(F) if for F we use the estimates in (ii)

and (iii) that are used to produce τ̂
nonde-
ductive .

The problem of incompatibility has been noted before as
a nuisance (e.g., Newey (1998)) and has motivated compati-
ble estimators like the TMLE (e.g., van der Laan and Rubin
(2006)). Here, we show that, more fundamentally, the con-
cept of incompatibility together with the Gateaux derivative
creates a solution to the problem of deductive estimation. In
particular, the previous section noted that evaluation of the
Gateaux derivative at a working distribution Fw masks the
dependence on τ. However, the same evaluation does contain
evidence that parts of the working distribution Fw are mis-
specified, if the empirical sum of the Gateaux derivative is
not zero. This evidence of misspecified Fw can be turned, by
“ ” (“reduction to the absurd”), into esti-
mation for τ, where plausible values of τ are values τ(F) for
distributions F for which the empirical sum of the Gateaux
derivative is zero and therefore eliminates any evidence of
misspecification.

Based on the above argument, we can construct the follow-
ing method that solves the deductive computerization prob-
lem by addressing the above compatibility problem.

(step 1): Extend the working distribution Fw to a parametric
model, say, Fw(δ), around Fw (i.e., so that Fw(0) =
Fw), where δ is a finite dimensional vector. In this
extension, we can keep unmodified the part of Fw

that is known to be most reliably estimated (e.g.,
a propensity score elicited by physicians).

(step 2): Use the Gateaux numerical difference derivative

Gateaux{τ, Fw(δ), Di, ε}
:= [τ{Fw(Di,ε)(δ)} − τ{Fw(δ)}]/ε

for a machine-small ε, to deduce the value of φ{Di,

Fw(δ)} for arbitrary δ, and find

δ̂opt that minimizes the empirical variance of τ{Fw (̂δ)}
(9)

among all roots {̂δ} that solve the equation∑
i

[
φ{Di, Fw (̂δ)} ←− Gateaux{τ, Fw (̂δ), Di, ε}

]
= 0,

(10)

where “ ←−” means “computed as.” Property (10)
is the empirical analogue of the central, mean-zero
property if the evaluated φ at Fw(̂δ) is the true in-
fluence function of τ. An average of the EIF at a
Fw(δ) that deviates from zero is evidence that the
working distribution is incorrect. This step finds
a distribution Fw(̂δ) that eliminates such evidence.
Technically, there may be no zeros, in which case
δ̂ can be defined as the minimizer of the absolute
value of (10), although a better solution would be
to make the model Fw(δ) more flexible (see below).
More realistically, for a working model Fw(δ) there
can be more than one zeros and so condition (9)
selects the best one. Finally, although (9) is un-
ambiguous if τ is a scalar, if τ is a vector then
the researcher can minimize any one-dimensional
criterion, such as, for example, the largest of the
empirical variances of each of the components of
τ{Fw(̂δ)}.

(step 3): Calculate the parameter at the EIF-fitted distribu-

tion Fw(̂δ) as

τ̂ deductive := τ{Fw(̂δopt)}. (11)

3.2. Properties

The above method is deductive because step 2 does not need
the functional form of φ, but deduces it by the numerical
Gateaux derivative (6). If δ is one-dimensional, then (10) is
expected to have one root, and this can be found by numer-
ical root-finding methods such as in Brent (1973) or quasi
Newton-Raphson, by finding and using the numerical differ-
ence derivatives with respect to δ of the Gateaux derivative
computation of φ. If δ has more dimensions, then δ̂opt can
be found by either iterative quasi Newton-Raphson or by nu-
merical Lagrange multipliers, where (9) can be coded as the
jackknife variance. Also, the above estimates for τ and the re-
maining model parameters are compatible, by construction.

The deductive estimator shares useful properties of so-far
known, nondeductive estimators that take φ as given. No-
tably, suppose the actual expectation of φ(Di, Fw) is zero
for a working distribution when, say part1(Fw) = part1(F),
or,. . . ,or partK(Fw) = partK(F). Then, the deductive estima-
tor above is expected to be consistent as would be usual,
nondeductive estimators (e.g., Scharfstein et al. (1999)). For
example, for the two-phase design, suppose an original work-
ing function yw(x) has been obtained as the OLS fit x′β̂ols of
a linear regression model x′β for E(Y | R = 1, X = x). Then, a

simple model extension is to add to x′β̂ols a free parameter δ

(this is the same as freeing-up (again) the intercept of x′β̂ols

and let it be a parameter). The subsequent implementation
steps for deriving the estimator for the mean estimand are
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given in Appendix A. It is then easy to show (proof omitted)
that this deductive estimator is doubly robust (Scharfstein
et al., 1999): it is consistent either if the propensity score
working model ew(Xi) (corresponding to part1(Fw) above) is
correct, or if the regression working model yw(x) (correspond-
ing to part2(Fw) above) is correct.

Also, the deductive estimator above shares with the TMLE
the idea of extending the working model (Chaffee and van der
Laan (2011)), and with other estimators the idea of empirical
maximization (e.g., Rubin and van der Laan (2008)). The con-
ditions for the deductive estimator to use the smallest empir-
ical variance are similar to those used in (Rubin and van der
Laan, 2008, Appendix 2) and are omitted here because of their
technical nature. To our knowledge, all such existing work for
local efficiency has considered it critical to have the theoreti-
cally derived form of the EIF based on the score theory. The
contribution of the proposed method above is to show that
this theory can be translated to estimation that can be com-
puterized in general, by combining model extension with the
Gateaux derivative.

The extension in step 1 can take different forms. For ex-
ample, for the two-phase design, one can also compute an
improved deductive estimator by extending δ to two dimen-
sions (e.g., two coefficients) and minimizing the empirical vari-
ance as in step 2. If the space of distributions spanned by the
one-dimensional-based extended model lies within the space
spanned by the two-dimensional extended model, then the
estimator based on the latter will have empirical variance at
most that of the former estimator because of the larger space
where minimization takes place.

3.3. Feasibility Evaluations

To evaluate the feasibility of our method, we applied it to
the study analyzed by Huang et al. (2005), as an example of
the two-phase design. The goal of that study was to compare
rates of patient satisfaction for asthma care as the outcome
Y (yes/no) among different physician groups (treatments).
Physician groups differed in their distribution of patient co-
variates. So, in order to compare between, say, two physician
groups, we set the goal to estimate the average (3) of patient
satisfaction for each group, standardized by the distribution
of patient covariates in the combined population of the two
groups. This standardization of estimands to the covariate dis-
tribution on all patients is also used in the literature, for ex-
ample, for point exposure studies (e.g., Rosenbaum and Rubin
(1983)); and is more commonly now known as g-computation
(based on Robins (1986)) also for longitudinal studies. The
following covariates X were considered: age, gender, race, ed-
ucation, health insurance, drug insurance coverage, asthma
severity, number of comorbidities, and SF-36 physical and
mental scores.

We tested feasibility of the above method for the compar-
ison within two pairs of groups, denoted in Table 1(i) as a1

versus b1 and a2 versus b2 (actual names omitted). We chose

(a1, b1) as a pair for which the usual estimator τ̂
nonde-
ductive pro-

duces values diverging from the unadjusted rates for a1 and
b1; and we chose (a2, b2) as a pair for which the usual esti-
mator produces values shrinking from a1 and b1. The nond-
eductive estimator used as propensity score the quintiles of

the logistic regression of group membership conditionally on
X; and a working expectation yw as the prediction from the
logistic regression of patient satisfaction conditionally on X

within each group. The deductive estimator uses the same
propensity score, and, for step 1 of the method, extended the
working expectation yw by including back the intercept in the
logistic regression for each group as a free parameter δ. The
computation of φ for each δ in (10) was obtained by straight-
forward numerical differentiation for the Gateaux derivative;
and the root δ̂ was found by the method of Brent (1973) im-
plemented by the function “uniroot” in R. See Appendix A
for further details.

In all cases in Table 1(i), the deductive estimator gives an-
swers very close to the nondeductive estimator. This suggests
that, for this problem and data, the usual doubly robust esti-
mator, although not derived compatibly, can be re-expressed
compatibly by the set of parameter values derived by the de-
ductive estimator. We have also studied computability of the
deductive estimator for the estimand defined as the mean re-
stricted to the patients with propensity scores in (0.1, 0.9)
(Table 1(ii)). For this estimand, for which the usual doubly
robust estimator is very close to the plain average, the deduc-
tive estimator is, again, very close to the usual nondeductive
estimator. What is most important is that, although both esti-
mators produced their answers in less than a second for each
group and estimand, the deductive estimator did not need
knowledge of the closed form expression (4) for φ, whereas
the usual estimator depended critically on that knowledge.

4. Extensions

Close observation of the method for the deductive estimator

for the mean in the two-phase design, as detailed in Appendix

A, actually reveals how to produce a locally semiparametric

efficient estimator also for any other estimand in this design.

To see this, suppose we denote by yw(t; x) the cumulative dis-

tribution function prw(Y ≤ t | X = x, R = 1) of Y for the work-

ing model. Then, by Bayes rule, we have that the cumulative

distribution, say prw(d′,ε)(Y ≤ t | X = x;R = 1), of Y in the per-

turbed distribution Fd′,ε of (7) at d ′ = (x′, r′, y′r′), is

1(y′ ≤ t)
ε · 1 (x = x′, r′ = 1)

ε · 1 (x = x′, r′ = 1) + (1 − ε) · pw (x) ew (x)

+yw (t; x)
(1 − ε) · pw (x) ew (x)

ε · 1 (x = x′, r′ = 1) + (1 − ε) · pw (x) ew (x)
.

(12)

Based on this measure, implementation of steps 1–3 of Sec-
tion 3 is relatively easy and generalizable. We have imple-
mented this method in order to derive a locally efficient semi-
parametric estimator also for the median estimand in the
two-phase design. This deductive estimator for the median,
for which we are aware of no other implemented estimator, is
given in Appendix B. We have conducted several simulation
experiments (omitted) in all of which the deductive estimator
is consistent also for this estimand. A comprehensive report
on the small sample properties of the deductive estimator for
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Table 1
Feasibility of the deductive method for estimating the probability of patient satisfaction adjusted for covariates for two

physician group pairs using data from the asthma study of Huang et al. (2005).

Estimates of τ(F) = ∫
x∈A

y(x)p(x)dx

(i) All patients A : {all x}
Physician Unadjusted %

group (g) n pr(Y = 1 | G = g) τ̂
nonde-
ductive (%) se τ̂ deductive (%) se

a1 171 62.0 63.1 4.5 63.3 4.4
b1 81 58.0 52.0 8.8 51.9 8.9
a2 104 78.8 72.1 8.2 71.6 8.0
b2 189 47.6 49.4 4.5 49.4 4.4

(ii) Patients with increased common support A : patients with ê(x) ∈ (0.1, 0.9)(1)

Physician Unadjusted %

group (g) n pr(Y = 1 | G = g) τ̂
nonde-
ductive (%) se τ̂ deductive (%) se

a1 107 65.4 65.3 5.2 65.4 5.2
b1 76 59.2 59.3 6.9 59.1 6.8
a2 95 77.9 75.6 6.2 75.3 6.2
b2 154 46.8 46.2 5.1 46.3 5.0

(1)This estimand with increased “common support” (e.g., Crump et al. (2009)), excludes here 64, 5, 9, and 35 patients from a1, b1, a2, b2,
respectively.

the median and for other more challenging estimands is of
interest for future study.

In complex problems, it is possible that standard root-
finding methods for (10) are unstable. In this section, we show
that the Gateaux numerical derivative may still be used to
construct a deductive estimation method that does not rely
on solving an estimating equation.

Suppose that the parameter τ(F) depends on F only
through a set of variation-independent parameters qj(F) : j =
1, . . . , J . Such is the case of parameter (3) in our example,
with q1(F ; x) = y(x) and q2(F ; x) = p(x). In an abuse of nota-
tion, let τ(q1(F), . . . , qJ(F)) := τ(F). Since the parameters qj

are variation independent, the Gateaux derivative expression
of φ in (6) reduces to

φ(d ′, F) =
J∑

j=1

lim
ε→0

τ(q1(F), . . . , qj(Fd′,ε), . . . , qJ(F)) − τ(F)

ε
.

This expression provides the decomposition φ(d ′, F) =∑J

j=1
φj(d

′, F), where φj is the nonparametric efficient score
associated to qj. Once the Gateaux numerical derivatives φj

have been computed, it is possible to implement a standard
TMLE without knowledge of the functional form of φ. We
only provide a brief recap of the TMLE template, since ex-
tensive discussions are presented elsewhere (van der Laan and
Rubin, 2006; van der Laan and Rose, 2011). For each qj, con-
sider a loss function Lj(qj;D) whose expectation is minimized
at the true value of qj. Consider also a working model qjw and
a parametric extension qjw(δ) satisfying

d

dδ
L(qjw(δ); d ′)

∣∣∣∣
δ=0

= φj(d
′).

In our example, since qj are components of the likelihood,
the negative log-likelihood loss function and the exponential
family may be used in this step:

L(qj; d) = − log qj(d),

qjw(δ; d) ∝ exp(δφj(d))qjw(d). (13)

The TMLE is then defined by an iterative procedure that,
at each step, estimates δ by minimizing the expected sum
of the loss functions Lj(qjw(δ); ·). An update of the work-

ing model is then computed as qjw ← qjw(̂δ), and the pro-
cess is repeated until convergence. The TMLE is defined by
τ̂ = τ(q�

1w, . . . , q�
Jw), where q�

jw denotes the estimate obtained
in the last step of the iteration. Like the estimator presented
in Section 3, the TMLE is a compatible estimator, and solves
the EIF estimating equation. Unlike the estimator of Section
3, the TMLE does not require direct solution of that equation.
However, the TMLE may be computationally more intensive,
as it is iterative and may require numerical integration for
computation of the proportionality constant in (13).

5. Remarks

We proposed a deductive method to produce semiparametric
estimators that are locally efficient. The method does not rely
on conjectures of tangent spaces and is not susceptible to
possible errors in the verification of such conjectures. Instead,
the new method relies on computability of the estimand τ for
specified working distributions of the observed data F , and
on numerical methods for differentiation and for root finding.

Although we have focused on local efficiency of originally
unrestricted problems, one can see a path toward finding a
deductive method also for problems with restrictions set a
priori. Such a path can explore, first, nesting the restricted
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problem within an unrestricted one, and then, making use of
the proposed deductive method for the unrestricted problem,
modified to impose numerically the nested restrictions. Such
deductive methods can save dramatic amounts of human ef-
fort on essentially computerizable processes, and allow the
transfer of that effort to other statistically demanding parts
of the scientific process such as the efficient design of new
studies.

6. Supplementary Materials

In Appendix C, which can be accessed at the Biometrics web-
site on Wiley Online Library, we discuss a template for es-
tablishing large sample normality of the deductive estimator.
Computer code and a run example data are available with
this paper at the Biometrics website on Wiley Online Library.
Instructions to use the methods of the article on deductive
estimation can be found at: http://www.biostat.jhsph.edu/
∼cfrangak/papers/deduction
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Appendix

Appendix A: Details for Deductive Estimation of the Mean

with Working Model as in the Example

This section provides the details for how steps 1–3 of the gen-
eral method of Section 3 are implemented in the data example
given in that section.

(Preliminaries) : Coding of functions for the esti-
mands at working and perturbed distributions.

First, a working distribution Fw(β̂) was specified as follows:

(i) the working distribution, pw(·), of X, was taken to be
the empirical distribution with point-mass 1/n at each
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observed Xi (one can also assign weights other than
1/n for standardizing to different population);

(ii) the working propensity score, ew(·), was taken to be
the fit from a logistic regression;

(iii) the working outcome regression, yw(·) for E(Y | X = ·,
R = 1), was taken to be the fit from the logistic regres-
sion:

yw(x, β̂) = expit{β̂0 + β̂1x
(1) + · · · + β̂px

(p)}, (A.1)

where x = (
x(1), . . . , x(p)

)
is p-dimensional covariate vector

and expit is the inverse logit.
Then, functions were coded for the estimands τ

{
Fw (β)

}
and τ

{
Fw(Di,ε) (β)

}
, i.e., the perturbation at the data point

Di = (Xi, Ri, YiRi) and arbitrary β, 0 < ε < 1. Based on the
general formula (8) and the above working distributions, these
functions are

τ
{
Fw (β)

} =
n∑

j=1

yw (Xj, β)pw (Xj) , (A.2)

τ
{
Fw(Di,ε) (β)

} =
n∑

j=1

yw(Di,ε) (Xj, β)pw(Di,ε) (Xj) , (A.3)

where the components of Fw(Di,ε) (β) are derived using Bayes
rule:

pw(Di,ε) (x) = (1 − ε)pw (x) + ε · 1 (x = Xi) ,

yw(Di,ε) (x, β)

= ε · 1 (x = Xi, Ri = 1)Yi + (1 − ε) · pw (x) ew (x) yw (x, β)

ε · 1 (x = Xi, Ri = 1) + (1 − ε) · pw (x) ew (x)
.

Then, steps 1–3 of Section 3 were implemented as follows.

(step 1): The extended working model Fw(δ) of Section 3

was defined by adding to x′β̂ a free parameter δ.
Specifically, for a given δ, the extended working dis-
tribution, denoted here more precisely by Fw(β̂δ),
takes the working distributions for the covariate
and for the propensity score as in the working
models (i) and (iii), but takes the working regres-

sion E(Y | X = x, R = 1) to be yw(x, β̂δ) (see (A.1))

where β̂δ =
(
δ + β̂0, β̂1, . . . , β̂p

)
. Note that here δ

is 1-dim, and we have Fw(β̂δ)|δ=0 = Fw(β̂).
(step 2): The empirical influence function is numerically

computed and solved for its zero. To do this, this
step starts with a candidate δ (say 0). Then,

(i) for a small ε, this step computes τ{Fw(β̂δ)}
and τ{Fw(Di,ε)(β̂δ)} using the functions de-
fined in (A.2)-(A.3), and hence computes the
numerical derivative

φ{Di, Fw(β̂δ)} := τ{Fw(Di,ε)(β̂δ)} − τ{Fw(β̂δ)}
ε

;

(ii) the sum
∑n

i=1
φ{Di, Fw(β̂δ)} is computed for

the candidate δ;
(iii) substeps (i)–(ii) above are repeated using the

bisection method to find a δ̂ such that the
sum

∑n

i=1
φ{Di, Fw(β̂̂

δ
)} is 0 (note that be-

cause δ has dimension 1, there is no search
to optimize the empirical variance).

(step 2): The estimate τ̂ deductive is computed using the func-
tion (A.2), giving

τ̂ deductive := τ{Fw(β̂̂
δ
)}. (A.4)

Appendix B: Deductive Estimation of the Median in the

Two-Phase Design

This section describes how steps 1–3 of the general method of
Section 3 are implemented to estimate the median outcome
in the two-phase design, that is,

τ := median(F)

= inf
t

{
t :

∫
pr(Y ≤ t | X = x, R = 1)p(x)dx ≥ 0.5

}
,

(B.1)

where the last equality follows by ignorability in the two-phase
design.

(Preliminaries) : Coding of functions for the esti-
mands at working and perturbed distributions.

First, consider a working distribution Fw(̂θ), with the work-
ing distribution, pw(·), of X, and the working propensity score,
ew(·), as (i) and (ii) in Appendix A; and with

(iii’) the working conditional distribution for the outcome
given X to be the MLE fit from a normal regression
N(β̂0 + β̂1x

(1) + · · · + β̂px
(p), σ̂2), and denote the cu-

mulative distribution by

yw(t; x, θ̂) := pr
(
Y ≤ t | X = x·, R = 1, θ̂

)
, (B.2)

where θ = (β, σ2).

Then, the median τ
{
Fw (θ)

}
and τ

{
Fw(Di,ε) (θ)

}
, i.e., the

perturbation at the data point Di = (Xi, Ri, YiRi) and arbi-
trary θ, 0 < ε < 1, can be easily derived based on the general
formula (8) and the above working distributions, as

τ
{
Fw (θ)

} = inf t

{∑n

j=1
yw (t;Xj, θ)pw (Xj) ≥ 0.5

}
,

(B.3)
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τ
{
Fw(Di,ε) (θ)

}
= inf

t

{
n∑

j=1

yw(Di,ε) (t;Xj, θ)pw(Di,ε) (Xj) ≥ 0.5

}
,

where the components of Fw(Di,ε) (θ) are derived using Bayes
rule (similar argument to Appendix A)

pw(Di,ε) (x) = (1 − ε)pw (x) + ε · 1 (x = Xi) ,

yw(Di,ε) (t; x, θ)

= 1(Yi ≤ t)
ε · 1 (x = Xi, Ri = 1)

ε · 1 (x = Xi, Ri = 1) + (1 − ε) · pw (x) ew (x)

+ yw (t; x, θ)
(1 − ε) · pw (x) ew (x)

ε · 1 (x = Xi, Ri = 1) + (1 − ε) ·pw (x) ew (x)
.

(B.4)

Then, steps 1–3 of Section 3 were implemented as follows.

(step 1): The extended working model Fw(δ) of Section 3

was defined by freeing-up the intercept of β̂. Specif-

ically, for a given δ, the extended working dis-
tribution, denoted here more precisely by Fw(̂θδ),
takes the working distributions for the covariate
and for the propensity score as in the working
model (i)-(ii), but takes the cumulative distribu-

tion pr(Y ≤ t | X = x, R = 1) to be yw(t; x, θ̂δ) (see

(B.2)) where θ̂δ =
(
δ + β̂0, β̂1, . . . , β̂p, σ̂

2

)
.

(step 2): The empirical influence function is numerically
computed and solved for its zero in exactly the
same way as in step 2 of Appendix A.

(step 3): The estimate τ̂ deductive is computed using the func-
tion (B.3), giving

τ̂ deductive := τ{Fw(̂θ̂
δ
)}. (B.5)

Note: Because (B.4) actually shows the full mea-
sure for Y under the extended working models, it
can be used to compute, under these models, any
estimand that can be computed based on the orig-
inal working models. The above discussion, then,
also serves to produce locally semiparametric effi-
cient estimators for any other such estimand in this
design.


