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We thank the Editors and the Associate Editor for the
opportunity to have this exchange. We also thank the dis-
cussants for welcoming this search to make semiparametric
inference more deductive, and for all their very interesting and
useful comments.

1. Luedtke, Carone, and van der Laan

Luedtke, Carone, and van der Laan have raised a number
of interesting and useful points on the use of the Gateaux
derivative, on extensions to a priori restricted models, and on
criteria beyond solving an efficient influence function.

1.1. Discreteness versus Continuity (on Comments 1
and 2)

Luedtke, Carone, and van der Laan pointed out that in some
problems, for example, when parts of the data are continu-
ous, one should be extra careful about the use of the Gateaux
derivative. They also offered an interesting and useful regu-
larization method that can overcome some of these concerns.
These concerns are useful to consider, and below we suggest
that many of them can be overcome also at the stage of for-
mulation, through discreteness.

By discreteness here, first, we mean the formulation in
which all measurements in the problem are in principle as-
sumed to be discrete and bounded, even though the possible
levels may, of course, be more than the data points. Bounded
discreteness is true for any known measurement device, and
discreteness is even acceptable in current physical theories
such as quantum mechanics. Under such formulation, the con-
cerns raised by the discussants seem to be alleviated. For ex-
ample, for the estimand, τ∗(F) := ∫

y(x)dG0(x) proposed by
the discussants, the perturbed estimand τ∗(Fd′,ε) of expres-
sion (8) in the main article is

∫
yd′,ε(x)dG0(x), with yd′,ε(x)

as in the article. Taking the Gateaux derivative, then, gives
simply the first of the two summands in the last highlighted
expression of Section 2.2 except that pd′,ε=0(x)dx should now
be replaced by dG0(x). The result then becomes

r′{y′ − y(x′)}
e(x′)

p0(x
′)

p(x′)
,

as in the discussants’ expression. See also van der Laan and
Rose (2011), Appendix for analogous examples of discretiza-
tion.

Discreteness is also justified if the estimand is chosen by the
substantive scientist (e.g., physician). For example, if a physi-
cian does choose the discussants’ second estimand,

∫
fdF ,

then most likely the physician has in mind, in principle, a dis-
crete version of that estimand. It would then be useful for the
statistician to encourage the physician to express what they
mean by that estimand if the data are discrete. This would
be not only practically acceptable from a physical perspec-
tive, as noted above, but could further enhance clarity in the
communication between the statistician and the physician.

Such use of discreteness does not mean that a further par-
simonious model would not be useful for estimation, but it
means that parsimony across data does not necessarily need
continuity of the data themselves. A possible treatment of
parsimonious, restricted models is discussed next.

1.2. Extension to Restricted Semiparametric Models
(on Comment 3)

We agree with the discussants that an important next step
is to extend deductive methods to a priori restricted mod-
els. One possible way to capitalize on the deductive method
proposed for the unrestricted models in the main article, in
order to proceed to a restricted model with finite dimensional
parameter is as follows. First, determine the estimands τenv in
the unrestricted model that “envelope” the restrictions in the
restricted model, that is,

τenv :=

⎧⎨
⎩

all estimands in the unrestricted

model that are tied together by β

in the restricted model

⎫⎬
⎭ (1)

Using the methods of the article, one can then determine
the unrestricted EIFs, say φ, of the estimands τenv in (1).
These EIFs are expected to contain most of the information
from the original data to estimate the parameter β in the
restricted model. Since, in a large enough sample, the sum of
φ is approximately normal, the restricted EIF for β can be
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Table 1
Perturbation model after a discretization to the sample data

Perturbed model, (1 − ε)F + ε < d ′ >, when

Data Original model, F ∗ Discrete model, F d ′ = D1 . . . d ′ = Di . . . d ′ = Dn

D1 F ∗(D1) F1 = F∗(D1)∑
k
F∗(Dk)

(1 − ε)F1 + ε (1 − ε)F1 (1 − ε)F1

· · · · · ·
Di F ∗(Di) Fi = F∗(Di)∑

k
F∗(Dk)

(1 − ε)Fi (1 − ε)Fi + ε (1 − ε)Fi

· · · · · ·
Dn F ∗(Dn) Fn = F∗(Dn)∑

k
F∗(Dk)

(1 − ε)Fn (1 − ε)Fn (1 − ε)Fn + ε

obtainable from the normal likelihood of the EIFs treated as
sufficient statistics, following

1√
n

∑
i

φ(Di, β, F − β) ∼ Normal{0, V (β, F − β)}, (2)

where φ(Di, β, F − β) means the same function as in the unre-
stricted problem but where now the restrictions are inserted.
This essentially amounts to reducing the data of the unre-
stricted problem to only the data involved in the EIFs φ.
This reduction can often lead also to the likelihood (2) having
a relatively simpler dependence on the nuisance parameters
F − β.

To demonstrate, consider the classic example to estimate
the regression parameter β in E(Y | X, β) = g(X, β) from a
random sample of observations (Xi, Yi), i = 1, ..., n. Supposing
first that Xi takes 1, ..., K levels, the restricted model ties
together the conditional means μk = E(Yi | Xi = k), so τenv =
{μk : k = 1, ..., K}. For each μk, the EIF in the unrestricted
model can be obtained deductively as φk(Di, μk, F − μk) :=
1(Xi = k){Yi − μk}/pk, where pk = pr(Xi = k). Then the log-
likelihood of (2) based on the EIFs is

−1

2

∑
k

log

(
σ2

k

pk

)
− n

2

∑
k

{φ̄k(β)}2
(σ2

k /pk)
(3)

where φ̄k(β) := 1
n

∑
i
1(Xi = k){Yi − g(k, β)}/pk and σ2

k =
var(Yi | Xi = k). From (3), and after taking pk to be the em-
pirical distribution, one obtains the score, Sβ, for β as

Sβ =
∑

k

nk

φ̄k(β)

σ2
k

∂g(k, β)

∂β
in a discretization-specific expression

(4)

=
∑

i

{Yi − g(Xi, β)}
σ2(Xi)

∂g(Xi, β)

∂β
in a discretization-invariant expression.

Because the score for the nuisance parameters σ2
k from (3) is

orthogonal to Sβ in that likelihood, the score in (4) is also the
efficient score. This produces the EIF in the restricted model
to be proportional to (4). This agrees with the well known
result (e.g., van der Vaart (2000) example 25.28) derived by
standard methods. Here, therefore, the ability to derive de-
ductively the EIF φ under working models for σ2(Xi), suggests

the ability to also derive deductively the EIF for β in the re-
stricted model.

1.3. Practical Implementation of the Approach
(on Comment 4)

We agree with Luedtke, Carone, and van der Laan that solv-
ing the EIF with a working model need not be the only crite-
rion for choosing an estimator. It is for this reason that in the
main article, we suggest (criterion (9) in step 2 of the method)
that, when faced with many possible solutions, one can focus
on those resulting in estimators that have small empirical vari-
ance. An interesting idea arising from the discussants’ com-
ment 4 is that one may intentionally select to not solve exactly
the EIF in order to focus even more on overall accuracy of the
estimation. Such methods would also benefit from a deductive
approach since they may be even less tractable analytically.

An additional issue that relates to practical implementa-
tion is the derivation of the estimand τ{F(Di,ε)} at perturbed
distributions F(Di,ε). This derivation too can be facilitated by
discreteness. Suppose, for example, that an original (possibly
continuous) working model F ∗ is discretized, as in the Table
below, by assigning to each data point Di, mass Fi propor-
tional to the likelihood F ∗(Di).

Suppose also that the estimand τ can be computed as a
function τ{[F1, ..., Fn], [D1, ..., Dn]} for any discrete distribu-
tion [F1, ..., Fn] on points [D1, ..., Dn]. Then, because the ε-
contamination of the discrete distribution F to any point Di

is also a discrete distribution (see Table 1 above), the Gateaux
derivative-based EIF φ(Di, F) is derivable based on the func-
tion τ as

φ(Di, F) � (τ{[F1,i, ..., Fn,i], [D1, ..., Dn]}
− τ{[F1, ..., Fn], [D1, ..., Dn]})/ε

where Fk,i := (1 − ε)Fk + ε · 1(k = i),

for appropriate ε. Such discretization may not always be pos-
sible or desirable (e.g., see next section), but it suggests there
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can be generalizable ways of deriving the perturbed esti-
mands.

1.4. Detecting Irregularities (on Comment 5)

As the discussants say in their fifth comment - we have in-
deed focused on estimands for which an EIF exists but has
unknown functional form (see Section 2.1 of original article).
It is certainly of interest to supplement the paper’s algorithms
with an algorithm that can determine whether an EIF actu-
ally exists to begin with, and it is useful to consider how such
lines of work might look like.

Consider again the discussants’ example of the “exceptional
law,” in which the estimand is not pathwise differentiable and
an EIF does not exist. A first observation would be that this
estimand can be expected to be nondifferentiable because it
is defined through an indicator function. That observation
can be countered, however, as follows: “But the median in
a discrete distribution also depends on indicator functions.
So what is it that creates a complication for the exceptional
law but not for the median, and can this complication be
detected?”

The median of a discrete distribution is, theoretically, not
differentiable either, since small perturbations on one direc-
tion may not change the median but perturbation on the other
direction may change it. However, when the sample space
is dense enough (e.g., as would be a discretization of a use-
ful continuous model) and when the perturbation is not too
small, then: (a) the structure of the estimand includes many
indicator functions and numerical derivatives become similar
across different paths; and (b) the structure in (a) can be em-
pirically revealed in the variation of the numerically obtained
φ(Di) for different data points Di. In contrast, for the esti-
mand of the exceptional law, when the sample space is large,
then: (a’) the structure of the estimand still includes only one
indicator function, and smoothening of the discontinuity does
not seem to occur; but (b’) it seems possible that the problem-
atic structure in (a’) may also be empirically revealable if we
can observe that for many perturbations (e.g., small contam-
inations on different Dis) the numerical derivative is exactly
zero - while for many other perturbations (e.g., on other Dis)
the numerical derivative is not zero. This does not mean that
all irregularities are detectable (such certainty is rarely met
in science) but it indicates that certain worrisome types of
irregularities are detectable.

2. Stephens

Stephens has raised a number of interesting and useful points
on comparing the proposed approach to others, and on model
checks and other criteria for choosing between competing de-
ductive estimators.

2.1. Deductive versus Nondeductive Estimators

Stephens is correct that our focus on deduction has been the
derivation of the EIF, and this is because we considered that
derivation to be a most common challenge in semiparametric
inference. As Luedtke, Carone, and van der Laan pointed out,
this discussion opens up the question of how to deductively
derive other challenging parts of the process, such as, for ex-
ample, how to determine whether an EIF even exists when
this is not as clear to begin with.

In relation to comparing our proposed method to the
TMLE (Stephens’ second paragraph in the comments), we
note that, in contrast to the proposed method, the TMLE
is not generally produced in a single solution step, unless
the working model is of a particular generalized linear model
class. Moreover, present formulations of the TMLE require
knowledge of the EIF (e.g., to determine a “clever covari-
ate”), whereas our method is designed specifically to deduce
(as opposed to refer to) this knowledge directly.

In relation to the (generally) incompatible estimator (5),
Stephens suggests that incompatibility was purposely intro-
duced to induce double robustness and efficiency. We do not
know the intention of incompatibility, but we observe that it
is not necessary for either double robustness of local efficiency,
since both, the (nondeductive) TMLE, and the deductive pro-
posed estimator enjoy both such properties while also being
compatible.

2.2. Role of Model checks and Other Criteria

We agree with Stephens that effort should be made in order
for the working model to be appropriate. Such effort is needed
for most other uses of a working model. For our purpose, if
the working model produces more than one estimators that
solve the EIF, then a reasonable approach is to select one that
minimizes the empirical variance as suggested by criterion (9)
of step 2 of the method. The empirical variances in Table 1
of the article are calculated by the jackknife and are expected
to be close to the sandwich variances.

We thank again all discussants for a very useful exchange.
We also thank Michael Rosenblum for helpful discussions.
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