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SUMMARY

The Supplementary Materials present the technical details, additional extensive simulation results
and supplemental figures referenced in the Main Paper. Section A1l remarks on the assumptions
for the control model. Section A2 discusses the choice of hyperparameters. Section A3 provides
the posterior algorithm and convergence checks for valid posterior inference. Section A4 describes
the simulation settings in the Main Paper and Section A5 shows additional simulation results.
Section A6 presents additional results from PERCH study. Section A7 contains Supplemental
Figures.

Motivated by the data application in PERCH study, we will use some existing terminologies
(Wu and others, 2016) for two sources of imperfect diagnostic tests of the pathogen causes
(those infecting the lung): (a) case-control tests: NP PCR results that are not perfectly sensitive
or specific, referred to as “bronze-standard” (BrS) data; and (b) case-only tests: blood culture
(BCX) results for a subset of pathogens that are perfectly specific but lack sensitivity, referred

to as “silver-standard” (SS) data.

*To whom correspondence should be addressed.
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A1l. REMARK ON THE ASSUMPTION FOR INTRODUCING COVARIATES INTO THE CONTROL

MODEL

By assuming mutually independent measurements M, ..., M  given subclass Z and ¥ = 0,
we let the covariates influence the dependence structure of the measurements only through the
unobserved Z. As a result, upon integrating over Z, the proposed model does not assume marginal
independence P(M | W,Y =0) = szl P(M; | W,Y = 0) in contrast to a kernel-based method
that makes this assumption (Saha and others, 2018, Supplementary appendix). Our approach to
incorporating covariates to model control data follows the latent class regression formulation in
Bandeen-Roche and others (1997). This formulation is classical and has been used in applications
including HIV population size estimation (Bartolucci and Forcina, 2006), and alcoholic and drug

addiction (Chung, Flaherty and Schafer, 2006).

A2. CONSIDERATIONS FOR THE CHOICE OF HYPERPARAMETERS

In this paper, we use (ar,b;) = (3,2) and (a’,)) = (1.5,400) in the Gamma-Inverse-Pareto

T T

mixture prior for the precision parameter in the Gaussian random walk prior. We use the same

Beta hyperparameters for p* and p7 (a, = 0.5,b, = 1) in the control and case subclass regressions

to a priori give slight preference for constant curves; We use a7 = 1, bg

- 0.5 to a priori give

slight preference for flexible CSCF functions.

In our simulations and applications, we choose hyperparameters vy = 1 and sg = 10 for
the intercept, and kg = 1/4 for the first B-spline coefficients ﬂ,%)’”, B,%)’n in the random walk
prior in P-spline. We have chosen our hyperparameters based on the interpretations on the
probability (inverse-link) scale; see similar prior elicitations for regression coefficients in other
applications (e.g., Bedrick, Christensen and Johnson, 1996; Witte, Greenland and Kim, 1998)

and for automatic, stabilized and weakly-informative fitting of generalized linear models (Gelman

and others, 2008). We choose the hyperparameters for the intercepts that put most prior mass
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of g(u10) within (0.5,1 — 1079), because 1 — 1079 is sufficiently close to 1 which means the
stick-breaking is stopped at Step & = 1. In contrast, we choose the first B-spline coefficient’s
hyperparameter kg = 1/4 that puts most prior mass of g(B,(C;)’V) within (0.02,0.98), a range for
the weight of a non-trivial subclass to break from the rest of the stick at Step k. Note the first

B-spline coefficient Béjl-)’w also has a N'(0, kg) prior; Finally, we choose k., = kg = 1/4.
A3. POSTERIOR SAMPLING ALGORITHM
We update the unknowns by iterating through the following steps.

1. Update the class indicator I; € {1,...,L} for every case, from a categorical distribution

with probability

P(Ij =/ | others) X [Mz | Ii = é, Zi,®, ‘I’][IZ =/ ‘ 71'7;@]

3y Mij Ny 1-M;; Y Mijr Ny 1=M,
S (IR s | S D R (R e

J€ECs J'¢Ce
where C C {1,...,J} represents the subset of causative agents for cause ¢.
2. Update the subclass indicator Z; € {1, ..., K} for every case from a categorical distribution

with probability

P(Z; = k| others) < [M; | Z; = k,I;,0,®|[Z; = k | ik, 1]

« I {eéﬁ}M”{l_g](g)}l*M“, 11 { g')}M”’ {1_%(3')}1*““’.%

JECr, j'¢Cr,

i

Update the subclass indicator Z;; € {1,..., K} for every control subjects from a categorical
distribution with probability P(Z; = k | others) « [My | Zy = k,W][Zy = k | virg]
. M., . . 1—M., .
J i i’y
y R T S L) S
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3. Update the control subclass regression coefficients T = [(T%)T,..., (% _,)T]" by
K-1
[ |others] o< [] (2o | T Awio} W] [ 0% 1%, K7]
Y k=1

_ H {exp(pro + WJI‘Z)}I{Z“:k}

N’( v, bl/ Kl/)
1{Z, >k kr =0 TRk
=0 k=1 {1+ exp(pro + Wi TY)} =t

where b¥ = 0 is the prior mean and

Z = blkdlag {T]ZJAIAl + K,B(laO(Cj—l)xl)T(lﬂO(Cj—l)xl)vj = 17 s 7Q1} y Ry o v o5 Ry
——

a—aq
is the prior precision with A; being the first-order difference matrix (Section 4.3.2 in the
Main Paper) and 1{A} = 1 if the statement A is true; 0 otherwise. The conditional den-
sity admits direct sampling via auxiliary Pélya-Gamma (PG) variables (Polson, Scott and

Windle, 2013; Linderman, Johnson and Adams, 2015),

[wi), | others] L PG(1,al, = pro + Wy IY), for k < Zy,
[T% | others] oc N'(my, (V¥)™1),

-1
e ={wrow ik}

mj = V(W' T, + K(b"),

for k = 1,...,max; Z;/, where W represents the design matrix for the control subclass
weight regression where row i’ is Wy = [B{ (Wir1), .. .,B; (Wi/ql),ﬂwfigql“, .. .,Wi/q]T,
QY = diag{w?,1{Z; > k}}, T), = diag {(1{Zy =k} — 3 — o) 1{Zi > k}: Yy =0}; We

update the PG auxiliary variables {w}, } in parallel across controls and subclasses.

We similarly update the regression coefficients I'? in the case subclass regression by replac-
ing the control design matrix W with the counterpart among cases; Let W, indicate the

row in the case design matrix for case 1.
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4. Update uj, according to the full conditional distribution:

lwio | othersloc T 12 [H{who Tk <k} TT 120 Haios i e S K3 - i | 57, 7ol

8Y,=1,7, >k "Y1 =0,Z, 2k
K-1 n 1{Z;=Fk"} v 1{Z, =k"}
exp(a; e -y
oc N (ko3 0% Tho) - H toxel Zk/n)} {Zi>k} H L XP(%/ky)} 1{Z,;>k'} |’
w=k |ivi=1 {1+ exp(ah,)} iy, —o {1+ exp(ag, )}
where b* = 0 is the prior mean, 740 is the prior precision, and o}, = Zﬁl:l Ups p oy +

WYY, + T (1 - Y:)} and of,, = 22;1 g + W, T are the linear predictors at
the k-th stick-breaking events. We introduce auxiliary Pdlya-Gamma variables for exact

sampling:

[wyy | others] L PG (1,aY: + b, (1 = Y;)), for a case or control i, for k < Z;

* d *
ko | others] £ Ay (mi, 7eo),
—1

Z;
E3
VEo = E E wip + Tok )

i: all subjects h=k

Z;
T
my, = Uko E E Sih — Wiy, E unpiio W ALY +Th(1=Yo)}| | +7rod” ¢,
i: all subjects h=Fk j<h
————
Hho

for k=1,...,max; Z;, where s;, = 1{Z; = h} — %1{21' > h}.

5. Update the smoothing parameters Thj and smoothness selection indicator &r;- First ran-
domly switch &y, to §F either from 0 to 1, or 1 to O for k=1,...., K —1,j=1,...,p1.

*

Given the parameter 77 ;» we propose its candidate Ths from the log-normal distribution

with log-mean parameter 7;/;. We accept (77, ;7)) with probability

- { L PBLs T Iy | &) alrty | i)l 1 €65) } |

’ p(ﬁ;’;j;ﬁi'j)ﬂ(ﬂé'j |€ZJ‘)Q(TICV; |TJQIJ)Q(§Z; |€ZJ)
where p(By;;777) is the density function N(O,ngAIAl) and m(ry; | §;) is the prior dis-

tribution ((24) in the Main Paper).
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We update 7;/; again because it is continuous and therefore has a much bigger parameter

space than that of discrete parameter. Using random walk Metroplis-within-Gibbs algo-

*

rithm, we propose 7, from the log-normal distribution with log-mean parameter 7} ; and

accept with probability

- { | PBG T | 65 atr; | 7i) }

7]9(5/'%571?]')”(71%2 | ij)Q(Tllc/;Z | 7%5)

We similarly update (T;’j7 §Zj) in the case subclass regression.

6. Update the smoothness selection hyperparameter p* by

[0 | others] < Beta(a, + > 1{€}; = 1},b, + > 1{&}; = 0}).

k,j k,j

We similarly update p" in the case subclass weight regressions.
7. Update the scale parameter 70 in the hyperpriors for the intercept uj,

1 x )2
[Tko | others] o [urg | Tko][Tko | @0, Do) 4 Gamma (ao + E’bo + (’quO)> k=1,...,K—1.

8. Update the vector of subclass TPR for j =1,...;J by

09 | others|oc [[ [Mi| 69, Z;,1,][6Y)]
{iiy=1}
K v mD ym@D
o H {Hl(qj)} k1 {1_0’(6])} k0 . [O(J)],
k=1
where m,(cj;) =#{i: Y, =1,2Z, = k,u;; = 1,M;; = ¢}, ¢ = 0,1. If prior for TPRs are

independent Beta distributions, then this is a product of Beta distributions.

9. Update subclass-specific FPRs Q/J](Cj) forj=1,...J, k=1,..., K from

[ | others] o I 99,2, 1) "]
i:bij:07zi:k7

S CEN T L)
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where s{~ 1 : Z4; = k,u;; = 0,M;; = ¢}, for ¢ = 0,1. If the prior on S are
h be | = F# Z k1 0, M;; f 0,1. If the pri FPR

Beta(ay, by), then the above conditional distribution is Beta(a, + s,(61 by + s(J))

10. Update the regression parameters in the CSCF regression for ¢ =1,..., L by

L7 | others| o< [T} | kg, K] - H [I; =¢|T7, X,]
:Y; =1
}1{]1_5}

{e T s
H 1+exp ™) N ETKT),

=1

where b™ = 0 is the prior mean, K§ = diag{xg,..., kg, ky,..., K~} is the prior precision
—_——— ———

UL p-CF P—p1
matrix, and of, = ./Yi—'—l"}r — D;p with D;; = log ZZ/# exp(XiTl"}T,) with

X' =B (Xi1),..., By (Xip, ), Xipy+1, - - Xip).-
We introduce augmented Pélya-Gamma variables during sampling:

[W], | TF, others] 4 PG(1,a)),
7 | wfy, others] N (mf, (V) ™h),
-1

V= {XTng +K”} ,

my =V {XT(Sg + QI D) + K”b”} ,

where sy = {si¢}iv,=1, sie = 1{I; = ¢} — 1/2, and Qf = diag{{w], }i.v;=1}; We sample the

PG variables in parallel across cases.

In simulations and data analysis, we ran three MCMC chains each with a burn-in period of
10, 000 iterations followed by 10, 000 iterations stored for posterior inference. We look for potential
non-convergence in terms of Gelman-Rubin statistic (Brooks and Gelman, 1998) that compares
between-chain and within-chain variances for each model parameter where a large difference (R, >
1.1) indicates non-convergence; We also used Geweke'’s diagnostic that compare the observed

mean for each unknown variable using the first 10% and the last 50% of the stored samples where



8 Z. Wu AND I. CHEN

a large Z-score indicates non-convergence (|Z| > 2). In our simulations and data analyses, we
observed fast convergence (many satisfied convergence criteria within 2,000 iterations) that led

to well recovered regression curves, TPRs and FPRs.

A4. ADDITIONAL INFORMATION ABOUT SIMULATIONS OF MAIN PAPER

Simulation 1. we let my(+), vx(-) and ng(-) depend on the two covariates X = W = (5,7T), S
and enrollment date (T), so that regression adjustments are necessary (see Remark 2 in the
Main Paper). We simulate BrS measurements on J = 9 pathogens and assume the number
of potential single-pathogen causes L = J = 9. To specify CSCF functions that satisfy the
constraint 25:1 me(x) = 1, we use stick-breaking parameterization with L = 9 segments. In par-
ticular, we let logit {g1(s,t)} = B11l(s = 1) + sin(8n(t — 0.5)/7), logit {g2(s,t)} = B2l(s =
1) + 4exp(3t)/(1 + exp(3t)) — 0.5, logit(g) = Bsl(s = 1) for £ > 2; Let the CSCF func-
tions (s, t) = ge(s,t) [[;c,{1 — gi(s,)}, € = 1,...,L(= 9), where 8 = 0.1,¢ = 1,....8.
The true control distribution depend on covariates with K = 2 subclass weight functions:
vi(s,t) = logit ' {7¥1(s = 1) + 4exp(3t)/(1 + exp(3t)) — 0.5} and va(s,t) = 1 — vi(s,t). We
specify ni(s,t) = vg(s,—t),k = 1,2, highlighting the need for using different subclass weights
among cases and controls. We set the true TPRs 9,(5 ) = 0.95 and the FPRs 1/19 ) = 0.5 and
) = 0.05.

In performing regression analyses of the simulated data, we set ¢¢(X) to be an additive model
of a 1{S = 2} indicator and a B-spline expansion with 7 degrees of freedom (d.f.) for standardized
enrollment date t. We use K = 7(> Kj) and specify the regression formula for subclass weights
vi(+) and ng () by additive models of the 1{S = 2} indicator and a B-spline expansion with 5 d.f.
for standardized enrollment date.

Simulation Il. We consider L = J = 3,6,9 causes, under single-pathogen-cause assumption, BrS

measurements made on Ny cases and N, controls for each level of X where Ny = N, = 250 or
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500. The functions ¢4(X) = Boe + B101{X = 2} take two sets of values to reflect how variable the
CSCFs are across the two X levels: i) i) = (0,0,0,0,0,0) and B} = (-1.5,0, 1.5, —1.5,0, —1.5)
where causes have uniform CSCFs when X = 1 and causes B and E dominate when X = 2,
or ii) B = (1,0,1,1,0,1) and B = (-1.5,1,—1.5,—1.5,1,—1.5) to mimic the scenario where
pathogens B and E have lower CSCFs when X = 1 and occupy more fractions when X = 2.
We further let the measurement error parameters take distinct values of the TPRs 9,(3 ) = 0.95
or 0.8 and the FPRs (), 4{) € {(0.5,0.05),(0.5,0.15)}, for j = 1,...,.J. Finally, we set
the truth vu(W) = n(W) = logit™* (yeo + Y1 1{W = 2}) where (y10,711) = (—0.5,1.5) and
(720,721) = (1,—1.5). The Main Paper only presents results under J = 6 for simplicity; The
findings for J = 3,9 are largely the same.

Sitmulation Il: a randomly chosen replication. Here we illustrate the inferences about the stratum-

specific and overall CSCFs that are available to an analyst by considering a two-level covariate
X =W with J = 6 measurements. Under the single-pathogen cause assumption, we can estimate
12 = (2 x 6) CSCFs, six per level of X as well as six overall CSCFs. For example, based on a
single data set simulated under the scenario {L = 6, Ny = 500, K = 2, 9,(3) =023, ( §j), éj)) =
(0.5,0.05), (B B)}, Figure S2 in the Supplementary Materials shows the posterior distribution
of the stratum-specific etiology fractions m(X = s) for (s = 1,2) by row and L(= .J) causes
(¢ =1,...,6) by column with the true values indicated by the blue vertical dashed lines; The
bottom row shows the posterior distribution of 7} = Y wm(X = s) for L causes with empirical
weights ws = N > ivi—1 H{Xi = s}, s = 1,2. The true stratum-specific and overall CSCFs are

covered by their respective 95% Crls.



10 7Z. Wu AND I. CHEN
A5. ADDITIONAL SIMULATION RESULTS
A5.1  Estimating me(X)

We use simulation studies to show the frequentist performance of the npLCM regression model
in recovering stratum-specific CSCF's; The results below are based on a single discrete covariate
that influence the CSCFs but not the subclass weights in the cases or controls.

In this simulation study, we simulate 500 cases and 500 controls for each of 7 sites. Every
subject is measured on 6 pathogens A to F; The causes of disease are single-pathogen causes A-F.
First, we let the CSCF's vary by site which are shown in Table S1. Second, we simulate the data

using K = 1 subclass.

Table S1: True CSCFs for seven sites (boldfaced numbers indicate the highest
CSCF's within each stratum).

site\cause A B C D E F

1 0.5 02 015 0.05 0.05 0.05
2 02 0.5 015 0.05 0.05 0.05
3 0.2 015 0.5 0.05 0.05 0.05
4 0.2 015 005 0.5 0.05 0.05
5
6
7

0.2 015 0.05 0.056 0.5 0.05
0.2 015 0.05 0.06 0.05 0.5
0.05 0.2 015 0.5 0.056 0.05

We simulate data under two TPR scenarios (I) strong signal with ng) = 0.99 and 1/)51) =0.01
where data are expected to provide strong information about the CSCFs, and (II) weak signal
with ng ) = 0.55 and 1/1%1) = 0.45 where it is easy to confuse true and false positive results and
the data do not provide strong information about the CSCFs. In both scenario (1) and (II) , we
used a Beta(6,2) distribution as a prior for the TPRs of the BrS measurements. We set the true
TPRs and FPRs to be the same across sites and pathogens. In fitting the regression models, we
use the CSCF regression formulation by specifying L — 1 sets of regression parameters with site

dummy variables as the predictors in ¢,(-). Since our goal is to infer S = 7 sets of CSCF's, we
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can also specify S = 7 sets of symmetric Dirichlet priors with hyperparameter « (Dir(«)); We
use a = 1 here. The package baker (https://github.com/zhenkewu/baker) provides an option

to use Dirichlet priors when the CSCFs depend on discrete covariates only.

A5.1.1  Scenario I: Strong Signal Over R = 100 replications, the top half of Table S3 summa-
rizes the coverage rates of the 95% credible intervals (Crls) for the CSCF's across all the sites.
We observed excellent recovery of the true values across all causes and sites with the 95% Crls
covered the true values between 90% to 100% of the time. Panel I of Table S3 also shows for site
1 the posterior mean CSCFs, posterior standard deviations (sd’s) of the CSCFs, and posterior
mean squared errors (PMSEs, estimated by B~! Zszl iy ime(Xi = s 4Oy — 79(X; = s)}
with B retained posterior samples {7™®)}) averaged over R replications. The posterior means

provide excellent estimation of the CSCFs with small average PMSEs.

A5.1.2  Scenario II: Weak Signal Using data simulated under less discrepant TPRs and FPRs
than those in Scenario |, the 95% Crls cover the truths well for most site-cause pairs, but under-
cover the truths for causes with the highest CSCF in each site (see Table S2). This is expected
because when the signal from the data is weak, the model relies more heavily on the uniform

prior distribution for the CSCFs (symmetric Dirichlet prior with hyper-parameter 1).

Table S2: Number of times (out of 100 replications) that
the true value is covered by the 95% Crls (Scenario II,
Beta(6,2) prior for the TPRs). Boldfaced numbers indicate
the highest CSCFs (0.5) within each stratum.

site\cause A B C D E F

1 73 100 100 99 100 100
100 79 100 100 100 99
100 100 83 98 100 100
100 100 100 73 100 99
99 100 100 100 85 100
100 100 100 99 100 88
100 100 100 81 100 99

N O Uk W N




12 7Z. Wu AND I. CHEN

More Informative TPR Priors (II*). We further investigate the model performance when we
change the TPR prior distributions from the Beta(6,2) to a Beta distribution that has 95% of its
mass between 0.525 and 0.575 and is around the true TPRs (Beta(835.95, 683.79),
beta_parms_from_quantiles(c(0.525,0.575)) using baker). Panel IT* of Table S3 shows dra-
matic improvements in the coverage rates. These results suggest that changing the prior distri-
butions of the TPRs so that it is more tightly concentrated around plausible values can improve
inferences of the stratum-specific CSCFs in the presence of high levels of noises. Relative to Sce-
nario |, the average PMSEs are larger across sites and pathogens reflecting the weaker signal in
this setting.

In summary, in the simulation study where the CSCF's are influenced by a discrete covariate,
the regression model recovers the true values well under high signals (high sensitivities and low
FPRs). Under lower sensitivities and higher FPRs, the noisier simulated data are less informa-
tive about the CSCFs which are then more influenced by the prior distributions of the TPRs
and CSCFs. In practice, we recommend eliciting quality informative TPR priors from domain
scientists as in the PERCH study and perform sensitivity analyses to understand the robustness

of the results with respect to the prior distributions.

A5.2  Valid inference of m; omitting covariates

Under the assumption in Remark 2 in the Main Paper, the case subclass weights n, (W) = ny,
k=1,..., K, we conduct a simulation study to show that an npLCM analysis omitting covariates
is able to provide valid inference about the overall CSCFs (7} ). The simulation settings are exactly
the same as in Simulation II, Section 5 in the Main Paper, except that we set 99 = 721 = 0 to
satisfy the assumption. Figure S4(a) in the Supplementary Materials shows the percent relative
biases are similarly negligible in all the 16 scenarios with 6 disease classes; Figure S4(b) in the

Supplementary Materials shows excellent empirical coverage rates of the 95% Crls for {7} }.
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Table S3: Scenario I and IT*: coverage rates of the 95% Crls; For Site 1, the posterior means,
standard deviations (s.d.’s) and PMSE of the stratum-specific CSCFs averaged over R = 100
replications are also shown. Boldfaced numbers indicate the highest CSCFs (0.5) within each

stratum.

site \cause A B C D E F

1 99 93 97 94 96 90

2 97 90 96 97 95 94

3 100 95 98 98 95 96

coverage 4 93 94 96 95 92 99

5 96 94 96 97 95 98

1 6 96 97 98 99 95 96

7 96 97 91 100 95 96

truth (Site 1) 0.5 0.2 0.15 0.05 0.05 0.05

posterior  average of post. mean  0.495  0.197  0.152  0.053  0.053  0.051
summary  average of post. s.d. 0.023  0.018 0.016 0.01 0.01 0.01
average PMSE 0.0010 0.0007 0.0005 0.0002 0.0002 0.0002

1 98 89 98 99 100 100

2 97 95 96 100 100 99

3 93 98 91 99 99 100

coverage 4 95 98 100 95 99 100

5 94 94 99 99 91 100

T 6 95 97 100 99 99 90

7 100 95 94 96 100 99

truth (Site 1) 0.5 0.2 0.15 0.05 0.05 0.05

posterior average post. mean 0.417  0.163 0.138  0.091 0.086  0.106
summary average post. s.d. 0.27 0.174  0.162  0.135 0.13 0.141
average PMSE 0.131  0.067 0.056  0.034 0.031 0.042

A6. REsuLTsS FROM PERCH DATA: INDIVIDUAL-LEVEL PROBABILITY ASSIGNMENT

The regression model accounts for stratification of CSCFs by the observed covariates. Conse-

quently, despite identical diagnostic test results, the posterior algorithm automatically assigns

covariate-dependent cause-specific probabilities. Figure S5 shows the individual cause-specific

probabilities for cases with all negative NPPCR results (the most frequent pattern among cases).

For two cases with one older the other younger than one, the older case has a lower posterior

probability of her disease caused by RSV and higher probability of being caused by NoS. Indeed,

contrasting older and younger children while holding the enrollment date, HIV, severity constant,

the estimated difference in the log odds (i.e., log odds ratio) of a child being caused by RSV versus
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NoS is negative: —1.82 (95% Crl: —2.99, —0.77).
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Fig. S1: By propagating the prior that encourages few subclasses, the algorithm correctly infers
two subclasses from the simulated data in Simulation I, Section 5 in the Main Paper. Estimated
case (top) and control (bottom) subclass weight curves over one continuous covariate U (t) (central
blue dashed lines enclosed by the 95% credible regions; the red curves are posterior samples)
compared against the simulation truths (v (¢), black solid lines). The number of subclasses is
bounded by seven during model fitting.
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Fig. S2: Posterior distributions of the stratum-specific (Row 1 and 2) and the overall (Bottom
Row) CSCFs based on a simulation with a two-level discrete covariate and L = J = 6 causes.
The vertical gray lines indicate the 2.5% and 97.5% posterior quantiles, respectively; The truths
are indicated by vertical blue dashed lines. Row 1-2) CSCFs by stratum (level = 1,2) and cause
(A-F); Bottom) m}: overall population etiologic fraction for cause A-F (empirical average of the
two CSCFs above).
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Fig. S3: NPLCM analyses with or without regression perform similarly in terms of per-
cent relative bias (top) and empirical coverage rates (bottom) over R = 100 replications
in simulations where the case and control subclass weights do not vary by covariates.
Each panel corresponds to one of 16 combinations of true parameter values and sample
sizes. See Figure 4 in the Main Paper for detailed descriptions of the figure.
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Fig. S5: Individual-level probabilities of cause of pneumonia estimates for RSV (left) and
NoS (right) differ by age and season among HIV negative and severe pneumonia cases
for whom the seven pathogens were all tested negative in the nasopharyngeal specimens.
The prediction also outputs probabilities for other causes; only RSV and NoS are shown
here.
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Fig. S6: The directed acyclic graph (DAG) representing the structure of the model likelihood
and prior. The quantities in squares are either data or hyperparameters; the unknown quantities
are shown in the circles. The arrows connecting variables indicate that the parent parameterizes
the distribution of the child node (solid lines) or completely determines the value of the child
node (dotted arrows). The rectangular “plates” where the variables are enclosed indicate that
a similar graphical structure is repeated over the index; The index in a plate indicate subjects,
causes, covariates or subclasses.
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