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Abstract

Optimal prevention and treatment strategies for a disease of multiple causes, such
as pneumonia, must be informed by the population distribution of causes among
cases, or cause-specific case fractions (CSCFs). CSCFs may further depend on addi-
tional explanatory variables. Existing methodological literature in disease etiology
research does not fully address the regression problem, particularly under a case-
control design. Based on multivariate binary non-gold-standard diagnostic data and
additional covariate information, this paper proposes a novel and unified regression
modeling framework for estimating covariate-dependent CSCF functions in case-
control disease etiology studies. The model leverages critical control data for valid
probabilistic cause assignment for cases. We derive an efficient Markov chain Monte
Carlo algorithm for flexible posterior inference. We illustrate the inference of CSCF
functions using extensive simulations and show that the proposed model produces
less biased estimates and more valid inference of the overall CSCFs than analyses
that omit covariates. A regression analysis of pediatric pneumonia data reveals the
dependence of CSCFs upon season, age, HIV status and disease severity. The paper
concludes with a brief discussion on model extensions that may further enhance the
utility of the regression model in disease etiology research.
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1 INTRODUCTION

1.1 Motivating Application
Pneumonia is a clinical condition associated with infection of the lung tissue, which can be caused by more than 30 different
species of pathogens. In studies of pneumonia etiology, a cause is the subset of one or more pathogens infecting the lung.
Knowledge about population-level cause-specific etiologic contributions can help prioritize prevention programs and design
treatment algorithms. The Pneumonia Etiology Research for Child Health (PERCH) study is a seven-country case-control study
of the etiology of severe and very severe pneumonia.1 The primary aim of the study is to estimate the etiologic contributions
quantified by cause-specific case fractions (CSCFs), which may vary by individual-level factors such as age, enrollment date,
disease severity, nutrition status and human immunodeficiency virus (HIV) status. We will refer to the covariate-dependent
CSCFs as CSCF functions.
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1.2 Inferential Challenges: Imperfect Measurements and Additional Control Data
The fundamental challenge to estimating CSCFs is due to the unobservable true causes of disease among cases defined by clini-
cal (non-microbiological) criteria. In PERCH study, tabulating case frequencies by cause is infeasible, because the lung-infecting
pathogen(s) can rarely be directly observed due to potential clinical complications associated with invasive lung aspiration pro-
cedure.2 Alternatively, non-invasive real-time polymerase chain reaction (PCR) test was made on each case’s nasopharyngeal
(NP) specimen (referred to as NPPCR), outputting presence or absence of a list of pathogens in the nasal cavity. The NP multi-
variate binary measurements are imprecise indicators for what infected the lung. In particular, detecting a pathogen in a case’s
nasal cavity does not indicate it caused lung infection. To provide statistical control for false positive detections, PERCH study
performed NPPCR tests on pneumonia-free controls.
Valid inference must take into account two salient characteristics: imperfect sensitivities and specificities. First, tests lacking

sensitivity may miss the true causative pathogen(s) which if unadjusted may produce inferior estimates of the CSCF functions.
Second, imperfect diagnostic specificities may result in false positive detection of pathogens that are not causes of pneumonia.
Control data in PERCH study provide the requisite information for estimating false positive rates and must be integrated.

1.3 Primary Aim: Regression Modeling with the Goal of Estimating CSCF Functions
Motivated by the case-control, non-gold-standard multivariate binary diagnostic test data from the PERCH study, statistical
models and inferential algorithms have been successfully developed to estimate CSCFs without covariates.3,4 However, when
individual-level explanatory variables are also available, the question of how to estimate CSCF functions remains. Data of similar
structure have been collected by other large-scale disease etiology studies,5,6 raising acute needs for regression modeling.
The primary aim of our work is to leverage critical control diagnostic test data and covariate information when performing

regression modeling of CSCFs among the cases, which is not studied before in the statistical literature. This is partly because
such case-control studies of disease etiology using multiple diagnostic tests are completed only recently to provide new clinical
and microbiological data to inform future prevention and treatment strategies. The models for no-covariate analysis are also
developed recently, requiring extensions to regression settings to enable characterization of covariate-dependent disease etiology.
See Section 7 for additional inferential challenges associated with small cell counts of cases and controls in covariate strata.
To achieve this aim, we design a hierarchical Bayesian latent variable regression model for case-control multivariate binary
responses and derive an efficient posterior inference algorithm. In addition, through extensive simulation studies, we demonstrate
that our regression model produces more valid inference than competing case-control models that cannot use covariates.
The rest of the paper is organized as follows. Section 2 describes the data structure and introduces notations. Section 3 con-

textualizes our work by reviewing related literature. Section 4 reviews existing models without covariates. Section 5 formulates
the proposed regression model, specifies priors, and derives the posterior sampling algorithm. We demonstrate the proposed
method via extensive simulations in Section 6 and an application to PERCH data in Section 7. The paper concludes with a
discussion on future research directions.

2 DATA STRUCTURE AND NOTATIONS

Let Yi = 1 indicate a case subject with the clinically-defined disease and Yi = 0 indicate a control subject without disease. Let
M i = (Mi1, ...,MiJ )⊤ ∈ {0, 1}J represent the multivariate binary case-control, non-gold-standard diagnostic test results from
subject i. Let  = {(M i, Yi,XiYi,W i), i = 1,… , N} represent data, where Xi = (Xi1,… , Xip)⊤ are the p primary covariates
in CSCF functions and hence must be available for cases, and W i = (Wi1,… ,Wiq)⊤ are q covariates that are available in the
cases and the controls. Xi andW i may be identical, overlapping or completely different. XiYi = Xi for a case Yi = 1; XiYi is
a vector of zeros for a control subject. For notational convenience, we have ordered the continuous variables, if any, in Xi and
W i as the first p1 and q1 elements, respectively. In this paper, we focus on pre-specified Xi andW i and discuss the important
problem of variable selection in Section 8.
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3 RELATED LITERATURE

The scientific problem of estimating CSCFs can be naturally formulated as estimating the mixing weights in a finite-mixture
model where the mixture components represent distinct data generating mechanisms under different causes of diseases. In
this paper, “cause” does not represent an intervention as in classical causal inference literature. Rather, it describes a specific
mechanism leading up to the disease and follows the use in demography and disease etiology.7,3,8
Case-only Methods. A closely related application in demography is to use verbal autopsy (VA) surveys to estimate the cause-
specific mortality fractions (CSMFs) in regions without vital registry. Early methods rely on gold-standard cause-of-death
information7,8 proposed an unsupervised, informative Bayes implementation of a latent class model (“LCMs"),9 where the
latent classes represent unobserved causes of death and the survey responses are mutually independent given each latent class.
Moran et al.10 let covariates influence the conditional distribution of the survey responses given a cause via hierarchical factor
regression models. However, these methods do not account for epidemiological factors and individual characteristics that may
influence the CSMFs. Datta et al.11 recognized the variation of CSMFs by covariates and studied transfer learning from a source
population to a target population with a few deaths with observed causes. Finally, VA data are by definition case-only, hence are
not applicable in our case-control setting.
Case-control Latent Variable Methods.Methods that use case-control data to estimate CSCFs remain sparse.We review the only
existing methods. Wu et al.3 introduced a partially-latent class model (pLCM) as an extension to classical LCMs. In particular,
the pLCM is a semi-supervised method: it assumes with probabilities � = (�1,… , �L)⊤, or CSCFs, a case observation is drawn
from a mixture of L components each representing a cause of disease, or “disease class". Controls have no infection in the
lung hence are drawn from an observed class. Each causative pathogen is assumed to be observed with a higher probability
(sensitivity, or true positive rate, TPR) in case class l than among the controls. A non-causative pathogen is observed with the
same probability as in the controls (1 - specificity, or false positive rate, FPR). Under the pLCM, a higher observed marginal
positive rate for a pathogen among cases than controls indicates its etiologic importance. Bayes rule is used to estimate � and
other parameters via simple Markov chain Monte Carlo (MCMC) algorithms. The latent variable formulation has the unique
practical advantage of integrating information from multiple data sources, including extra case-only data and multiple case-
control measures, to estimate individual-level probabilities. Like classical LCMs, the pLCM assumes “local independence" (LI)
which means the measurements (Mi1,… ,MiJ ) are mutually independent given the disease class membership. Deviations from
LI, or “local dependence" (LD) are testable using the control data, which is modeled by nested pLCM (npLCM)4 to reduce the
bias in CSCF estimation. The importance of modeling LD to reduce the biases in estimating the mixing weights and response
probabilities has also been extensively studied before but in the context of classical LCMs.12,13 Finally, the npLCM is partially-
identified,4 necessitating informative priors for a subset of parameters (TPRs), which in PERCH study are obtained from external
vaccine probe studies.

4 PRELIMINARIES: EXISTING MODELS WITHOUT COVARIATES

4.1 Additional Notations for Unobserved Causes-of-disease: “Latent States”
We first introduce notations for the unobserved causes of disease for the case subjects. Suppose a total of J “agents” or “items”
are measured by the diagnostic tests. Let a binary variable �ij indicate whether or not the j-th agent caused case i’s disease,
that is, �ij = 1 if j-th agent caused the disease, �ij = 0 otherwise. We also allow more than one agent to cause the disease. We
therefore have �i = (�i1,… , �iJ )⊤ ∈ {0, 1}J which is a vector of multiple binary indicators that represent the causes for subject
i. We will also refer to �i as “latent states” for case subject i. Note that we allow the all-zero latent states �i = 0J×1. This is to
represent a case subject with a “Not Specified” (NoS) cause which, in PERCH study, represents the subgroup of cases whose
diseases are caused by agents not specified as molecular targets in the diagnostic PCR tests. Cases can thus be classfied by distinct
multivariate binary patterns of �i. We will refer to cases having the same pattern of �i as belonging to the same disease class.
In this paper, we assume that there are L classes of pre-specified latent state patterns (non-zero or all-zero) among the case

subjects. Let a set  comprise the pre-specified L distinct multivariate binary patterns so that || = L, where || is the
cardinality of. We discuss the important problem of unknown subsets in Section 8. We then introduce disease class indicators
by arbitrarily labeling elements in from 1 to L. We can now use Ii that takes its value from {1,… , L} to indicate case subject
i’s class. We also let l = {j ∶ �ij = 1, Ii = l, j = 1,… , J} represent the subset of causative agents for disease class l; for
NoS class, we have NoS = ∅.
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For a control subject i′ without disease, we use Ii′ = 0 to indicate �i′ = 0J×1 which means no measured pathogen is a cause.
For a case or a control subject, the value of Ii thus corresponds to a particular latent state pattern; we denote this correspondence
by �i = �i(Ii) which will be handy for specifying the models.
To illustrate the scientific meaning of the notations, consider a hypothetical list of J = 5 species of pathogens that are

targeted by the NPPCR tests and possible disease-causing agents in the context of PERCH study. First, under an assumption
of single-pathogen causes and no NoS class, we have L = J = 5 disease classes with distinct patterns of �:  =
{(1, 0, 0, 0, 0)⊤, (0, 1, 0, 0, 0)⊤,⋯ , (0, 0, 0, 0, 1)⊤}. We can label the five disease classes by 1,… , L = 5, so that, for example,
Ii = 2 corresponds to �i = (0, 1, 0, 0, 0)⊤ and 2 = {2}, Ii = 5 corresponds to �i = (0, 0, 0, 0, 1)⊤ and 5 = {5}. Second, under
a less restrictive assumption of single- or double-pathogen causes (still no NoS class), we have L =

(J
1

)

+
(J
2

)

= 5 + 10 = 15
disease classes. For example, cases with the first and third pathogen infecting the lung are represented by �i = (1, 0, 1, 0, 0)⊤

which has the subset of causes l = {1, 3} where Ii = l is an arbitrary integer label of the disease class.
We first briefly review existing models without covariates, because they are the basis for our proposed regression model. We

will describe the likelihood functions via generative processes, first for control data and then for case data. We then explain the
rationales along with each step to provide scientific motivations for the model structures.

4.2 PLCM: No covariate, conditional independence
We first review partially-latent class models (pLCM)3, which assumes that a subset of subjects have observed states. In PERCH,
this means assuming the control subjects have no pathogen infecting the lungs. Although a control subject has no disease,
positive responses amongM i may result from imperfect specificities of the diagnostic tests. In particular, the data generating
process for control data is from J independent Bernoulli trials with distinct success probabilities:

control data ∶ Mij ∣ �ij = 0 ∼ Bern
{

 j
}

, independently for item j = 1, ..., J , (1)

where the parameters = ( 1,… ,  J )⊤ represent the positive response probabilities absent disease, referred to as “false positive
rates" (FPRs), or 1-specificity. The data generating process for cases is an L-component finite mixture model. In the following,
Step (2) generates a disease class indicator for a case subject that takes value from {1,… , L}. The lung-infecting pathogens
are represented by �i, which is found by the correspondence between the disease class indicator Ii and �i. Given �i, Step (3)
generates measurements of �i resulting in error-prone multiple responses {Mi1,… ,MiJ} with positive response probabilities
p(j)l that takes the value of �j or  j according as whether the j-th agent caused the disease. We have

disease class ∶ Ii ∣ Yi = 1 ∼ CategoricalL {�} ,� ∈ L−1, where (2)

L−1 = {r ∈ [0, 1]L ∶
L
∑

l=1
rl = 1} is the probability simplex;

convert class to causes ∶ �i = �i(Ii) ∈ ;

case data ∶ Mij ∣ �ij , Ii = l ∼ Bern
{

p(j)l
}

, independently for item j = 1, ..., J , where (3)

response probabilities ∶ p(j)l =

{

�j , �ij = 1;
 j , �ij = 0,

l = 1,… , L. (4)

We term the parameter �j as “true positive rate" (TPR), or sensitivity. It is assumed to be larger than the FPR  j (�j >  j).
For the case model, the pLCMmakes a key “non-interference" assumption in (4) that disease-causing pathogen(s) are more fre-
quently detected among cases than controls and the non-causative pathogens are observed with the same rates among cases as in
controls4. Under the single-pathogen-cause assumption, pLCM uses J TPRs � = (�1,… , �J )⊤ and J FPRs  = ( 1,… ,  J )⊤.
Note that (1) and (3) assume conditional independence of the measurements given the lung status Ii; this is referred to as local
independence (LI).

4.3 Nested PLCM: No covariate, conditional dependence
The proposed regressionmodel in this paper will build upon an extension to pLCM, referred to as “nested pLCM”.4 We therefore
provide a review of the npLCM model structure and rationale. The npLCM is designed to reduce potential estimation bias
in � under large degrees of deviations from LI assumed in the original pLCM. It achieves the aim by characterizing residual
correlations among J binary measurementsM i even after conditioning on Ii, e.g., the controls (Ii = 0) or a case class (Ii = l,
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l ≠ 0).4 The extension is motivated by the flexibility of the classical LCM formulation9 to approximate any joint distribution
of multivariate discrete responses.14
Compared to the pLCM, the data generating process for control data now assumes an additional step of generating “sub-

classes”. Scientifically, the subclasses in the controls (and cases in the following) can represent subgroups of children with
different levels of immunity with positive rates varying across subclasses. Importantly, the conditional dependence of [M i ∣ Ii]
arises after the subclass indicators are integrated out. More specifically, we assume

control subclass ∶ Zi ∣ Yi = 0 ∼ CategoricalK {�} , � ∈ K−1, (5)

control data ∶ Mij ∣ �ij = 0, Zi = k ∼ Bern
{

 (j)k
}

, independently for item j = 1, ..., J , (6)

where � = (�1,… , �K )⊤ is the vector of subclass probabilities and lies in a probability simplex. The original pLCM results if
K = 1. Let 	 = { (j)k ∈ (0, 1)} be a J × K matrix comprising FPRs, which are necessary for modeling the imperfect binary
measurements among the controls. Let  (j) and  k represent the j-th row and k-th column. The data generating process for
cases is as follows, with an additional Step (8) for drawing a subclass indicator Zi for each case subject:

disease class ∶ Ii ∣ Yi = 1 ∼ CategoricalL {�} ,� ∈ L−1, (7)
case subclass ∶ Zi ∣ Yi = 1 ∼ CategoricalK {�} , � ∈ K−1, (8)
convert class to causes ∶ �i = �i(Ii) ∈ ;

case data ∶ Mij ∣ �ij , Zi = k, Ii = l,∼ Bern
{

p(j)kl
}

, independently for item j = 1, ..., J , (9)

response probabilities ∶ p(j)kl =

{

�(j)k , �ij = 1;
 (j)k , �ij = 0,

k = 1,… , K, and l = 1,… , L. (10)

At Step (8), the npLCM introduces K unobserved subclasses with weights � = (�1,… , �K )⊤. The weights are shared across L
disease classes. Let � = {�(j)k ∈ (0, 1)} be a J × K matrix where �(j)k represents the positive response probability in subclass
k if item j is causative in a disease class. We also refer to �(j)k as TPR or sensitivity as in pLCM. Let �(j) and �k represent the
j-th row and k-th column. In Step (10), p(j)kl represents the positive response probability ofMij in subclass k of disease class l,
which equals the TPR �(j)k for a causative pathogen and the FPR  (j)k otherwise. We collect all the positive response probabilities
for subclass k in disease class l into pkl = (p

(1)
kl ,… , p(J )kl )

⊤.

4.3.1 Subclasses: Nuisance Parameters for Characterizing Residual Correlations Given Ii
Different from what are of primary interest (the disease class indicators Ii and its population distribution CSCFs �), the latent
subclasses Zi nested in each class l = 0, 1, ..., L are nuisance parameters introduced to approximate complex multivariate
dependence among discrete data. Importantly, the conditional dependence of [M i ∣ Ii] arises after the subclass indicators are
integrated out with respect to subclass weights (� or �). In particular, Wu et al.4 used truncated stick-breaking priors for the
subclass weights to encourage few subclasses and to side-step the choice of the true number of subclasses. However, nuisance
parameter does not mean it is not important for improving the inference about the primary substantive parameters - the CSCFs.
To the contrary, Wu et al.4 showed via asymptotic bias calculations and simulations that the use of subclasses reduces the
estimation bias of CSCFs in the context without covariates and improves the coverage of the credible intervals.
Scientifically, the subclasses in the cases and controls can represent subgroups of children with different levels of immunity

with positive rates �k and  k varying across subclasses.

Remark 1. Similar to the pLCM, the FPRs 	 in the npLCM are shared between the controls and the case classes for non-
causative agents (via p(j)kl ). Different from the pLCM, the subclass mixing weights may differ between the cases (�) and the
controls (�). The special case of �k = �k, k = 1,… , K , means the covariation patterns among the non-causative pathogens in a
disease class is not different from the controls. However, relative to the controls, cases may have different strength and direction
of observed pairwise measurement dependence in each disease class. By allowing the subclass weights to differ between the
cases and the controls, npLCM is more flexible than pLCM in referencing cases’ measurements against the controls.
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5 PROPOSED REGRESSION EXTENSION

5.1 Overview
We now describe the likelihood of the proposed regression model by a generative process building on npLCM. Only Steps (11),
(12) and (13) below are results of the proposed extension; other parts of npLCM remains the same.
Data from controls provide requisite information about the specificities (1-FPRs) and covariations that may depend on covari-

ates, which must be modeled for valid probabilistic cause assignment. The proposed model assumes the control subclass weights
are covariate-dependent:

Extend (5) − control subclass ∶ Zi ∣ W i, Yi = 0 ∼ CategoricalK
{

�i
}

, �i = �(W i) ∈ K−1, (11)

where, as in npLCM4, the subclass indicators Zi’s are nuisance quantities for inducing dependence among the multivariate
binary responsesM i, but now given covariates. �i =

(

�i1,… , �iK
)⊤ is the vector of control subclass probabilities that now may

depend onW i. Scientifically, we are not interested in how the subclass probabilities are associated with covariates. We introduce
�(W ) here because, upon integrating over the distribution of Zi in (11), it helps define a flexible conditional distribution ofM i
given covariatesW i.
FPR subclass profile k,  k = ( 

(1)
k ,… ,  (J )k )⊤, receives a weight of �k(W i) for a control subject i with covariatesW i. After

integrating out Zi, we obtain marginal control FPRs: ℙ(Mij = 1 ∣ W i, Yi = 0,	) = �(W i)⊤ (j), j = 1,… , J , which depend
on W i. For example, this enables us to use control data to estimate seasonal marginal FPRs of pathogen A. During seasons
with frequent asymptomatic carriage among the controls, we may estimate the FPRs to be high. This means that presence of
pathogen A in a case’s nasal cavity (the body site where the diagnostic tests in PERCH study were done) during these seasons
does not necessarily indicate etiologic importance.
In Section 5.4.1, we propose a novel prior for the probability simplex regression �(W i) to encourage fewer effective subclasses

and side-step the choice of K by setting it to a large number that is appropriate for specific applications.
A reviewer raised the question of why formulating the model with subclass weights but not the TPRs and FPRs depending

on covariatesW i. Our modeling choice is primarily driven by observed conditional dependence among the multivariate binary
measurements even after conditional on the covariates, which in the context of PERCH study means that diagnostic measure-
ments of pathogens still exhibit mutual inhibition or stimulation even after stratifying on individual-level covariates, e.g, age. If
we directly regressed TPRs and FPRs on covariates without introducing subclasses, a more restrictive assumption of indepen-
dent measurements given covariates in each disease class would result. See Appendix A1 in the Supplementary Materials for
further remarks on the control model assumption and the use of subclasses in this paper. In addition, the biological motivation
for introducing subclasses is to characterize pathogen mutual inhibitions or stimulations by distinct the response profiles in the
subclasses. The model structure based on subclasses is also amenable to posterior computations via data augmentation.
For cases, we follow the case model for npLCM, but extend in two aspects: let CSCFs depend on covariates Xi and let case

subclass weight depend on covariatesW i. That is,

Extend (7) − disease class ∶ Ii ∣ Xi, Yi = 1 ∼ CategoricalL
{

�i
}

,�i = �(Xi) ∈ L−1, (12)
Extend (8) − case subclass ∶ Zi ∣ W i, Yi = 1 ∼ CategoricalK

{

�i
}

, �i = �(W i) ∈ K−1, (13)

where �(Xi) = (�1(Xi),… , �L(Xi))⊤ are CSCF functions evaluated atXi, and �(W i) =
(

�i1(W i),… , �iK (W i)
)⊤ is the vector

of case subclass probabilities evaluated atW i. Both �i and �i are quantities from probability simplexes.
In this paper, we have adopted the approach of specifying an upper bound of working number of subclasses, and using sparsity

priors to encourage towards a few subclasses for fitting the data. In Simulation I in Section 6, we illustrate a scenario where in
truth two subclasses are present. During the model fitting, agnostic to the truth, we specify an upper bound of 7. Figure S1 in the
Supplementary Materials shows that the model can learn from the data and figure out that two subclasses are actually needed. If
the working number of subclasses K is too small, the model may not be flexible enough to characterize the dependence among
the measurements. We therefore recommend starting with a number, e.g., 5 − 10, and then if computational resource is ample,
trying larger Ks. We usually observe that results remained similar for larger K . We can then report the final result based on a
small K that gives stable results.
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5.2 Targets of Inference
In this paper, CSCF functions �(X) is the primary target of inference. In addition, let X = (X⊤

a ,X
⊤
b )
⊤, where Xa and

Xb are pre-specified partition of X. The partition is a generic notation, and is useful to represent, e.g., Xb = {I(age >
1), I(HIV positive), I(very severe pneumonia)} and Xa can be enrollment date. It is also of policy interest to infer the overall
CSCFs given a specific age-HIV-severity stratum, while integrating over the study period.1 We define the overall CSCFs in a
stratum Xb = xb by integrating CSCF functions over the subset of covariates Xa while holding Xb fixed at specified covariate
values xb:

�∗l(Xb = xb) = ∫ �l(Xa,Xb = xb)dG(Xa),l = 1… , L, (14)

where G is a probability or empirical distribution of [Xa ∣ Xb]. Here [A ∣ B] represents the conditional distribution of ran-
dom quantity A given another random quantity B. When B = ∅, it represents the distribution of A. We simply write �∗ =
(�∗1 ,… , �∗L)

⊤ when Xb = ∅. Following the definition, �∗ {I(age > 1) = 0, I(HIV positive) = 0, I(very severe pneumonia) = 0}
characterizes the overall CSCFs in the specific age-HIV-severity stratum. Inferences made about �(X) and �∗(Xb) are
demonstrated in Section 7.

5.3 Detailed Regression Specifications
We first specify the functional forms of �(⋅), �(⋅), �(⋅), based on which we complete the joint distribution specification by
describing the priors in Section 5.4.

5.3.1 Primary Component: CSCF Regression Model
We assume the CSCFs depend on Xi via a classical multinomial logistic regression model:

�il = �l(Xi) = exp{�l(Xi)}∕
L
∑

l′=1
exp{�l′(Xi)},l = 1, ..., L, (15)

where �l(Xi) − �L(Xi) is the log odds of case i in disease class l relative to L: log�il∕�iL. The choice of not fixing a
baseline category with zero regression coefficients is based on convenient prior specification so that all categories are treated
symmetrically. Although the actual values of regression coefficients are not identifiable, contrasts between parameters in distinct
categories remain identifiable, which are then summarized in the posterior inference. We further assume additivity in a partially
linear model:

�l(x; Γ�l) =
p1
∑

j=1
f �lj(xj ; �

�
lj) + x̃

⊤
�l , (16)

where x̃ is the subvector of the predictors x that enters the model for all disease classes as linear predictors which may include
an intercept, and Γ�l = [(��l1)

⊤,… , (��lp1)
⊤, (
�l)

⊤]⊤ is the vector of the regression coefficients for disease class l. Section 8
discusses non-additive extensions. For covariates such as enrollment date that serve as proxy for factors driven by seasonality,
non-linear functional dependence is expected. In Section 5.4.2, we approximate unknown functions of a standardized continuous
variable such as f �lj via basis expansions and along with a prior on the basis coefficients to encourage smoothness.
Integrating over L unobserved disease classes and K subclasses in (13-12), we obtain the likelihood for cases:

Lreg
1 =

∏

i∶Yi=1

{ L
∑

l=1

[

�l(Xi; Γ�l)
K
∑

k=1

{

�ik ⋅ Π(M i;pkl)
}

]}

, (17)

where Π(m; s) =
∏J

j=1{sj}
mij{1 − sj}1−mij is the probability of observing J independent Bernoulli-distributed random vari-

ables with success probabilities s = (s1,… , sJ )⊤ ∈ [0, 1]J . In the following, we parameterize �ik by a logistic stick-breaking
regression technique, which we first introduce in the control model.

5.3.2 Nuisance Components: Covariate-dependent Reference Distribution
The control data serve as reference against which diagnostic test results obtained from the cases are compared when estimating
cause-specific probabilities. The control model is a mixture model with covariate-dependent mixing weights �i = �(W i).
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Control subclass weight regression. We specify �ik by logistic stick-breaking parameterization:

�ik = g(��ik)
∏

s<k
{1 − g(��is)}, if k < K, and

∏

s<k
{1 − g(��is)} otherwise, where (18)

��ik = �
�
k(W i = w; Γ�k) = �k0 +

q1
∑

j=1
f �kj(wj ; ��kj) + w̃

⊤
�k, for k = 1,… , K − 1. (19)

Let Γ�k = [(�
�
k1)

⊤,… , (��kq1)
⊤, (
�k)

⊤]⊤ be the regression coefficients in the k-th subclass, and ��ik is subject i’s linear predictor
at stick-breaking step k = 1,… , K − 1; g(⋅) ∶ ℝ → [0, 1] is a link function. In this paper, we use the logistic function
g(�) = 1∕ {1 + exp(−�)} which is consistent with (15) so that the priors of the coefficients Γ�k and Γ�l can be similar. In
addition, the parameterization is amenable to simple and efficient block posterior sampling via Pólya-Gamma augmentation15.
Generalization to other link functions such as the probit function is straightforward.16 Using the stick-breaking analogy, we
begin with a unit-length stick: for a total of K − 1 stick-breaking events, we break a fraction g(��ik) from the remaining stick at
step k, resulting in segment k of length �ik; this procedure is repeated for k = 1,… , K − 1.
It is readily derived that the likelihood for controls is: Lreg

0 =
∏

i∶Yi=0
∑K
k=1 �ikΠ(M i; k).

Case subclass weight regression. The case subclass weight curve �k(W ) is also specified via a logistic stick-breaking regression
as in the controls but with different linear predictors ��ik: �ik = g(��ik)

∏

s<k{1 − g(�
�
is)}, ∀k = 1,… , K − 1; �iK =

∏

s<K{1 −
g(��is)}. Given � and 	, �k(W ) fully determines the joint distribution [M ∣ W , I = l ≠ 0,�,	]. We do not assume �k(w) =
�k(w),∀w. Consequently, relative to the controls, the individuals in disease class l may have different strength and direction
of observed dependence between the causative {Mj ∶ j ∈ l} and non-causative {Mj ∶ j ∉ l} pathogens, or between the
non-causative pathogens. Let the k-th linear predictor

��ik = �
�
k(W i = w; Γ

�
k) = �k0 +

q1
∑

j=1
f �kj(wj ; �

�
kj) + w̃

⊤
�k, (20)

where f �kj and f �kj (from the control model) share the basis functions but the regression coefficients Γ�k =
[(��k1)

⊤,… , (��kq1)
⊤, (
�k)

⊤]⊤ differ from the control counterpart (Γ�k). In addition, we have used the same intercepts {�k0} in
(19) to ensure only important subclasses in the controls are used in the cases. For example, absent covariates W , a large and
positive �k0 effectively halts the stick-breaking procedure at step k for the controls. This is because the k-th stick-breaking will
take almost the entire remaining stick, resulting in �k+1 that is approximately zero. Applying the same intercept �k0 to the cases
makes �k+1 ≈ 0.
The joint likelihood for the proposed model is Lreg = Lreg

1 ×Lreg
0 . This completes the likelihood specification for the proposed

model.

Remark 2. Sometimes ignoring Xi and W i does not invalidate inference of the overall CSCFs �∗. For example, assuming
covariate-independence: ∀k, �k(⋅) ≡ �k, L

reg
1 and Lreg

0 integrate to L∗1 =
∏

i∶Yi=1
∑L
l=1 �

∗
l

∑K
k=1 �kΠ(M i;pkl), and L∗0 =

∏

i∶Yi=0
∑K
k=1 �

∗
kΠ(M i; k), where �∗k = ∫ �k(W )dH(W ) andH is probability or empirical distribution ofW . The integrated

likelihoodL∗1L
∗
0 is now an npLCM likelihood without covariates. In addition, it can be readily shown that no-covariate inference

for �∗ is also valid when X andW do not share common elements.

5.4 Prior Distribution
The number of parameters in Lreg({Γ�l}, {Γ

�
k}, {Γ

�
k}, {�k0},�,	) is (LCmaxp1+KCmaxq1+JK) where Cmax is the maximum

number of basis functions in {f �lj , f
�
kj , f

�
kj}. It easily exceeds the number of observed distinct binary measurement patterns. To

overcome potential overfitting and increase model interpretability, we a priori encourage the following two features: (a) few
non-trivial subclasses uniformly overW i values, and (b) constant subclass weights overW i values �k(⋅) = �k and �k(⋅) = �k.

5.4.1 Priors: Encourage Few Subclasses
Based on the parameterization of �(W ) in (18) and (19), we propose a novel prior for �(W ) over a probability simplex K−1.
Because the linear predictor ��ik depends on �k0 and other regression coefficients, priors on �k0 and the coefficients induce a prior
distribution for g(��ik) and thus a prior for �(W ) according to (18). For example, consider g(��ik) = g(�k0 + 
�k1), for subclass
denoted as k = A,B. The prior for �k0 and a Gaussian prior for 
�k1 will induce a prior for g(�

�
ik) and thus for (�A, �B , 1−�A−�B)

⊤.
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covariates W: 

subclass: k = 1, ..., K

covariates W: 

 

                                     

controls            cases

cause l = 1, …, L

coariates X: 
                        

covariates W:  

                   

covariates W: 

· · ·

ηik

· · ·

νi′kπiℓ

θ
(1)
k

θ
(J)
k

ψ
(J)
kψ

(1)
k

MiJMi1 Mi′1 Mi′J· · ·

Ii

W i W i′

αη
ik αν

i′k

µk0

deterministic

stochastic

βη
kj βν

kj
γη
kjγπ

ℓjβπ
ℓj

· · ·

Likelihood

coariates X: 

Xi

j = q1 + 1, . . . , q j = q1 + 1, . . . , q j = 1, . . . , q1j = 1, . . . , q1j = 1, . . . , p1 j = p1 + 1, . . . , p

Zi Zi′

γν
kj

FIGURE 1 The directed acyclic graph (DAG) representing the structure of the model likelihood. The quantities in squares are
either data or hyperparameters; the unknown quantities are shown in the circles. The arrows connecting variables indicate that
the parent parameterizes the distribution of the child node (solid lines) or completely determines the value of the child node
(dotted arrows). The rectangular “plates" where the variables are enclosed indicate that a similar graphical structure is repeated
over the index; The index in a plate indicate subjects, causes, covariates or subclasses. Figure S6 in the Supplementary Materials
presents the complete DAG with prior specification.

Specifically, our basic idea is to have one of {g(��ik)}
K−1
k=1 in (18) close to one a posteriori by making the posterior mean of

one of {�ik}Kk=1 large. We accomplish this by specifying a novel additive prior on the intercept in (19):

�k0 =
k
∑

m=1
ukm�

∗
k0, ukm ≥ 0, �∗k0 ∼+(0, �k0), �k0 ∼ Gamma(a0, b0), k = 1,… , K − 1. (21)

where {ukm, m = 1,… , k, and k = 1,… , K − 1} is a pre-specified triangular array. In this paper, we use ukm = 1, m = 1,… , k.
Other choices, such as ukm = 1{k = m} or ukm = 1∕k, may be useful in other settings. Here +(�, �) represents a Gaussian
distribution with mean �, precision � truncated to the positive half. We set shape a0 = �0∕2, and rate b0 = �0s20∕2. Marginalized
over �k0, �∗k0 has a truncated scaled-t distribution with degree of freedom �0 and scale s0, which peaks at zero and has a heavy
right tail. A large positive value from the heavy-tailed prior for �∗k0 at stick-breaking step k produces a large �k0 and takes away
nearly the entire stick segment currently left. We will detail the Gaussian priors for other regression coefficients in the next two
subsections.
For a fixed �0, the scale parameter s0 modulates the tendency for the prior density of �(W ) to concentrate towards a few

vertices in a probability simplex (see Figure 2). Under the prior (21), it makes higher-order subclasses a priori increasingly
unlikely to receive substantial weights. As a result, once applied to the control model (11), the prior encourages using a small
number of subclasses to approximate the observed 2J covariate-dependent probability contingency table for the control data
{M i,W i ∶ Yi = 0} in finite samples.
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FIGURE 2 Random draws from the prior for three subclass weights (�A, �B , �C )⊤ shown in ternary diagrams. The scale parame-
ter s0 increases from 1 to 10 from the top to the bottom while fixing �0 = 1. The random samples from the prior are increasingly
concentrated towards the first subclass A. In each row, the three columns correspond to random samples when ��ik equals �k0 in
the left, 
�k1 in the middle, and �k0 + 
�k1 in the right. Here we show a single ternary diagram in the middle because the Gaus-
sian prior of 
�k1 does not depend on s0: prior means are −1.07 and 0 for 
�k1, k = A,B, respectively, and the prior precision is
�
 = 1∕4. These values were chosen to produce approximately evenly-distributed draws in a ternary diagram (middle).

5.4.2 Priors: Encourage Constant Additive Regression Functions: f �lj , f
�
kj , f

�
kj

We use B-splines to approximate the additive functions of a standardized continuous variable17: f �kj(⋅) =
∑Cj
c=1 �

(c),�
kj B(c)j (⋅),

f �kj(⋅) =
∑Cj
c=1 �

(c),�
kj B(c)j (⋅), where {B

(c)
j (⋅) ∶ c = 1,… , Cj} are Cj cubic B-spline bases that are shared between the cases

and the controls for the j-th covariate W j in subclass k. We assume distinct coefficients: ��kj = {�(c),�kj , c ≤ Cj} and ��kj =
{�(c),�kj , c ≤ Cj}. In addition, we assume f �lj(⋅) =

∑C�j
c=1 �

(c),�
kj B(c),�j (⋅) where {B(c),�j (⋅) ∶ c = 1,… , C�

j } are also cubic B-spline
bases and ��lj = {�

(c),�
lj , c ≤ C�

j }. WithM interior equally-spaced knots � = (�0,… , �M+1)⊤. For example, for covariateWij
mini(Wij) = �0 < �1 <⋯ < �M < �M+1 = maxi(Wij), there areM + 4 basis functions. It readily extends to different numbers
of basis functions. We further restrict {f �lj , j ≤ p1}, {f �kj , f

�
kj , j ≤ q1} to have zero means for statistical identifiablity.

The choice of the number of bases (or, degrees of freedom) is crucial for the estimation of the CSCF functions and subclass
weight regression functions. For example, larger values of Cj and C�

j define a richer class of functions that can accommodate
abrupt seasonal effect. In the context of PERCH study, more parsimonious models are preferred. Further improvements in knot
selection is possible using knots on a nonequidistant grid so that more knots are placed where cases and controls are dense.
Our practical suggestion is to place 5 to 10 equally spaced knots. A more computationally intensive approach is to add or delete
knots using split-merge type of algorithms.18
Since the prior specifications below apply to ��lj , �

�
kj and �

�
kj , for notational simplicity, we omit the superscripts �, �, �

and use “∙" as a placeholder. We specify Gaussian random walk priors on the basis coefficients via Bayesian P-splines.17 Let
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�∙kj ∣ �
∙
kj ∼  (0C ∙j×1, �

∙
kjK

∙), where the symmetric penalty matrix K ∙ = (Δ∙1)
⊤Δ∙1 is constructed from the first-order difference

matrix Δ∙1 of dimension (C ∙j − 1) × C
∙
j . It maps adjacent B-spline coefficients to �(c),∙kj − �(c−1),∙kj , c = 2,… , C ∙j . The precision

matrix K ∙ is not full rank and hence leaves the prior of �(1),∙kj unspecified. We assume independent priors �(1),∙kj ∼ (0, k�).
Importantly, the �∙kj is the smoothing parameters. Large values of �∙kj lead to smoother fit of f ∙kj(⋅) (constant when �

∙
kj = ∞).

We specify a mixture prior for smoothing parameter �∙kj :

�∙kj ∼ �
∙
kjGamma(a� , b�) + (1 − �∙kj)IP(a

′
� , b

′
�), �

∙
kj ∼ Bern(�∙), �∙ ∼ Beta(a∙�, b

∙
�), (22)

where the Gamma-distributed component concentrates near smaller values and the inverse-Pareto component IP(�; a, b) =
a
b

(

�
b

)a−1
, a > 0, 0 < � < b, prefers larger values, and �∙kj is a binary indicator for the Gamma component. This bimodal mixture

distribution creates a sharp separation between flexible and constant fits.19,20

5.4.3 Prior Distributions for Other Parameters
We assume independent Gaussian priors (0, �
 ) for each element of 
�l , 


�
kj and 


�
kj . See Appendix A2 in the Supplementary

Materials for the choice of hyperparameters �0 and s0 in (21), (a� , b�), (a′� , b
′
�), (a

�
�, b

�
�), (a

�
�, b

�
�) and (a�� , b

�
� ) in (22), �� , and

�
 . The npLCM regression model is partially-identified.21 We assume independent �(j)k ∼ Beta(aj , bj), j ≤ J . In real data
applications, hyperparameters (aj ,bj) are chosen so that the 2.5% and 97.5% quantiles match an elicited prior range.22 For FPRs,
we assume a flat prior  (j)k ∼ Beta(1, 1) because they are empirically estimable from the control data.

5.5 Posterior Inference and Software
Figure 1 summarizes the generative process above and the priors in a directed acyclic graph (DAG). Appendix A3 in the Supple-
mentary Materials uses the DAG to derive the Markov chain Monte Carlo (MCMC) algorithm that draws posterior samples of
the unknowns to approximate their joint posterior distribution.23 Flexible posterior inferences about any functions of the model
parameters and individual latent variables are available by plugging in the posterior samples of the unknowns. All the models
in this paper are fitted using a free and publicly available R package baker (https://github.com/zhenkewu/baker).

6 SIMULATIONS

We simulate case-control non-gold-standard diagnostic test data alongwith observed continuous and/or discrete covariates under
multiple combinations of true parameter values and sample sizes that mimic the motivating PERCH study. In Simulation I, we
illustrate flexible statistical inferences about the CSCF functions. In Simulation II, we focus on the overall CSCFs �∗ in (14)
with G(⋅) being the empirical distribution of {Xi}. We compare the frequentist properties of the posterior mean �∗ obtained
from analyses with or without covariates upon repeated use across independent replications.24 We compare the proposed model
with npLCMs without covariates, because the latter is the only available method for estimating CSCFs using case-control data.
Regression analyses reduce estimation bias, retain efficiency and provide more valid frequentist coverage of the 95% credible
intervals (CrIs). The relative advantage varies by the true data generating mechanism and sample sizes.
In all analyses below, to mimic weakly informative prior for TPRs, we use independent Beta(7.13,1.32) TPR prior distri-

butions that match a wide interval 0.55 to 0.99 with the lower and upper 2.5% quantiles, respectively. We tested other priors
that matched slightly wider or narrower ranges and observed similar advantages of the proposed model. The priors for other
parameters are specified in Section 5.4.
Simulation I. We demonstrate posterior inference of true CSCF functions {�0l(X)}. We let �l(⋅), �k(⋅) and �k(⋅) depend on the
two covariates X = W = (S, T ), S and enrollment date (T ), so that regression adjustments are necessary (see Remark 2).
We simulate Nd = 500 cases and Nu = 500 controls for each of two levels of S (a discrete covariate) and uniformly sample
the subjects’ enrollment dates over a period of 300 days. Appendix A4 in the Supplementary Materials specifies the true data
generating mechanism. Based on the simulated data, pathogen A has a bimodal case positive rate curve mimicking the trends
observed of RSV in one PERCH site. Other pathogens have overall increasing case positive rate curves over enrollment dates.
We set the simulation parameters in a way that the marginal control rate may be higher than cases for earlier enrollment dates.
Row 2 of Figure 3 shows that for the 9 causes in the columns, the posterior means and 95%CrIs for the CSCF functions �l(⋅)well
recover the simulation truths �0l(⋅) in the Stratum S = 1; similarly good recovery is observed for stratum S = 2. Figure S1 in

https://github.com/zhenkewu/baker
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the Supplementary Materials further demonstrates well-recovered subclass weight curves. Appendix A5 in the Supplementary
Materials provides additional simulation results that shows the true �0l(X) is well-recovered for a discrete covariate X.
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FIGURE 3 Row 2) For each of the 9 single-agent causes (by column) in Simulation I, the posterior mean (thin black curves)
and pointwise 95% CrIs (gray) for the CSCF curves �l(x) are close to the simulation truths �0l(x) in the stratum of S = 1
(thick black curves). The overall CSCF in the particular stratum is shown along with the 95% CrI on both sides.25 In row 1), the
fitted case (red, ℙ̂(Ml = 1 ∣ X,W , Y = 1)) and control (blue, ℙ̂(Ml = 1 ∣ W , Y = 0)) positive rate curves are shown with
the posterior mean curves (thin black curves) along with pointwise 95% credible bands; The rug plots show the positive (top)
and negative (bottom) measurements made on cases and controls on the enrollment dates. The solid horizontal lines in row 1
indicate the true TPRs.

Simulation II. We show the regression model accounts for population stratification by covariates hence reduces the bias of the
posterior mean {�̂∗l} in estimating the overall CSCFs (�∗) and produces more valid 95% CrIs. We illustrate the advantage of the
regression approach under simple scenarios with a single two-level covariate X ∈ {1, 2}. We setW = X. We perform npLCM
regression analysis with K = 3 for each of R = 200 replication data sets simulated under each scenario detailed in Appendix
A4 in the Supplementary Materials corresponding to distinct numbers of causes, sample sizes, relative sizes of CSCF functions
(rare versus popular causes), signal strengths (more discrepant TPRs and FPRs indicate stronger signals), and effects ofW on
{�k(W )} and {�k(W )}.
In estimating �∗l , we focus on evaluating the marginal bias �̂∗l − �

0∗
l , where �0∗l = N−1

d
∑

i∶Yi=1
�0l(Xi) is the true overall

CSCF, and �̂∗l = N
−1
d

∑

i∶Yi=1
�̂l(Xi) is an empirical average of the posterior mean CSCFs atXi. We also evaluate the empirical

coverage rates of the 95% CrIs.
The proposed model incorporates covariates and performs better in estimating �∗ than a model that omits covariates. For

example, Figure 4(a) shows for J = 6 that, relative to no-covariate npLCM analyses, regression analyses produce posterior
means that on average have negligible relative biases (percent difference between the posterior mean and the truth relative to the
truth) for each pathogen across simulation scenarios. As expected, we observe slight relative biases from the regression model
in the bottom two rows of Figure 4(a), because the informative TPR prior Beta(7.13,1.32) has a mean value lower than the
true TPR 0.95. A more informative prior centered closer to the true TPR would further reduce the relative bias. See additional
simulations in Appendix A5 in the Supplementary Materials on the role of informative TPR priors. Regression analyses also
produce 95% CrIs for �∗l that have more valid empirical coverage rates in all the scenarios (Figure 4(b)). Misspecified models
without covariates concentrate the posterior distribution away from the true overall CSCFs, resulting in severe under-coverage.
The proposed model is flexible in incorporating covariates which enables the borrowing of information from subjects with

similar covariates. As expected, we observed improved prediction performance in simulation settings. As a more realistic test
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of the proposed method, we will discuss in more detail the comparison of the relative predictive performances of the proposed
method against a closely related stratified analytic approach on the real data analysis in Section 7.
The hyperparameter choice is critical for adequate model performance, e.g., in terms of producing small posterior mean

squared error (PMSE). We conducted sensitivity analysis for the hyperparameter that controls the sparseness of subclass weights
at values �0 = 0.01, 0.1, 1, 10, 100. We observed that the influence of hyperparameter upon the PMSE for CSCFs is stronger
when the parameters settings correspond to weaker signals, e.g., when �(j)k is closer to  (j)k ; the results are stable for different
hyperparameter choices under simulation scenarios corresponding to stronger signals.

7 RESULTS FROM PERCH STUDY

We restrict attention in this regression analysis to 518 cases and 964 controls from one of the PERCH study sites in the Southern
Hemisphere that collected more complete information on enrollment date (t, August 2011 to September 2013; standardized),
age (dichotomized to younger or older than one year), HIV status (positive or negative), disease severity for cases (severe or
very severe), and presence or absence of seven species of pathogens (five viruses and two bacteria, representing a subset of
pathogens evaluated) in NPPCR.
The names of the pathogens and the abbreviations are (i) bacteria: Haemophilus influenzae (HINF) and Streptococcus pneu-

moniae (PNEU), (ii) viruses: adenovirus (ADENO), human metapneumovirus type A or B (HMPV_A_B), parainfluenza type
1 virus (PARA_1), rhinovirus (RHINO), and respiratory syncytial virus (RSV).
We also include in the analysis the case-only, perfectly specific but imperfectly sensitive blood culture (BCX) diagnostic test

results for two bacteria from cases only. For BCX data, we assume perfect specificity which is guided by the fact that if a pathogen
did not infect the lung, it cannot be cultured from the blood (so we do not need control data to estimate the specificities). Detailed
analyses of the entire data are reported elsewhere.1 Table 1 shows the observed frequencies in theW = (age, HIV status) strata
for controls and X = (age, HIV status, disease severity) strata for cases. The two case strata with the most subjects are severe
pneumonia children who were HIV negative, under or above one year of age. Table 1 has small cell counts.
Regression modeling techniques must be used to deal with small strata of cases and controls and obtain uncertainty quan-

tification. Consider the discrete covariates only: a naive fully-stratified analysis that fits an npLCM to the case-control data in
each covariate stratum is problematic. First, sparsely-populated strata defined by many discrete covariates may lead to unstable
CSCF estimates. Second, it is often of policy interest to estimate the overall CSCFs �∗. Since the informative TPR priors are
often elicited for a case population and rarely for each stratum, reusing independent prior distributions of the TPRs across all the
strata during multiple npLCM fits will lead to overly-optimistic posterior uncertainty in �∗, hampering policy decisions. Third,
relative to controls, cases may be further stratified by additional covariates (e.g., disease severity), resulting in finer case strata
nested in each control stratum (e.g., see Table 1). Because every npLCM fit requires a case and control sample, a control stratum
would have to be reused for every finer case strata. We use the proposed regression model to address these issues.
Figure S4 in the Supplementary Materials shows summary statistics for the NPPCR and BCX data including the positive

rates in the cases and the controls and the conditional odds ratio (COR) contrasting the case and control rates adjusting for the
presence or absence of other pathogens (NPPCR data only).
To fit the model, we include in the regression analysis seven single-pathogen causes l = {l}, l = 1,… , J (= 7) and

a “Not Specified (NoS)" cause denoted by NoS = ∅ to account for other non-targeted causative agents. We incorporate the
prior knowledge about the TPRs of the NPPCR measures from laboratory experts. We set the Beta priors for sensitivities by
a� = 12.68 and b� = 4.83, so that the 2.5% and 97.5% quantiles match the lower and upper ranges of plausible sensitivity values
of 0.5 and 0.9, respectively. We use a working number of subclasses K = 5. Results under larger Ks remain nearly the same.
In the presence of BCX data for a subset of two bacteria (only bacteria can be cultured from blood), because BCX data have
very low prevalence, we multiple Lreg by BCX data likelihood in the simpler pLCM (2)-(4) and specify the Beta(7.59,58.97)
prior for the two TPRs of BCX measurements matching the range of 5 − 20% based on existing vaccine probe trials.26 In the
CSCF regression model f �lj(t), we use 7 d.f. for B-spline expansion of the additive function for the standardized enrollment
date t at uniform knots along with three binary indicators for age older than one, HIV positive, very severe pneumonia. In the
subclass weight regression model, we use 5 d.f. for the standardized enrollment date t with uniform knots and two indicators:
1{agei ≥ 1 year} and 1{HIVi = 1}. The prior distributions for other parameters follow the specification in Section 5.4.
The regression analysis produces seasonal estimates of the CSCF function for each cause that varies in trend and magnitude

among the eight case strata defined by age, HIV status and disease severity. Figure 5 shows for two age-HIV-severity strata the
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posterior mean CSCF curves and 95% pointwise credible bands of the �l(t, age,HIV, severity) as a function of t. For example,
among the younger, HIV negative and severe pneumonia children (Figure 5(a)), the CSCF curve of RSV is estimated to have
a prominent bimodal temporal pattern that peaked at two consecutive winters in the Southern Hemisphere (June 2012 and
2013), suggesting prioritization of preventativemeasures and treatment algorithms for RSV. Other single-pathogen causesHINF,
PNEU,ADENO,HMPV_A_B andPARA_1 have overall low and stable CSCF curves across seasons. As a result, the estimated
CSCF curve ofNoS shows a trend with a higher level of uncertainty that is complementary toRSV. In contrast, Figure 5(b) shows
a lower degree of seasonal variation of the RSV CSCF curve among the older, HIV negative and severe pneumonia children.
The inferential algorithm based on the regression model can also perform individual-level cause-specific probability assign-

ment given a case’s measurements and automatically use covariate values during assignment. Figure S5 in the Supplementary
Materials show distinct cause-specific probabilities for two cases (one older than one and the other younger than one) with
all-negative NPPCR results.
We estimate the overall CSCFs �∗(age,HIV, severity) in every age-HIV-severity stratum by averaging the CSCF function

estimates over the empirical distribution of enrollment date in each stratum. For example, contrasting the two age-HIV-severity
strata in Figure 5(a) and 5(b), the case positive rate of RSV among the older children drops from 39.3% to 17.9% but the control
positive rates remain similar (from 3.0% to 4.1%). The overall CSCF estimate for RSV (�∗

RSV
(age = 0,HIV = 0, severity = 0))

drops from 47.7 (95% CrI ∶ 37.6, 61.5)% to 17.3 (95% CrI ∶ 8.0, 29.1)%. The CSCF estimate for NoS (�∗
NoS
(age = 1,HIV =

0, severity = 0)) increases from 37.6 (95% CrI ∶ 20.3, 51.9)% to 56.1 (95% CrI ∶ 29.5, 79.3)%. The overall CSCFs for other
causes remain similar between the younger and older, HIV negative severe pneumonia children.
Comparison with Other Methods. The most relevant comparison method is based on stratum-specific npLCM analysis. Because
in the data analysis, the enrollment date is continuous, stratification requires categorization of the enrollment date into “time
periods”, which after discussion with scientists in PERCH study is not straightforward. We decided to only stratify on the three
binary covariates used in the main analysis, I(age > 1), I(HIV positive), I(very severe pneumonia). Because in the PERCH study,
case and control enrollment are frequency matched, leaving out enrollment date still provides a reasonable comparison against
the main method. We re-emphasize that, however, the stratified analysis cannot output a CSCF as a function of continuous
covariates such as enrollment date.
We compare the proposed and the stratum-specific analysis via prediction of the multivariate binary responses {M i} from

the diagnostic tests. We define the prediction based on the posterior mean of the positive response probabilities given all the
data . We predict a response Mij to be 1 if the posterior mean of the positive response probability given the individual’s
covariate values exceeds 0.5, i.e.E[

∑L
l=1 �l(xi)

∑K
k=1 �k(wi)p

(j)
kl ∣ ] > 0.5; otherwise, we let the prediction be 0. The prediction

error is defined as the fraction of incorrectly predicted responses. We found that the proposed regression method has gained
additional ability to predict the observed responses compared to the stratum specific method. This is partly due to the ability of
the regression model to borrow information across subjects with different covariate values, e.g., through additive assumptions
and smoothing over the continuous enrollment date. We also conducted a no-covariate analysis and compared its prediction
performance; the complete no-covariate analysis results are shown in Figure S4 in the Supplementary Materials. Among the
three methods, proposed regression model, stratified analysis and no-covariate analysis, the prediction errors are 10.3%, 17.8%,
24.7%, respectively, with the smallest prediction error based on the proposed regression model.

8 DISCUSSION

In disease etiology studies where gold-standard data are infeasible to obtain, epidemiologists need to integrate case and control
data to draw inference about the population CSCFs and individual cause-specific probabilities that may depend on covariates.
The only existing methods for case-control data based on npLCM do not describe the relationship between covariates and the
CSCFs. This paper fills this analytic gap by extending npLCM to a unified hierarchical Bayesian regressionmodeling framework.
The model-based inferential algorithm estimates CSCF functions and is amenable to efficient posterior computation.
We have shown via simulations that the regression approach accounts for population stratification by important covariates and,

as expected, reduces estimation biases and produces 95% credible intervals that have more valid empirical coverage rates than
an npLCM analysis that omits covariates. In addition, the proposed regression analysis can readily integrate multiple sources of
diagnostic measurements with distinct levels of diagnostic sensitivities and specificities, a subset of which are only available from
cases. Our regression analysis uses data from one PERCH site with more complete covariate information and reveals prominent
dependence of the CSCFs of the virus RSV upon seasonality and a pneumonia child’s age, HIV status and disease severity.
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The proposed approach has three distinguishing features: 1) It allows an analyst to specify a model for the functional
dependence of the CSCFs upon important covariates. Assumptions such as additivity further improves estimation stability
for sparsely-populated strata defined by many discrete covariates. 2) The model incorporates control data to infer the CSCF
functions. The posterior algorithm estimates a parsimonious covariate-dependent reference distribution of the diagnostic mea-
surements from controls, which is critical for correctly assigning cause-specific probabilities for individual cases. Finally, 3) the
model uses informative priors of the sensitivities (TPRs) only once in the entire target population for which these priors were
intended. Relative to a fully-stratified npLCM analysis that reuses these TPR priors, the proposed regression analysis avoids
overly-optimistic uncertainty estimates for the overall CSCFs.
The covariate-stratified approach have the advantage of being simple-to-understand and easy to implement given the previous

generation of the nested partially-latent class model. However, the pain points are 1) its requirement on the sample size for each
covariate stratum, and 2) the controls may be reused as statistical comparison group for multiple case stratum. As shown in
Table 1, both issues appeared. First, small sample sizes in many strata (e.g., the final row has only three cases: age older than 1,
HIV positive, very severe) result in a stratified analysis that is not statistically stable. Turning to the second issue of selecting
the control group, a naive stratified analysis would need to use the 51 controls twice, one for the not very severe case group (24
cases) and the other for very severe case group (3 cases). Reusing control data twice may lead to incorrect variance estimate of
the CSCFs. The above two issues prevented producing reliable results based on the stratified analysis. However, we provided
comparison results with only discrete covariates in the regression framework and showed advantage of the proposed regression
approach that can handle both continuous and discrete covariates.
Future work may further expand the utility of the proposed methods. First, flexible and parsimonious alternatives to the

additive models may capture important interaction effects.27 Second, in the presence of many covariates, class-specific predictor
selection methods for �l(Xi) may provide further regularization and improve interpretability28. Third, when the subsets of
pathogens {l} that have caused the diseases in the population are unknown, the proposed method can be combined with subset
selection procedures29. Finally, wide applicability of posterior sampling algorithms have increased the use of complex and
multilevel hierarchical models like the proposed model in this paper. Other methods for hyperparameter choice may be marginal
likelihood maximization, specifying another layer of hyperpriors, or empirical Bayes approach. A more thorough comparative
study for different methods of hyperparameter choice is warranted. We leave this for future work.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

TABLE 1 The observed counts (frequencies) of controls by age and HIV status; Case counts are further stratified by
disease severity (1: yes; 0: no). The observed marginal rates are shown at the bottom. Enrollment date (t) is not stratified
upon here.

age ≥ 1 HIV positive # controls (%) very severe (VS) # cases (%)
total: 964 (100) (case-only) total: 518 (100)

0 0 548 (56.8) 0 208 (40.2)
1 120 (23.2)

1 0 280 (29.0) 0 69 (13.3)
1 32 (6.2)

0 1 85 (8.8) 0 37 (7.1)
1 25 (4.8)

1 1 51 (5.3) 0 24 (4.6)
1 3 (0.6)

case: 24.7% 17.2% 34.7%
control: 34.3% 14.1% -

How to cite this article: Z. Wu and I. Chen (2020+), Probabilistic Cause-of-disease Assignment using Case-control Diagnostic
Tests: A Hierarchical Bayesian Latent Variable Regression Approach, Statistics in Medicine, 20XX;XX:X–X.
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FIGURE 4 The regression analyses produce less biased posterior mean estimates and more valid empirical coverage rates for �∗l
in Simulation II. Each panel corresponds to one of 16 combinations of true parameter values and sample sizes. Top) Each boxplot
(left: regression; right: no regression) shows the distribution of the percent relative bias of the posterior mean in estimating the
overall CSCF �∗l for six causes (A - F); “- - -" indicates zero bias. Bottom) The empirical coverage rates of the 95% CrIs with
regression (∙) or without regression (▴); “- - -" indicates the nominal 95% level. Since each coverage rate for �∗l is computed
from R = 200 binary observations of the true �0∗l being covered or not, a 95% CI is also shown.
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FIGURE 5 Estimated seasonal CSCF for two most prevalent age-HIV-severity case strata under single-pathogen causes
(HINF, PNEU, ADENO, HMPVAB, PARA1, RHINO, RSV) and a “Not Specified" cause. In each age-HIV-severity case
stratum and for each cause l:
Row 2): Temporal trend �̂l(t; age,HIV, severity) enveloped by pointwise 95% CrIs (gray). The horizontal solid line shows
the estimated overall CSCF �̂∗l(age,HIV, severity) averaged over cases in the present stratum (dashed black lines: 95%
CrI). The rug plot on the x-axis indicates cases’ enrollment dates.
Row 1) shows the fitted temporal case (red) and control (blue) positive rate curves enclosed by the pointwise 95%CrIs; The
two rug plots at the top (bottom) indicate the dates of the cases and controls being enrolled and tested positive (negative)
for the pathogen.
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