Supplementary Materials for “Tree-informed Bayesian
multi-source domain adaptation: cross-population
probabilistic cause-of-death assignment using verbal
autopsy”’

ZHENKE WU*12, ZEHANG R. LI3, IRENA CHEN', MENGBING LI'
L Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

2 Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Statistics, University of California, Santa Cruz, CA 95064, USA

*zhenkewu@Qumich.edu

APPENDIX A. DETAILS OF THE VARIATIONAL INFERENCE ALGORITHM

In the following, let g;(A) represent a generic variational distribution for unknown quantities in A at iteration
t; Let g:(—A) represent the variational distribution for all but the random quantities in A. Let pr(A) represent
a generic true joint distribution of the quantities in A. [Q] := {1, ..., Q} represents the set of positive integers
smaller than or equal to a positive integer (). The algorithm presented below deals with missing data (under
missing-at-random assumption for elements of X; given the causes). Let J; C {1,...,J} denote the index
set for the subset of observed responses for subject i. Let Z; C {1,..., J} be the index set for the subset of
subjects with observed j-th response. Finally, recall transformed response is X; = 2X;; — 1; o(e) denotes

sigmoid function: o(z) = 1/(1 4 exp(—2x)).

Step 0. Initialize the variational distribution ¢:(-) at ¢ = 0. The update of each component of the variational
distribution in Equation (4.16) of the Main Paper has a closed form that is determined by relevant first
and second moments. We initialize these moments to initialize go(-). In addition, because the sigmoid
functions are bounded by Gaussian kernels that depend on additional tuning parameters (1, ¢), we

need to initialize them too. Finally, we initialize hyperparameters (7, 7).

In particular,

e Additive components of the logistic stick-breaking parameters a,(:’u) given S, = 1:

*To whom correspondence should be addressed.
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(g 15020 ) = (Bad™ [ scu = 11, Vo {ai™ | scu = 1)) 1k € [K — 1], c € [C,u € V).
’ k ,
The mean and variance fully determine the optimal variational distribution for a( ) given s., =

1, which can be shown to be a Gaussian distribution;

e Logit-transformed response probabilities: {(u @ 1,0 o 1) (eq{fyjk H Ve {%k b:jeld)ke
(K], u € [CT};
e Tuning parameters in the Jaakkola-Jordan lower bounding technique: {1/15?, jeJ,k e [K]},

(6“9 ce[C), g€ {0} U[G), k € [K — 1]}, and

o The hyperparameters {7, ¢ € [L]}, {7}, £ € [L*]}.

Compute additional first and second moments as follows:

2 2
Eq {n’(“c 9)} - Z {pcu (Ui;c,lm + (1 = peu) {“aiﬂ“)} )} +E2 [n,(cc’g)],

u€a(g)
()| ? 2 2 2
eq {Olk } = Pcu Ual(cc,lu) + {Mal(cclu)} + (]- - pcu)Uo‘gbu),

where Jz(c,u) = Ty, W, is the variance of 04](:’“) in its variational distribution given s., = 0 (as will be
Ot

c,u))

readily seen in Step 1d below according to the VI update for a, Similarly, for the quantities in the

cause hierarchy, we compute

gbj
—
2
O
——
[ V)
I

Z U(u)+E {ﬁj 1,

u€a(c)

(u) 2 2
eq {’Y]k} } :0' (u) + {,U (u) } .

Vik1 Vik,1

Finally, compute eq{m(f’g)} = Zuga(g) Eq, {fl(cqu)}v Eq, {fl(cc’u)} = eq{scua(c Y= Ko, (e
B3] = Cucae Balrji)] = X
at M ik u€a(c) ~qt ’y]k: u€a(c) 'uryj;:?l
Set initial £*(q) = 0.
At Step ¢ + 1, iterate between Step 1 to 4 until convergence (we omit iteration step index “t” and

“t + 17 in the notations below for simplicity):

Step 1a. Update q;41(Y;) for {i : D; = 0}, by a categorical distribution with probabilities e; = (e;1, ..., eic)":

eic x exp | E [logw(o) +Zn C0)((]75) ,
k=1
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where

Fie (@) = Y (togo(ole?) + { By, (o

3 (1wt ) - o} 12 - gtofe) { By {uleo ) - (ol )}
1k < 1) | logo @)+ {B 0 - o0} 2 e { B (a7} = {09}

2 2
+ > logo (W) + (X5 B (857)) — i) /2 = 9(wis) {E {80}~ {vi} } (A1)
JE€T:

for ¢ € [C] and ¢ € {0} U [G]. In addition, for observations with observed Y; = ¢ we set e; = 1 and

eier =0 for ¢ # c.

Step 1b. Update g;41(Z;) by a categorical distribution with probabilities 7; = (71, ...,7ix)

Til OX €XP Zew F(C’g

ik

Step 1c. Update g1 (w9), g € {0} U[G] by

i=1

qt+1(71'(‘7)) o Dirichlet <Z el + d .. Z e + d ) (A2)

Step 1d. Update qi41(Scu, a(c’“)) for each node u € V of the tree T over the G + 1 domains, which takes a form

of two-component Gaussian mixture, separately for each cause ¢ € [C]. In particular

log Qt+1(8cu7 ™) =By, (s oty log H + const

N

-1

— Sew) logN(

1

—SCUZIOgN ,u@u)l,o(m) )+ (1

), 50, Te, Wy) + Scu€eu + const,
k=1

b
Il

where Hotew | = D,(CC’“)/C,(CC’“), 02 e L = 1/C,(f’“), k € [K — 1]. In particular,
o, a,

1
olew) _ . (C 9) . o (C 0)
N 7_(wu—i—2 Z | Z Zr 9(¢. 7))+ 1{0 € d(u) Ze Zr g( ,
“ g€d(u)N[G] #:Yi=c,D;=g m=k i:D;=0 m=k
(A3)
1 LS us
DEM = 3 Y gk X g2 [ Yo mmg@) Y Budsewa™)
g€d(u)N[G] i:Yi=c,D;=g m=k+1 m= wea(g)\{u}
L K
+1{0 € d(u)} Z €ic ,Z_ - Z gﬁm—Q Zrimg(gb,(f’o)) Z eq{scwcu,(f )}
:D;=0 m=k+1 m=k wea(0)\{u}
(A4)
2
K- 1{D(“‘)} = o
€ew = By, 10 + - {10 70, w,) + log(CLe } A5
o log 7 2 o ) Zl g(7e, g(Cy™) (A5)
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It is readily seen q(scu, a(c’“)) is jointly a two-component Gaussian mixture with distinct means and
variances. In particular, ¢(s.,) is Bernoulli with success probability p., = o (€., ); conditional on sg,,

q(a(c’“) | $¢u) is independent Gaussians with means and variances determined by s, being 1 or 0.

Step 1e. Update q;41(7™) for each node u € V* of the tree 7* over C' causes by
log g1 (7)) = E,, (—~ ) log H 4 const = Zlog./\/ ’y]k L 1,0 w, ,) + const, (A6)
.k

where Py ) = BJ(Z)/A(”) and J'Qy(“) L= l/Agz), j € [J], k € [K]. In particular,
ik

Ag.?:%lw*m S @) Z St Y e (A7)

uw ¢ ced(u)ﬂc g=14:Y;=c,D;=g :D; =0
By = Y 2 > {kaZ}/Q —2rg@) DD Badsivy }} (A8)
ced(u)NC g=1ie{Y;=c,D;=g}NI; wea(c)\{u}

+ Z Z ezc{{rszz*J/2 - 27‘11@9(%(2)) Z Elh{sw’y]k }} (Ag)

ced(u)NC i:{D;=0}NZ; wea(c)\{u}

Again it is readily seen that ¢, () is independent Gaussians.

Step 1f. Update

qi+1(per) = Beta(al,, bl,),c € [C], 4 € [L],

where agy = >0 evip, = Ea, (Seu) + ace and by =35 cyp, {1 = Eg, (Scu) } + et

For every d steps above, do Step 2-4:
Step 2. Update local variational parameters 1 and ¢.
o =B (e} = [ {02} (A10)
for c € [C], g € {0} U [G].

Step 8. Update the hyperparameters 7 and 7*.

ey %:UEV:KH—Z L7 2 2 Fa {{a’(:’u)}Q /w“} LelL], (Al1)

; 1 s @W\? .
E JK Y ey /*_/1 Z Zqut{{vjk} /wu},ée [L7]. (A12)
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Step 4. Compute £*(q+1) according to Appendix Appendix C. Stop the iteration once the absolute change

in £*(qs+1) is less than a tolerance tol=1e-8. The hyperparameter updates are often slower than the

variational parameter updates to converge in terms of the £*(¢:4+1). In practice, we can separate the

tolerance levels for the hyperparameter updates (hyper_tol=le-4) and VI parameter updates (e.g.,

tol=1e-8). One may update the hyperparameters every d steps of the updates of the variational

parameters. In practice, we can adjust d to speed up the convergence. In this paper, we use d = 10

which works well in simulations and data analysis. We also suggest multiple initializations to obtain a

highest £*(g;+1) and optimal variational parameters.

APPENDIX B. CALCULATION OF log H

Here we provide the logarithm of the lower bound H for pr(D,T') in Equation (4.20) in the Main Paper.

G C N

log H = ZZZI{}Q =¢,D; =g} [ lognl®

g=0c=1 i=1

K
+Y UHZi= kD | loga(el?) + (—ni? — 6(9) /2 — g(6?)) {{nﬁi’”}rz — {¢§£’g)}2}
k=1

m<k

2 2
#1k < K} log0(0lf?) + 0 — ol /2 - o) {{afe? } = {ole)

2 2
+ > loga (i) + (X787 —¢§?)/2—g<w§-?>{{ﬁ§?} ~{ui} }

JjET:

c K-1 1 a2
+ Z Z Z —ilog@m’guwu) = 2w, {ak’ }

c=1u€eY k=1

J K 1 1 (W) 2
+ 3 33 —qlostemmi ) - o {0}

ueV* j=1 k=1

c

+ Z Z [Scu log Pect, + (1 - Scu) 10g(1 - pcéu)]
c=1uey
C L

+ Z Z [(ace — 1) log per + (bee — 1) log(1 — per) — log B(ace, ber)]
c=1 (=1

G c
+ Z Z(dgg) —1)log 79 + const,
g=0c=1

where const is a term that does not depend on T'.

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)
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ApPPENDIX C. CALCULATION OF £*(q)

For ease of presentation, we omit the iterator ¢ in the following. We have £*(¢) = E, log(H)— E, log g+ const,

where the two non-constant terms are:

G C N

E,log(H Z Z Z eicl Eyllogm®] + Z rlkF(C g)( ) (A22)
g=0c=1 i=1 k=1
c K-1 1 e
+Z Z Z —ilog(QWTguwu) B E, {ak" } (A23)
c=1ueV k=1 “
J K 1 w
+) ZZ—Qlog(%%wZ) "o wZE {m } (A24)
weV* j=1k=1 i
c
+ Z Z Eq{scu}Eqlog per, + (1 = Eq{scu}) Eqlog(l — per,,) (A25)
c=1lueV
+ Z Z ace — 1) Eglog pee + (bee — 1) Eqlog(1 — per) — log Beta(ace, ber) (A26)
c=1/¢=1
G c a
+3 3 (49 - 1)E,log 7l = " log B(d), (A27)
g=0c=1 g=0
where B(x = (x1,...,27)) = [[, I'(z;)/I'(>_; x5) and I'(+) is the Gamma function, z; > 0,4 € [I] (when I = 2,

B(-) is the Beta function); and

N N
—E,logq = Z (Z (Z eic +d“9 — 1) E,{log(r{ )} —1ogB(Y  ese +d9 c=1,.. .,C)> (A28)

g=0 \c=1 \i=1 i=1
K—1
+0. 52 Z Z E{scu}+ E {scu}log(%m (e, ) (A29)
c=1lu€cV k=1
K-1
+0. 52 S By{l = seu} + Eg{1 — seu}tlog(2mre, w) (A30)
c=1lu€cV k=1
c N K
- Z Zeic log €;c — erik log 7, (A31)
:D;=0 c=1 i=1 k=1
c
- Z Z {Eq[scullog(peu) + Eq[1 — scu]log(1 — peu)}
c=1lueV
ZZ{ )E{log pec} + (b — 1) Eq{log(1 — pee)} — log B(al, cp} (A32)
c=1/¢=1

APPENDIX D. ADDITIONAL DETAILS OF SIMULATION STUDIES

Simulation I We use the domain hierarchy with pess = 6 domain leaves and 2 non-root nodes with root

node u = ug = 1 (see Figure 2(a) in the Main paper). The total number of causes is C = 3. We set the
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total sample sizes to be N = 1000 with the domain-specific sample sizes being 1) evenly and randomly
distributed across domains or 2) unevenly and randomly allocated by domain: we first form pairs of domains
and evenly and randomly allocated the total sample sizes to all the pairs of domains; then within each pair,
we randomly allocate samples with a ratio of 4 to 1. In addition, we set G = 5 source domains and 1 target
domain; the number of latent classes for each cause is K = 2, for J = 20, 60 binary responses. We considered
two scenarios of the response probability profiles: 1) stronger signal: 9;?’9 ) = 0.95, 9;;’9 ) = 0.05; 2) weaker
signal: 9;?9) =0.8, 49;;’9) =0.2.

Two scenarios of between-domain patterns of CSMFs are considered: 1) balanced: 9 =1 /C, and 2)
unbalanced: v\9) = (z1,23,...,2¢)/C and z, = 5 if c = 1, and 2. = 3if ¢ # 0 (mod C), ¢ = 1,...C.
We picked the target domain CSMF to be w(® = v(®) and (9, g = 1,..., G to take the rest of vectors:
v @ @ (@),

For each domain, the class mixing weights A(©9) are generated independently for each cause ¢ by
the following scheme: 1) for cause ¢, sample independently a(®"0) for the root domain node: alem)
F(Dirichlet(2, K)), where F: SX~1 — RX~1! maps a vector in the K-probability simplex to a vector in the
K — 1 dimensional Euclidean space F(A) = « where a@ = (g, ..., ax_1) is the unique vector that satisfies
M =o(ar), ..., e = 0(ar) [[,op,(1 = 0o(as)), ..., and Ag =[], (1 — o(as)); 2) For cause ¢, set the same
and fixed diffusions upon a(“* for non-root nodes u to be —2 if u = 2, 2 if u = 3, and zero for u > 3.

The simulation setup creates a scenario the True Domain Grouping of four blocks: {0, 1}, and {2, 3}, {4},
{5}, . The Complete Pooling approach sets s., = 0 for any non-root node u € V \ ug, forming a single group
of six domains. The Ad Hoc Domain Grouping method splits {0, 1} into {0} and {1} resulting in a finer
domain grouping. For the No Domain Grouping approach, we share the class-specific response profiles, but do
not borrow information across domains to perform shrinkage about the mixing weights A9, g € {0} U [G].
In the method Domain Adaptive, we used hyperparameters a.s = b,y = 1 in the selection probability of
the spike-and-slab prior along the domain hierarchy. For all approaches, we set d(9) = (1,...,1) for all the
domains. During estimation, we use a two-level cause tree with a root node pointing towards C' cause leaves

with equal edge weights.
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Appendiz D.1  Simulation IIa and IIb

Design Two designs (referred to as ITa and IIb) are considered where the difference lies in how the masked
CODs are chosen, in a uniform or non-uniform fashion over the causes.

In Simulation ITa), we randomly split subjects into 80% training and 20% testing data. We then collect the
20% split from each PHMRC site into a single target domain on which CSMF and CODs are to be inferred.
In this basic setup, the causes-of-deaths in the target domain are close to the population average across
domains; the conditional distributions of the VA responses given the cause is also close to the counterpart
estimates based on data from the source domains.

In Simulation IIb) for each cause, we draw a random fraction of deaths ¢. generated from a half-half
mixture: 0.5Beta(1,5) + 0.5Beta(1,20); . is also independently generated across causes, so that when con-
structing the target domain data some causes are up-sampled while others are down-sampled relative to the
global CSMFs. We have designed such a scheme to let the constructed target domain to have a CSMF that
is different from those in the source domains. We then collect the sampled deaths into a single domain, and
treat it as the target domain on which the CSMFs and CODs are to be inferred. In this setup, the target
may have distinct CSMFs from other domains; the conditional distribution of VA responses given a cause is
a mixture across the other domains. In both cases, the domain trees have piear = 7 leaves and p — Plear = 3
non-leaf nodes. Note that because the constructed target domain is a random sample from the entire data, we
specify weights for the edges in the tree so that the tree-based distance from the constructed target domain

to the six original domains are identical.

Results Figure Appendix Figure 1 shows the relative comparisons of the various options of conducting target
domain CSMF estimation in terms of CMSF accuracy; unlike Simulation I, here the True Domain Grouping
comparator is unavailable. In particular, the domain adaptive method which adaptively encourage shrinkage
along the domain hierarchy produced estimates with slightly better accuracy overall. In addition, the task
of CSMF estimation in the constructed target domain is more challenging when CSMF's differ substantially

from the source domains.
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Appendix Figure 1: Simulation ITa and IIb show the proposed method achieves better estimation
accuracy in terms of CSMF accuracy.

APPENDIX E. TREE-STRUCTURED SHRINKAGE PRIORS: A REVIEW

We specify a prior distribution for a set of real-valued parameters without range constraints that may differ
by leaf nodes {¢, : v € Viear}. In specifying the tree-structure shrinkage prior, we need a few pieces of
tree-related information: a weighted rooted tree T, = (T = (V, E),w) with leaves Viear C V), edge lengths
w = (wy)uey, the leaf id for each observation £ = (v1,...,vnx)" where the sample-to-leaf indicator v;
chooses parameter 9, to partly characterize the distribution of data from subject i. Because leaf-specific
sample sizes may vary, we propose a tree-structured prior to borrow information across nearby leaves. The
prior encourages collapsing certain parts of the tree so that observations within a collapsed leaf group share
the same parameter value. Li and others (2021) has extended Thomas and others (2020) to deal with rooted
weighted trees.

We specify a spike-and-slab Gaussian diffusion process prior along a rooted weighted tree for 4,. For a

leaf v € Viear, let

Yy = Z Py (A33)

u€a(v)

Here 9, is defined for leaves only and ¢, is defined for all the nodes. Suppose v and v’ are leaves and siblings
in the tree such that pa(v) = pa(v’), setting ¢, = ¢,» = 0 implies ¥, = ¥,». More generally, a sufficient
condition for M leaves ¢, v € {v1,...,vpr} to fuse is to set ¢, = 0 for any w that is an ancestor of any of

{v1,...,vp} but not common ancestors for all v,,,. That is, to achieve grouping of observations that share the
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same vector of latent class proportions, in our model, it is equivalent to parameter fusing. In the following,
we specify a prior on the ¢, that a priori encourages sparsity, so that closely related observations are likely
grouped to have the same vector of class proportions. The fewer distinct ancestors two nodes have, the more
likely the parameters 1, are fused, because the prior would encourage fewer auxiliary variables ¢, to be set

to zero. In particular, we specify

Py = SuQy, ¥V U €V, (A34)
oy, ~ N(0,7,w,), independently for V u € V, (A35)
Suo = 1, and s, ~ Bernoulli(gg, ), independently for v € V' \ wo, (A36)
o¢ ~ Beta(ay, b), independently for ¢ € [L], (A37)

where N(m,s) represents a Gaussian density function with mean m and variance s. 74 is the unit-length
variance and controls the degree of diffusion along the tree which may differ by node level ¢, where ¢,, € [L]
represents the “level” or “hyperparameter set indicator” for node u. For example, in simulations and data
analysis, we will assume that the root for the diffusion process has a prior unit-length variance distinct from
other non-root nodes. For the root ug with s,, = 1, ay,, initializes the diffusion of ¥,,.

Leaf groups are formed by selecting a subset of nodes in V: U = {u € V : s,, = 1}. Except a probability-
zero set, two leaves v and v’ are grouped, or “fused”, if and only if a(v) NU = a(v') NU. In particular, the
null set is {Jy, = o} V{3, cfa(o)ru\ [ae) g @ = 2uelaw )\ ja(v)ru] @} Where the latter has probability

zero. We may estimate U, e.g., using the posterior median model.

REMARK Appendix E.1 Equations (A33)-(A37) define a Gaussian diffusion process initiated at au,,:

19” | {(Pu’a u € a(u)}v Suy Tl s Wy ™~ N Z €u/7 SuTe, Wy | » (A38)

u’€a(u)

for any non-root node u # up; also see the seminal formulation by Felsenstein (1985). To aid the understand-
ing of this Gaussian diffusion prior, it is helpful to consider a special case of s, =1 and ¢, = 1, Yu € V. For
two leaves v, v’ € Viear, the prior correlation between 9, and 9,/ is

Zuéa(v)ﬁa(v’) Wy

Corr(Vy, V) = (A39)

{distr, (ug,v)distt, (uo, v’)}1/2 ’

When v and v' have the same number of ancestors (Ja(v)| = |a(v’)]) and all edges have identical weight

w, = ¢, Yu, the prior correlation is the fraction of common ancestors.
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APPENDIX F. APPENDIX FIGURES

9=1,....G =1,..., uinV I=1,...,L uinV* =1,...,L*
* o ,7_*
w
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l ) T 7
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unknown
quantities @
™A
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Y; Xij D;
=1,
i Di=1,..G
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Appendix Figure 2: The directed acyclic graph (DAG) representing the structure of the model
likelihood and priors following the style of Koller and Friedman (2009). The quantities in squares
are either data or hyperparameters; the unknown quantities are shown in the circles; the double-
stroke circle Z; indicates a selector, choosing the latent class k = 1, ..., K. The arrows connecting
variables indicate that the parent parameterizes the distribution of the child node (solid lines) or

completely determines the value of the child node (double-stroke arrows). The rectangular “plates”

where the variables are enclosed indicate that a similar graphical structure is repeated over the
index; The index in a plate indicates nodes, hyperparameter levels, leaves, subjects, classes and

features. The parameter of interest 7(?), the CSMFs in the target domain, is highlighted.
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