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Abstract

We consider reinforcement learning (RL) methods in offline nonstationary environ-
ments. Many existing RL algorithms in the literature rely on the stationarity assump-
tion that requires the system transition and the reward function to be constant over time.
However, the stationarity assumption is restrictive in practice and is likely to be violated
in a number of applications, including traffic signal control, robotics and mobile health.
In this paper, we develop a consistent procedure to test the nonstationarity of the opti-
mal policy based on pre-collected historical data, without additional online data collec-
tion. Based on the proposed test, we further develop a sequential change point detection
method that can be naturally coupled with existing state-of-the-art RL methods for pol-
icy optimisation in nonstationary environments. The usefulness of our method is illus-
trated by theoretical results, simulation studies, and a real data example from the 2018
Intern Health Study1. A Python implementation of the proposed procedure is available at
https://github.com/limengbinggz/CUSUM-RL.

Key Words: Reinforcement learning; Nonstationarity; Hypothesis testing; Change point de-

tection; Policy optimisation.

1 Introduction

Reinforcement learning (RL, see Sutton and Barto, 2018; Levine et al., 2020, for an overview)

is a powerful machine learning technique that allows an agent to learn and interact with a

∗The first two authors contributed equally to this paper
1https://www.srijan-sen-lab.com/intern-health-study
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given environment, to maximise the cumulative reward the agent receives. It has been arguably

one of the most vibrant research frontiers in machine learning over the last few years. Over

100 papers on RL were accepted for presentation at ICML 2021, a premier conference in the

machine learning area, accounting for more than 10% of the accepted papers in total. Signif-

icant progress has been made in solving challenging problems across various domains using

RL, including games (Silver et al., 2016), robotics (Kormushev et al., 2013), healthcare (Ko-

morowski et al., 2018), bidding (Jin et al., 2018), ridesharing (Xu et al., 2018) and automated

driving (de Haan et al., 2019), among many others.

Despite the popularity of developing various RL algorithms in the computer science lit-

erature, statistics as a field has only recently begun to engage with RL both in depth and in

breadth. Most works in the statistics literature focused on developing data-driven methodolo-

gies for precision medicine (see e.g., Murphy, 2003; Robins, 2004; Chakraborty et al., 2010;

Qian and Murphy, 2011; Zhang et al., 2013; Zhao et al., 2015; Wallace and Moodie, 2015;

Song et al., 2015; Luedtke and van der Laan, 2016; Zhu et al., 2017; Zhang et al., 2018; Shi

et al., 2018; Wang et al., 2018; Qi et al., 2020; Nie et al., 2021; Fang et al., 2022). See also

Tsiatis et al. (2019); Kosorok and Laber (2019) for overviews. These aforementioned methods

were primarily motivated by applications in finite horizon settings with only a few treatment

stages. They require a large number of patients in the observed data to achieve consistent es-

timation and become ineffective in the long or infinite horizon setting where the number of

decision stages diverges with the number of observations. The latter setting is widely studied

in the computer science literature to formulate many sequential decision making problems in

games, robotics, ridesharing, etc. Recently, a few algorithms have been proposed in the statis-

tics literature for policy optimisation or evaluation in infinite horizon settings (Ertefaie and

Strawderman, 2018; Luckett et al., 2020; Liao et al., 2020b; Hu et al., 2021a; Liao et al., 2021;

Shi et al., 2021; Ramprasad et al., 2021).

Central to the empirical validity of most existing state-of-the-art RL algorithms is the sta-

tionarity assumption that requires the state transition and reward functions to be constant over

time. Although this assumption is valid in online video games, it is likely violated in a number
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of other applications, including traffic signal control (Padakandla et al., 2020), robotic navi-

gation (Niroui et al., 2019), mobile health (Liao et al., 2020a) and infectious disease control

Cazelles et al. (2018). It was also mentioned in the seminal book by Sutton and Barto (2018)

that “nonstationarity is the case most commonly encountered in reinforcement learning”. We

consider a few examples to elaborate.

One motivating example considered in our paper is from the Intern Health Study (IHS;

NeCamp et al., 2020). Medical internship, the first phase of professional medical training in

the United States, is a stressful period in the career of physicians. The residents are faced with

difficult decisions, long work hours and sleep deprivation. One goal of this ongoing prospec-

tive longitudinal study is to investigate when to provide mHealth interventions by sending

mobile prompts via a customised study app to provide timely tips for interns to practice anti-

sedentary routines that may promote physical well-being. The study data were collected from a

6-month micro-randomised trial on subjects from different specialties. For each subject, daily

step counts and sleep minutes were measured via wearable devices (Fitbit) and mood scores

measured via ecological momentary assessments (EMAs). The objectively measured physi-

ological variables and the EMA answers have been shown to moderate treatment effects and

thus can be used as inputs of treatment policies to improve the interns’ physical and psycho-

logical well-being (NeCamp et al., 2020). In this paper, we focus on policy optimisation for

improving time-discounted cumulative step counts in the presence of potential temporal non-

stationarity. Nonstationarity is a serious issue in the mHealth study. For example, in the context

of mobile-delivered prompts, the longer a person is under intervention, the more they may ha-

bituate to the prompts or become overburdened, resulting in subjects being less responsive to

the contents of the suggestions. The treatment effect of activity suggestions may transition

from positive to negative, suggesting treatment policies may benefit from adaptation over time.

Failure to recognise potential nonstationarity in treatment effects over time may lead to policies

that overburden medical interns, resulting in app deletion and study dropouts.

As another example, the coronavirus disease 2019 (COVID-19) has been one of the worst

global pandemics in history affecting millions of people. There is a growing interest in ap-
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plying RL to develop data-driven intervention policies to contain the spread of the virus (see

e.g., Eftekhari et al., 2020; Kompella et al., 2020; Wan et al., 2020). However, the spread of

COVID-19 is an extremely complex process and is nonstationary over time. As a result, the

optimal policy is likely to vary across time. For instance, at the beginning of the pandemic,

stringent lockdown measures have been shown to be highly effective to control the spread of

the virus (Anderson et al., 2020). However, these measures would bring enormous costs to the

economy (Eichenbaum et al., 2020). When effective vaccines are developed and a large propor-

tion of people are fully vaccinated, it is natural to gradually ease these lockdown restrictions.

However, the efficacy of the vaccine is likely to decline over time (Mahase, 2021) and becomes

unclear when new variants of the virus arise. To summarise, it is crucial for policy makers to

take nonstationarity into consideration to improve global health benefits while balancing the

negative impacts of economic and social consequences.

In this paper, we propose a consistent procedure to test the nonstationarity of the optimal

policy in infinite horizon settings, based on a pre-collected historical dataset. The proposed test

can be naturally coupled with existing state-of-the-art RL algorithms for policy optimisation

(e.g., control). Our contributions are summarised as follows.

Scientifically, policy optimisation in nonstationary environments is a vital problem. How-

ever, it has been less studied in the existing literature. When the stationary assumption is

violated, applying RL algorithms to the entire dataset would yield a sub-optimal policy. A

natural idea is to apply RL algorithms to more recent observations to learn the optimal policy.

However, in real-world applications, it remains challenging to properly select “the best data

segment” without domain knowledge. On the one hand, including too many past observations

in the data segment would yield a nonstationary data subset. On the other hand, if the data seg-

ment contains only a few most recent observations, it would result in a very noisy policy. To

determine the best segment of stationarity, we propose to test if the optimal policy is stationary

on a given data segment, and backward sequentially apply our test to a set of candidate data

segments for change point detection. Then we apply existing RL algorithms to the data seg-

ment after the change. We apply such a procedure to both synthetic and real datasets in Section
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6. Results show that the estimated policy based on our constructed data segment is no worse

and often better than other baseline methods. In the motivating IHS study, the proposed method

reveals the benefit of nonstationarity detection for optimising population physical activities in

some medical specialties, leading to on average 170 to 200 additional steps per day for each

subject. Promoting the maintenance of healthy behaviors or reducing negative chronic health

outcomes often requires longer-term state monitoring and decision-making. As RL continues

to drive continuous learning of optimal interventions in mHealth studies, this paper substanti-

ates the need of accommodating nonstationarity with a simple statistical solution.

Methodologically, we propose a novel testing procedure to test the stationarity of the opti-

mal policy and an original change point detection method. To the best of our knowledge, this

is the first work on developing statistically sound tests for stationarity in offline RL domains.

In the time series literature, a number of works have been developed to test the stationar-

ity of a given time series and detect the change point locations, in models ranging from the

simple piecewise-constant signal plus noise setting (Killick et al., 2012; Fryzlewicz, 2014) to

high-dimensional panel data and time series (Cho and Fryzlewicz, 2015; Wang and Samworth,

2018); see also Aminikhanghahi and Cook (2017) and Truong et al. (2020) for reviews.

Different from the aforementioned works in time series, the optimal policy is a function of

some time-varying state vector. To test its stationarity, we need to check whether the optimal

action is stationary over time, for each possible value of the state. In addition, the estimated

optimal policy is a highly nonlinear functional of the observed data, making it difficult to

derive its limiting distribution. To address these challenges, we notice that the optimal policy

is uniquely determined by the optimal state-action value function (also known as the optimal Q-

function, see Section 2.3). This motivates us to focus on testing the stationarity of the optimal

Q-function. We use the sieve basis to model the optimal Q-function, construct CUSUM-type

test statistics and employ multiplier bootstrap to obtain the critical value. It is worth mentioning

that our test is able to detect both abrupt and smooth changes, as demonstrated in Section 6.

Finally, we apply the proposed test to a set of potential change point locations to compute

the p-values, fit an isotonic regression model (see e.g., Brunk et al., 1972; Mukerjee, 1988) to
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these p-values and identify the change point location based on the fitted model. The use of

isotonic regression allows us to borrow information from all p-values, yielding a more accurate

estimator. We remark that, our proposal is an example of harnessing the power of classical

statistical inferential tools such as hypothesis testing and isotonic regression to help address an

important practical issue in RL.

Theoretically, we systematically establish the size and power properties of the proposed test

under a bidirectional asymptotic framework that allows either the number of data trajectories

or the number of decision points per trajectory to diverge to infinity. This is useful for different

types of applications. There are plenty of mobile health studies that involve a number of sub-

jects and the objective is to develop an optimal policy at the population-level to maximise the

overall reward, as in our real data application. Meanwhile, there are other applications where

the number of subjects is limited (see e.g., Marling and Bunescu, 2020).

We briefly summarise our theoretical findings here. If the system transitions are stationary

over time, the proposed test controls the type-I error even when the sieve approximation error

converges slower than the parametric rate. However, the faster the Q-estimator converges to

the optimal Q-function, the more powerful the proposed test. Establishing these theoretical

results raises a number of challenges. In particular, when the number of sieve basis functions

is fixed, the limiting distribution of the test statistic can be established based on classical weak

convergence theorems (van der Vaart and Wellner, 1996). However, in our setting, we re-

quire the number of sieve basis functions to diverge with the number of observations to allow

the approximation error to decay to zero and those theorems are no longer applicable. One

of our major technical contributions lies in developing a matrix concentration inequality for

nonstationarity Markov decision process (see Lemma B.2 in the supplementary article). The

derivation is non-trivial and naively applying the concentration inequality designed for scalar

random variables (Alquier et al., 2019) would yield a loose error bound. See Appendix B.4

for details. Another technical contribution is to derive the limiting distribution of the estimated

optimal Q-function computed via the fitted Q-iteration (FQI, Ernst et al., 2005) algorithm, one

of the most popular Q-learning type algorithms (see Theorem 3 in Section 5.3). We remark
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that in the existing literature, most papers focus on establishing non-asymptotic error bound of

the estimated Q-function (see e.g., Munos and Szepesvári, 2008; Chen and Jiang, 2019; Fan

et al., 2020; Uehara et al., 2021).

The rest of the paper is organised as follows. In Section 2, we introduce the offline RL

problem and review some existing algorithms. In Section 3, we illustrate our main idea of

learning the optimal policy in nonstationary environment. In Section 4, we detail our test

procedure for change point detection. We establish the theoretical properties of our procedure

in Section 5, conduct simulation studies in Section 6, and apply the proposed procedure to our

data application in Section 7. Finally, we conclude the paper in Section 8.

2 Preliminaries

We first discuss the data structure and formulate our problem of interest. We next discuss

the stationarity assumption, which forms the foundation of most existing state-of-the-art RL

algorithms. Finally, we review Q-learning (Watkins and Dayan, 1992), one of the most popular

RL algorithms, as it is related to our proposal.

2.1 Data and Problem Formulation

We consider an offline setting where the objective is learn an optimal policy based on a pre-

collected dataset, without additional online data collection. The offline dataset can be collected

from a randomised trial or observational study, and is summarised as

{(Si,t, Ai,t, Ri,t)}1≤i≤N,0≤t≤T ,

which consists of N i.i.d. copies of a population trajectory {(St, At, Rt)}t≥0 censored at some

time T ≥ 2, where i indexes the ith subject, t indexes the tth time point and (St, At, Rt) denotes

the state-action-reward triplet at time t. In the intern health project, the state (e.g., time-varying

covariates) corresponds to the time-varying coefficients associated with each medical, such as

their mood score, step counts and sleep times. The action (e.g., treatment intervention) is a

binary variable, corresponding to whether to send some text message to the doctor or not.
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The immediate reward (e.g., clinical outcome) is the step counts. We assume the rewards are

uniformly bounded. This assumption is commonly imposed in the literature to simplify the

theoretical analysis (see e.g., Fan et al., 2020).

A policy defines the way that a decision maker chooses an action at each decision time. A

history dependent policy π is a sequence of decision rules {πt}t≥0 such that each πt takes the

observed data history S̄t including St and the state-action-reward triplets up to time t − 1 as

input, and outputs a probability distribution on the action space, denoted by πt(•|S̄t). Under π,

the decision maker will set At = a with probability πt(a|S̄t) at the tth decision point. When

each πt is binary-valued, π is referred to as a deterministic policy. Suppose the decision rules

are stationary over time, i.e., there exists some function π∗ such that πt(•|S̄t) = π∗(•|St) almost

surely for any t, then π is referred to as a stationary policy and we write π∗(a|s) = π(a|s) for

any (a, s).

Our objective is to learn an optimal policy based on the observed data to maximise the

expected discounted cumulative reward received in the future, starting from time T + 1,

arg max
π

E
{
Eπ
(∑
t≥0

γtRt+T+1|ST+1

)
︸ ︷︷ ︸

V π
(T+1):∞(ST+1)

}
, (1)

where 0 < γ < 1 denotes a pre-specified discounted factor that balances the trade-off between

the immediate and future outcomes, the first expectation is taken with respect to the marginal

distribution of ST+1 and the second expectation Eπ is taken by assuming that all the actions are

assigned according to π after time T . V π
(T+1):∞ is referred to as the (state) value function, as it

corresponds to the expected return conditional on the state ST+1.

2.2 The Stationarity Assumption and the Optimal Policy

As commented in the introduction, most existing state-of-the-art RL algorithms focus on a sta-

tionary environment. They model the observed data history using the Markov decision process

model (Puterman, 1994) and rely on the following assumptions:

MAST (Markov assumption with stationary transitions) There exists some transition function
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F and a sequence of i.i.d. random noises {εt}t such that each εt is independent of {(Aj, Sj)}j≤t
and {Rj}j<t, and that

St+1 = F (St, At, εt).

CMIAST (Conditional mean independence assumption with stationary rewards) There exists

some reward function r such that

E(Rt|At, S̄t) = r(At, St).

We make a few remarks. First, by definition, F defines the conditional distribution of the

future state given the current state-action pair whereas r corresponds to the conditional mean

function of the reward.

Second, both conditions impose certain conditional independence assumptions on the data

trajectory. In particular, notice that both F and r are independent of the past state-action-

reward triplet given the current state-action pair. These conditional independence assumptions

are testable from the observed data; see e.g. the test in Shi et al. (2020b). In practice, one can

construct the state by concatenating measurements over sufficiently many decision points to

ensure that these conditional independence assumptions hold.

Finally, both conditions require F and r to be stationary over time. Under the stationarity

assumption, the value function in (1) is time-homogeneous. More importantly, such an assump-

tion guarantees the existence of an optimal stationary policy πopt whose value V πopt

(T+1):∞(s) is

no worse than V π
(T+1):∞(s) for any history dependence policy π and any s (Puterman, 1994).

It allows us to focus on the class of stationary policies and substantially simplifies the calcu-

lation. However, as we have commented in the introduction, the stationarity assumption could

be violated in some applications, invalidating many RL algorithms developed in the literature.

2.3 Q-Learning

We review Q-learning, one of the most popular algorithms developed under the stationarity

assumption. It is model-free in the sense that the optimal policy is derived without directly
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estimating the transition and reward functions. We begin by introducing the state-action value

function, better known as the Q-function, defined as

Qπ
t:∞(a, s) = Eπ

(∑
k≥0

γkRt+k|At = a, St = s

)
,

for any policy π. Under stationarity, we have Qπ
t:∞ = Qπ for any t.

The following observation forms the basis of Q-learning: Under MAST and CMIAST, there

exists an optimal Q-function Qopt such that the optimal stationary policy is greedy with respect

to Q, i.e.,

πopt(a|s) =

{
1, if a = arg maxa′ Q

opt(a′, s);
0, otherwise. (2)

For the ease of notation, we use πopt(s) to denote the action a′ that maximises Qopt(a′, s).

In addition, Qopt satisfies the following Bellman optimality equation,

E
{
Rt + γmax

a
Qopt(a, St+1)|At, St

}
= Qopt(At, St), (3)

almost surely for any t.

Existing Q-learning type algorithms propose to learn Qopt based on the Bellman optimality

equation and derive the estimated optimal policy based on (2). Examples include the tabular

Q-learning algorithm (Watkins and Dayan, 1992), the gradient Q-learning algorithm (Maei

et al., 2010; Ertefaie and Strawderman, 2018), FQI, double Q-learning (Hasselt, 2010) and

deep Q-network (DQN, Mnih et al., 2015) among many others.

3 Learning under Nonstationarity

We consider policy optimisation in a nonstationary environment. To deal with nonstationarity,

we relax MAST and CMIAST by allowing the transition function P and the reward function r

to depend on the decision time t. This yields the following set of conditions.

MA (Markov assumption) There exists some transition functionFt such that St+1 = Ft(St, At, εt).

CMIA (Conditional mean independent assumption) There exists some reward function rt such

that E(Rt|At, S̄t) = rt(At, St).
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As we have commented in Section 2.2, these two conditions are mild. In practice, we can con-

catenate measurements over sufficiently many decision points to construct the state to convert

a nonMarkov process to satisfy these conditions (Mnih et al., 2015; Shi et al., 2020b).

In view of (1), since the future transition and reward functions are unknown to us, the

control problem is impossible to solve without additional assumptions. Toward that end, we

assume that the reward and transition function are locally stationary at time T . More specifi-

cally, we assume

sup
T≤t≤T+M

sup
a,s,S
|P(Ft(s, a, ε1) ∈ S)− P(Ft+1(s, a, ε1) ∈ S)| = o(1),

sup
T≤t≤T+M

sup
a,s
|rt(a, s)− rt+1(a, s)| = o(1),

(4)

for some large integer M > 0, where o(1) denotes some quantity that decays to zero as the

number of observations N × T diverges to infinity, and S denotes an arbitrary measurable

subset of the state space. The first condition in (4) essentially requires the total variation norm

between the two conditional distributions St+1|St = s, At = a and St+2|St+1 = s, At+1 = a to

be negligible for any a, s, t.

Under this assumption, we have the following results.

Lemma 1. Suppose (4) holds and M →∞ as NT →∞. Then

sup
π
|EV π

(T+1):∞(ST+1)− EV π
T (ST+1)| = o(1),

where V π
T denotes the value function with the future transition and reward functions {Pt}t>T ,

{rt}t>T replaced by PT and rT , respectively.

Consequently, any policy that maximises EV π
T (ST+1) approximately maximises EV π

(T+1):∞(ST+1)

as well. Since the transition and reward functions are invariant in the definition of V π
T , there

exists an optimal stationary policy πoptT that maximises EV π
T (ST+1). To identify πoptT , we pro-

pose to use Q-learning. It suffices to learn the optimal Q-function Qopt
T , which is a version of

Qopt with the transition and reward function equal to PT and rT , respectively. Similarly, we

define Qopt
t to be the optimal Q-function with the transition and reward function equal to Pt

and rt, for any t.
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We next introduce our method to estimate Qopt
T . Due to the potential nonstationarity in the

data, it is not desired to apply existing Q-learning type algorithms to all the data. Our solution

is to choose a decision point T ∗ such that {Qopt
t }T ∗≤t<T are close to Qopt

T and apply Q-learning

to the data subset {(Si,t, Ai,t, Ri,t)}1≤i≤N,T ∗≤t≤T . It remains critical to determine T ∗. A large

T ∗ would yield a biased Q-estimator whereas a small T ∗ would limit the size of the reduced

data subset, yielding a very noise policy.

Toward that end, we propose a data-adaptive method to determine T ∗. Specifically, for any

candidate change point location t, we first develop a nonparametric test to test whether the

optimal Q-function {Qopt
j }j is stationary in the time interval [t, T ]. We next sequentially apply

the proposed test to the time interval [T − κ, T ] for a monotonic increasing sequence of κ,

denoted by {κj}j , for change point detection. Let T − κj0 be the latest change point location.

Then we set T ∗ = T − κj0−1. We detail the proposed test in the next section.

To conclude this section, we discuss the potential sources of nonregularity of the observed

data. First, the marginal distribution of St and the conditional distribution of At given the

past data history, also known as the behavior policy, are allowed to vary over time. These

sources of nonstationarity are not related to decision making as they do not appear in the Q-

or value function. Second, the following sources of nonstationarity will affect the optimal Q-

function: Pt and rt. We focus on testing the nonstationarity of the optimal Q-function as it

completely determines the optimal policy. It is also practically interesting to directly test the

nonstationarity of the transition and reward functions. See Section 8.2 for details.

4 Hypothesis Testing for Change Point Detection

We first outline the main idea of the proposed hypothesis testing and change point detection

methods. We next describe in detail some major steps. A pseudocode summarising the pro-

posed test is presented in Algorithm 1. We remark that our procedure is motivated by existing

test techniques in the time series literature and have the practically desirable property of detect-

ing both abrupt and gradual changes that are common in RL applications. It allows Qopt
t to be

either piecewise or smooth as a function of t. In Figure 1, we depict two optimal Q-functions
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Figure 1: Examples of optimal Q-functions at a given state-action pair with an abrupt change
point (left panel) and a gradual change point (right panel).

Algorithm 1 Testing Stationarity for the Optimal Q-Function.

Input: The data {(Si,t, Ai,t, Ri,t)}1≤i≤N,T0≤t≤T , and the significance level 0 < α < 1.

Step 1. For each T0 − εT ≤ u ≤ (1 − ε)T , employ the gradient Q-learning or fitted Q-
iteration algorithm to compute an estimated Q-function Q̂[T0,u] and Q̂[u,T ].

Step 2. Construct the CUSUM-type test statistics TS1, TS∞ or TSn,∞, according to (7), (8)
and (9).

Step 3. Employ multiplier bootstrap to compute the bootstrapped test statistic TSb1, TSb∞ or
TSbn,∞. See (14), (15) and (16). Calculate the p-value according to (17).

Output: Reject the null hypothesis if the p-value is smaller than α.

with an abrupt and a gradual change point.

4.1 The Main Idea

We focus on the null hypothesis that Qopt
t = Qopt for any t ∈ {T0, T0 + 1, · · · , T} and some

integer T0 < T . We propose an integral-type and a maximum-type test statistic. Both test statis-

tics require to estimate the optimal Q-function. First, we propose to use series/sieve method to

model Qopt. There are two major advantages of using the sieve method here. First, it ensures

the resulting Q-estimator has a tractable limiting distribution (see e.g., Theorem 3), which in

turn enables us to derive the asymptotic distribution of the test statistic. Second, the number

of sieves (e.g., basis functions) is allowed to diverge with the sample size, alleviating the bias

resulting from model misspecification.
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Specifically, we propose to model Qopt(a, s) by φ>L(a, s)β∗ for some β∗ ∈ RL where

φL(a, s) denotes a vector consisting of L basis functions. In the tabular case where both the

state and the action spaces are discrete, one could use a lookup table and set

φL(a, s) = [I{(a, s) = (a1, s1)}, · · · , I{(a, s) = (aL, sL)}]>

where {(aj, sj)}j correspond to the set consisting all possible action-state pairs. In the case

where the action space is discrete and the state space is continuous, we recommend to set

φL(a, s) = [I(a = a1)Φ>(s), · · · , I(a = am)Φ>(s)]>, (5)

where {aj}j corresponds to the action space and Φ denotes some set of basis functions on the

state space, such as power series, Fourier series, splines or wavelets (see e.g., Judd, 1998). Our

practical implementation uses the random Fourier features; see Section 6.1 for details. As we

have commented in the introduction, if the transition and reward functions are stationary over

time, the proposed test controls the type-I error even when the approximation error decays at

a rate that is slower than O{(NT )−1/2}. This implies that the proposed test will not be overly

sensitive to the choice of the number of basis functions and “undersmoothing” is not required

to guarantee its validity. In practice, we could employ cross validation to determine the number

of basis functions; see Section 4.2 for details. However, the smaller the approximation error,

the higher the power.

Second, for any time interval [T1, T2] ⊆ [T0, T ] with T1 = T0 or T2 = T , we compute the

estimator β̂[T1,T2] for β∗ using data collected from this interval. A key observation is that, when

Qopt(a, s) = φ>L(a, s)β∗, it follows from the Bellman optimality equation (3) that β∗ satisfies

the following equation:

EφL(At, St)
{
Rt + γmax

a
β∗>φL(a, St+1)− β∗>φL(At, St)

}
= 0.

This motivates us to compute β̂[T1,T2] by solving the following estimating equation,

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)
{
Ri,t + γmax

a
β>φL(a, Si,t+1)− β>φL(Ai,t, Si,t)

}
= 0. (6)
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Under the null hypothesis, it follows from (3) that the left-hand-side (LHS) has zero mean

when β = β∗. Consequently, the above estimating equation is consistent. However, it remains

challenging to compute β̂[T1,T2] due to the existence of the non-smooth max operator in the curly

brackets. In practice, we could either employ the gradient Q-learning algorithm or the fitted

Q-iteration algorithm to solve the estimating equation. See Section 4.2 for more details. Based

on this estimator, we formally define the estimated Q-function Q̂[T1,T2](a, s) as φ>L(a, s)β̂[T1,T2].

Third, for any candidate change point u, we use Q̂[u,T ](a, s)−Q̂[T0,u−1](a, s) = φ>L(a, s)(β̂[u,T ]−

β̂[T0,u−1]) to measure the difference in the optimal Q-function before and after the change point.

Based on this measure, we propose an `1-type, a maximum-type test statistic, and a normalised

maximum-type test statistic, given by

TS1 = max
T0+εT<u<(1−ε)T

√
(u− T0)(T − u)

(T − T0)2

{
1

NT

∑
i,t

|Q̂[T0,u](Ai,t, Si,t)− Q̂[u,T ](Ai,t, Si,t)|

}
, (7)

TS∞ = max
T0+εT<u<(1−ε)T

max
a,s

√
(u− T0)(T − u)

(T − T0)2
|Q̂[T0,u](a, s)− Q̂[u,T ](a, s)|, (8)

and

TSn,∞ = max
T0+εT<u<(1−ε)T

max
a,s

√
(u− T0)(T − u)

(T − T0)2
σ̂−1
u (a, s)|Q̂[T0,u](a, s)− Q̂[u,T ](a, s)|, (9)

respectively, where σ̂2
u(a, s) denotes some consistent variance estimator of Q̂[T0,u](a, s)−Q̂[u,T ](a, s)

whose detailed form is given in Appendix B.2.2 of the supplementary article.

We make a few remarks. First, the three test statistics are very similar to the classical

cumulative sum (CUSUM) statistic in change point analysis (Csörgö et al., 1997). According

to the weight scale
√
u(κ− u)/κ, both test statistics assign less weights on the boundary data

points. In addition, ε denotes some user-specified boundary cut-off parameter. Removing the

boundary points is necessary as it is difficult to estimate the Q-function that is close to the

endpoints. Such practice is commonly employed in the time series literature for change point

detection in non-Gaussian settings (see e.g., Cho and Fryzlewicz, 2012; Yu and Chen, 2021).

Second, the three test statistics differ in the ways they aggregate the estimated changes

|Q̂[T0,u] − Q̂[u,T ]| over different state-action pairs. The `1-type test averages the changes with
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weights assigned according to the empirical state-action distribution whereas the two maximum-

type tests focuses on the largest change in the (normalised) absolute value. Among the two

maximum-type test statistics, the normalised test is likely to be more efficient. This is be-

cause when Q̂[T0,u](a, s) − Q̂[u,T ](a, s) is not consistent for some value of (a, s), the argmax

arg maxa,s |Q̂[T0,u](a, s)− Q̂[u,T ](a, s)| might differ significant from the oracle maximiser

arg maxa,s |Q
opt
[T0,u](a, s)−Q

opt
[u,T ](a, s)|, thus lowering the power of the unnormalised test. The

normalised test alleviates this issue by taking standard errors of these estimators into consider-

ation. For state-action pairs with inconsistent Q-values, their differences Q̂[T0,u]− Q̂[u,T ] would

have large standard errors. As such, those pairs are unlikely to be the argmax. In addition,

the normalised test requires a weaker condition to control the type-I error. See Section 5 for

details. We also remark that the studentised supremum type statistics have been used in the

economics literature (see e.g., Belloni et al., 2015; Chen and Christensen, 2015, 2018).

Third, we develop a bootstrap-based procedure to compute the critical values for TS1, TS∞

and TSn,∞. As we will show in Section 5.3, each estimator β̂[T1,T2] computed by solving (6)

is asymptotically normal. So is the estimated Q-function. This motivates us to do employ

the multiplier bootstrap to approximate the asymptotic distribution of the Q-estimator and the

resulting test statistics. The p-value is obtained based on the empirical distribution of the

bootstrap samples. See Section 4.3 for details. Under a given significance level α, we reject

the test when the p-value is smaller than α.

Finally, we sequentially apply the proposed test to identify the most recent change point.

We begin by specifying a monotonically increasing sequence {κj}j . We next apply our test

to examine whether the optimal Q-function is stationarity on the time interval [T − κj, T ],

for j = 1, 2, · · · . This yields a set of p-values. When the data interval consists of a single

change point, those significant p-values are likely to be monotonic over time. This allows

us to apply the isotonic regression to fit these p-values and set the change point to be the

location whose fitted value is smaller than the nominal level for the first time. Compared to the

standard sequential method that selects the most recent change point location whose p-value is

significant, the proposed methods utilise the monotonicity property and can potentially estimate
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Figure 2: An illustrative example where isotonic regression avoids premature change-point
declaration. The p-value next to the red dashed line is below the significance level 0.05 by
chance, leading to a false positive. The sequential method is sensitive to the false positive
and incorrectly identifies the change point location, whereas the proposed method avoids false
positives and identifies the true change point location (next to the blue dashed line) due to that
it borrows information from nearby p-values.

the change point location more accurately. See Figure 2 for an graphical illustration. We also

remark that our procedure is applicable to settings with multiple change points as well. We

elaborate in detail in Section 7. If no changes are detected, we propose to use all the observed

data for policy optimisation.

4.2 Estimation of the Q-Function

In this section, we present two algorithms to compute β̂[T1,T2] that satisfies the estimating equa-

tion (6). Statistical properties of the estimated Q-function are discussed in Section 5.3.

Algorithm 2 (Greedy Gradient Q-Learning). The greedy gradient Q-learning is based on

the stochastic gradient descent algorithm. For any β, define the temporal difference error

δi,t(β) = Ri,t + γmax
a
β>φL(a, Si,t+1)− β>φL(Ai,t, Si,t). (10)
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To solve the estimating equation (6), it suffices to minimise the following objective function

M(β) =

{∑
i,t

φL(Ai,t, Si,t)δi,t(β)

}>{∑
i,t

φL(Ai,t, Si,t)φ
>
L(Ai,t, Si,t)

}−1{∑
i,t

φL(Ai,t, Si,t)δi,t(β)

}
︸ ︷︷ ︸

$(β)

.

Due to the existence of the non-smooth max operator in the temporal difference error, the

above loss is not a smooth function of β. Toward that end, we consider calculating the Frechet

sub-gradient of M(β), given by

∇M(β) = −

{∑
i,t

φL(Ai,t, Si,t)δi,t(β)

}
+ γ

{∑
i,t

φL(Ai,t, Si,t)φL(πβ(Si,t+1), Si,t+1)

}>
$(β),(11)

where πβ denotes the optimal policy estimated as a function of β, i.e., πβ(s) = arg maxa φL(a, s)>β.

See e.g., Ertefaie and Strawderman (2018) for details.

Maei et al. (2010) proposed to use the weight-doubling trick developed by Sutton et al.

(2008) for parameter estimation. The main idea is to treat $ as an additional parameter, and

to update both β and $ simultaneously during each iteration using stochastic gradient descent.

The purpose of employing the weight-doubling trick is to alleviate the potential bias of the

sub-gradient. Specifically, at the kth iteration, we start with the first individual’s trajectory,

obtain βk+1 and $k+1 from the following iterative equations:

βk+1 = βk + αk,1ν
∑
t

[φL(Ai,t, Si,t)δi,t(βk)− γ{$>k φL(Ai,t, Si,t)}φL(π∗βk(Si,t+1), Si,t+1)],

$k+1 = $k + αk,2ν
∑
t

φL(Ai,t, Si,t)[δi,t(βk)− {$>k φL(Ai,t, Si,t)}],

for some tuning parameters {αk,1}k, {αk,2}k, ν, and continue updating the parameters to the

last individual. The algorithm is terminated when the difference ‖βk+1 − βk‖2 is smaller

than some pre-determined threshold. It is worth mentioning that the step size αk,1 is required

to converge to zero at a faster rate than αk,2, as k diverges to infinity, to ensure the result-

ing algorithm converges. Ertefaie and Strawderman (2018) established the consistency and

asymptotic normality of the resulting estimator by assuming no approximation error exists,

e.g., Qopt(a, s) = φ>L(a, s)β∗ for any a, s.
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Algorithm 3 (Fitted Q-Iteration). The main idea of FQI is to iteratively update the Q-function

based on the Bellman optimality equation. During each iteration, it computes Q(k+1) by mini-

mizing

Q(k+1) = arg min
Q

∑
i,t

{
Ri,t + γmax

a
Q(k)(a, Si,t+1)−Q(Ai,t, Si,t)

}2

.

The above optimisation can be cast into a supervised learning problem with {Ri,t+γmaxaQ
(k)(a, Si,t+1)}i,t

as the responses and {(Ai,t, Si,t)}i,t as the predictors. When a linear sieve model is imposed for

the optimal Q-function, the estimator β̂[T1,T2] can be iteratively updated using ordinary least-

square regression (OLS). In Section 5.3, we show that such an algorithm converges in the sense

that the resulting estimator solves the estimating equation in (6), and derive the asymptotic dis-

tribution of β̂[T1,T2].

4.3 Bootstrap for P-Value

We develop a multiplier bootstrap method to obtain the p-values. The idea is to generate

bootstrap samples to approximate the limiting distribution of TS1 and TS∞, defined in (7) and

(8), respectively. A key observation is that, under the null hypothesis, when the Q-function

is well-approximated and the optimal policy is uniquely defined, the estimated Q-function

φ(a, s)>β̂[T1,T2] has the following linear representation:

φ(a, s)β̂[T1,T2] −Qopt(a, s) =
1

N(T2 − T1)
φ>L(a, s)W−1

[T1,T2]

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)δ
∗
i,t + op(1),(12)

where

W[T1,T2] =
1

T2 − T1

T2−1∑
t=T1

EφL(Ai,t, Si,t){φL(Ai,t, Si,t)− γφL(πopt(Si,t+1), Si,t+1)}>,

δ∗i,t = Ri,t + γmax
a
Qopt(a, Si,t+1)−Qopt(Ai,t, Si,t).

We refer to the proof of Theorem 3 in the supplementary article for details. By the Bellman

optimality equation, the leading term on the RHS of (12) forms a mean-zero martingale. When

its quadratic variation process converges, it follows from the martingale central limit theorem

(McLeish, 1974) that β̂[T1,T2] is asymptotically normal.
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It follows from (12) that

Q̂[T0,u](a, s)− Q̂[u,T ](a, s) =
1

N(u− T0)
φ>L(a, s)W−1

[T0,u]

N∑
i=1

u−1∑
t=T0

φL(Ai,t, Si,t)δ
∗
i,t

− 1

N(T − u)
φ>L(a, s)W−1

[u,T ]

N∑
i=1

T−1∑
t=u

φL(Ai,t, Si,t)δ
∗
i,t + op(1).

(13)

This motivates us to construct bootstrap samples that approximate the asymptotic distribu-

tion of the leading term on the RHS of (13). Specifically, we consider the bootstrap sample

Q̂b
[T0,u](a, s)− Q̂b

[u,T ](a, s) where

Q̂b
[T1,T2](a, s) =

1

N(T2 − T1)
φ>L(a, s)Ŵ−1

[T1,T2]

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)δi,t(β̂[T1,T2])ei,t, ∀T1, T2,

where δi,t(β) is the temporal difference error defined in (10), and Ŵ[T1,T2] denotes some con-

sistent estimator for W[T1,T2], defined by

Ŵ[T1,T2] =
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){φL(Ai,t, Si,t)− γφL(πβ̂[T1,T2]
(Si,t+1), Si,t+1)}>,

πβ is defined in (11), and {ei,t}i,t correspond to a sequence of i.i.d. standard normal random

errors that are independent of the observed data. This yields the bootstrapped statistics,

TSb1 = max
T0+εT<u<(1−ε)T

√
(u− T0)(T − u)

(T − T0)2

{
1

NT

∑
i,t

|Q̂b
[T0,u](Ai,t, Si,t)− Q̂b

[u,T ](Ai,t, Si,t)|

}
, (14)

TSb∞ = max
T0+εT<u<(1−ε)T

max
a,s

√
(u− T0)(T − u)

(T − T0)2
|Q̂b

[T0,u](a, s)− Q̂b
[u,T ](a, s)|, (15)

TSbn,∞ = max
T0+εT<u<(1−ε)T

max
a,s

√
(u− T0)(T − u)

(T − T0)2
σ̂−1
u (a, s)|Q̂b

[T0,u](a, s)− Q̂b
[u,T ](a, s)|.(16)

In Section 5.2, we show that under the null hypothesis, the asymptotic distributions of TS1,

TS∞ and TSn,∞ can be well-approximated by the conditional distributions of TSb1, TSb∞ and

TSbn,∞ given the observed data. The corresponding p-values are given by

P(TSb1 > TS1|Data), P(TSb∞ > TS∞|Data) and P(TSbn,∞ > TSn,∞|Data) (17)

respectively. We reject the null when the p-value is smaller than a given significance level α.
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5 Theory

We first introduce the technical conditions. We next establish the consistency of the proposed

test. Finally, we investigate the asymptotic distribution of the Q-function estimator. To simplify

the theoretical analysis, we focus on the setting where the action spaceA = {0, 1, · · · ,m− 1}

is discrete withm being the total number of available actions, the state space is continuous, and

φL(a, s) = [I(a = 0)Φ>(s), · · · , I(a = m − 1)Φ>(s)]> ∈ RL for some set of basis functions

Φ on the state space S. Without loss of generality, we assume S = [0, 1]d where d denotes the

dimension of the state. This assumption could be relaxed by assuming S is a compact subset of

Rd. We use pt(•|a, s) to denote the probability density function of Ft(a, s, ε). In other words,

pt corresponds to the density function of St+1 given (At, St) = (a, s). We use πopt to denote

the optimal policy that is greedy with respect to Qopt
t .

As commented in the introduction, all the theories in this section are established under a

bidirectional asymptotic framework. They are valid as either N or T diverges to infinity.

5.1 Technical Conditions

For any T1, T2, to allow for model misspecification, we define the population-level least false

parameter β∗[T1,T2] as follows,

β∗[T1,T2] =

[
T2−1∑
t=T1

EφL(At, St){φL(At, St)− γφL(πoptt (St+1), St+1)}>
]−1{T2−1∑

t=T1

EφL(At, St)Rt

}
.

We introduce the following conditions.

(A1) When Qopt
t = Qopt is stationary for any integer t ∈ [T1, T2 − 1], β̂[T1,T2] has the following

linear representation:

β̂[T1,T2] − β∗[T1,T2] =
1

N(T2 − T1)
W−1

[T1,T2]

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)δ
∗
i,t − b[T1,T2] +O(N−c1T−c1),(18)

for some constant c1 > 1/2, with probability at least 1 − O(N−1T−1), where the big-O term
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is uniform in {(T1, T2) : T2 − T1 ≥ εT} and b[T1,T2] is given by

W−1
[T1,T2]

T2 − T1

T2−1∑
t=T1

EφL(At, St)[Q
opt
t (At, St)− γmax

a
Qopt(a, St+1)−

{φL(At, St)− γφL(πoptt (St+1), St+1)}>β∗[T1,T2]].

(A2) {pt(s′|a, s)}t, {rt(a, s)}t are p-smooth (Hölder smooth) functions of s, i.e., pt(s′|a, •), rt(a, •) ∈

Λ(p, c) (see Appendix A) for some constant c > 0 and some p ≥ 1.

(A3) There exists some constant c2 > 1/2 such that

sup
f∈Λ(p,C)

inf
β∈Rd

sup
s
|Φ>(s)β − f(s)| = O(L−c2), (19)

for any sufficiently large constant C > 0, where L denotes the number of basis functions.

(A4) λmax{
∫
s
Φ(s)Φ>(s)ds} = O(1), sups ‖Φ(s)‖1 = O(

√
L).

(A5) supa,t E‖Ft(s, a, ε1)−Ft(s′, a, ε1)‖2 ≤ ρ‖s−s′‖2 for some 0 ≤ ρ < 1 and supt,a,s ‖Ft(s, a, ε)−

Ft(s, a, ε
′)‖2 = O(‖ε − ε′‖2). Suppose ε1 has sub-exponential tails, i.e., for any j, E|ε1,j|k ≤

k!c3c
k−2
4 for some constants c3, c4 > 0 where ε1,j denotes the jth element of the vector ε1.

(A6) λminE[φL(At, St)φL(At, St)
>−γ2φL(πoptt (St), St)φ

>
L(πoptt (St), St)] is uniformly bounded

away from zero for any t.

(A7) The optimal policy πoptt is unique for any t.

(A8) The data are generated by a Markov policy πb = {πbt}t, i.e.,

P(At = a|{Sj}j≤t, {Aj}j<t, {Rj}j<t) = πbt (a|St),

for any t, where πbt is independent of the observed data history.

(A9) The margin Qopt
t (πoptt (s), s)−maxa∈A\πoptt (s) Q

opt
t (a, s) is bounded away from zero, uni-

formly for any s and t.

(A10) Suppose sups1 6=s2{‖Φ(s1)− Φ(s2)‖2/‖s1 − s2‖2} = O(
√
L).

We make a few remarks. First, the first two terms on the right-hand-side (RHS) of (18)

characterise the variation and bias of β̂[T1,T2] − β∗[T1,T2], respectively. Under settings where L is

fixed and the linear model is correctly specified, Ertefaie and Strawderman (2018) obtained a
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similar linear representation for β̂[T1,T2] computed via the gradient greedy Q-learning algorithm.

In Section 5.3, we will show that (A1) holds when FQI is used to compute β̂[T1,T2].

Second, the smoothness conditions in (A2) are commonly imposed in the sieve estimation

literature (see e.g. Huang, 1998; Chen and Christensen, 2015). These conditions are used to

bound the approximation error of the Q-function. When p is an integer, the p-smoothness

requires a function to have bounded derivatives up to the pth order. More generally, the defini-

tion of the class of p-smooth functions Λ(p, c) can be found in Appendix A. Under (A2), the

Q-function at each time is p-smooth as a function of the state as well (Fan et al., 2020).

Third, Condition (A3) essentially requires that the class of p-smooth functions could be

uniformly approximated by functions that belong to the linear sieve space. It holds for a wide

variety of sieve classes. When tensor product polynomial, trigonometric polynomial, B-spline

or wavelet bases are employed, (19) is automatically satisfied with c2 = p/d (DeVore and

Lorentz, 1993; Huang, 1998; Chen, 2007). (A3) thus holds as long as p > d/2.

Fourth, Condition (A4) is automatically satisfied when a tensor-product B-spline or wavelet

basis is used, where the constituents of the wavelet basis are arranged such that the coarser level

basis functions come ahead of the finer level ones. Specifically, the first part of (A4) can be

proven based on the proof of Theorem 3.3 of Burman and Chen (1989) and that of Theorem

5.1 of Chen and Christensen (2015). The second part of (A4) follows from the fact that the

number of nonzero elements in the vector Φ(s) is bounded by some universal constant and that

each of the basis function is uniformly bounded by O(
√
L).

Fifth, Condition (A5) is needed to establish concentration inequalities for nonstationary

Markov chains (Alquier et al., 2019). It allows us to develop a matrix concentration inequali-

ties with nonstationary transition functions, which is needed to prove the validity of the boot-

strap method (see Lemma B.2 in the supplementary article for details). This assumption is

automatically satisfied when the state satisfies a-time-varying AR(1) process:

St+1 = ρtSt + βtAt + εt,

for some {ρt}t and {βt} such that supt |ρt| < 1, and εt has sub-exponential tails. More gener-

23



ally, it also holds when the auto-regressive model is given by

St+1 = ft(At, St) + εt,

with supa,t |ft(a, s) − ft(a, s′)| ≤ ρ‖s − s′‖2 for some ρ < 1. When the transition functions

are stationary over time, it essentially requires the Markov chain to possess the exponential

forgetting property (Dedecker and Fan, 2015).

Sixth, (A6) and (A7) are commonly imposed in the statistics literature on RL (see e.g.,

Luckett et al., 2020). (A6) is automatically satisfied when the behavior policy that determines

At is ε-greedy with respect to πoptt for some ε ≤ 1− γ2 (Shi et al., 2021). (A7) is a necessary

condition for establishing the limiting distribution of β̂[T1,T2]. It is violated in nonregular set-

tings where the optimal policy is not uniquely defined (Chakraborty et al., 2013; Luedtke and

van der Laan, 2016; Shi et al., 2020a). The proposed method could be further coupled with

data splitting to derive a valid test in nonregular settings. However, the resulting test might

suffer from a loss of power, due to the use of data splitting. We discuss this in Section 8.3 in

detail.

Seventh, (A8) allows the behavior policy that generates the data to be nonstationary over

time. It is automatically satisfied in randomised studies where the behavior policy is usually a

constant function of the state.

Eighth, the margin Qopt
t (πoptt (s), s) − maxa∈A−πoptt (s) Q

opt
t (a, s) measures the difference

between the state-action value under the best action and the second best action. The condition

(A9) is imposed to simplify the theoretical analysis. It could be potentially relaxed to require

the margin to converge to zero at certain rate or to require the probability that the margin

approaches zero to decay to zero at certain rate (see e.g., Qian and Murphy, 2011; Luedtke and

van der Laan, 2016; Hu et al., 2021b).

Finally, (A10) is needed to establish the statistical properties of the maximum-type tests,

but is not needed for the `1-type test. It is automatically satisfied when a tensor-product B-

spline is used, since each function in the vector Φ is a Lipschitz continuous function.
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5.2 Consistency of the Test

We derive the size and power properties of the proposed test in this section.

Theorem 1 (Size). Suppose (A1)-(A9) hold and L is proportional to (NT )c5 for some 0 < c5 <

1/4. Suppose under the null hypothesis, maxa,s,u |φ>L(a, s)(b[T0,u] − b[u,T ])| = O{(NT )−c6}

and maxa,s,u ‖φ>L(a, s)(β∗[T0,u] − β∗[u,T ])‖2 = O{(NT )−c6} for some c6 > 1/2 where b[T1,T2] is

defined in (A1). Suppose the boundary removal parameter ε is proportional to log−c7(NT ) for

some c7 > 0. Then under the null, we have

sup
z
|P(
√
NTTSb1 ≤ z|Data)− P(

√
NTTS1 ≤ z)| p→ 0.

In addition, suppose (A10) holds. Then

sup
z
|P(
√
NTTSbn,∞ ≤ z|Data)− P(

√
NTTSn,∞ ≤ z)| p→ 0.

Finally, suppose the constant c1 in (A1) satisfies that (NT )2c1−1 � L. Then

sup
z
|P(
√
NTTSb∞ ≤ z|Data)− P(

√
NTTS∞ ≤ z)| p→ 0,

as either N or T approaches to infinity.

Theorem 1 implies that the limiting distribution of the proposed test can be well-approximated

by the conditional distribution of the bootstrapped statistic given the data. It in turn implies that

the rejection probability of the proposed test approaches to the nominal level as the total num-

ber of observations diverges to infinity. As commented in the introduction, the derivation of the

consistency of the proposed test is complicated due to that we allow L to grow with the number

of observations. To address this challenge, we develop a matrix concentration inequality for

nonstationary MDP in Lemma B.2.

In the statement of Theorem 1, we require the difference in the approximation error before

and after the change point to decay to zero at a rate of o{(NT )−1/2}. These assumptions are

much weaker than requiring the approximation error to be o{(NT )−1/2}. The latter requires

undersmoothing to ensure the bias the Q-estimator to converge to zero at a faster rate than its
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standard deviation. To elaborate, notice that when the transition and reward functions are ho-

mogeneous over time, we have b[T0,u] = b[u,T ] and β[T0,u] = β[u,T ]. The assumptions in Theorem

1 are automatically satisfied despite that φ>L(a, s)b[T0,u] and φ>L(a, s)β[T0,u] − Qopt(a, s) might

converge to zero slower than the parametric rate. As such, undersmoothing is not required and

the size property of the proposed test is not overly sensitive to choice of the number of basis

functions. The reason why the validity of the proposed test requires a weaker assumption on

the approximation error is due to the use of CUSUM-type statistics, which perform scaled dif-

ferencing at each postulated error location, thereby requiring the difference in approximation

errors (rather than absolute approximation errors) to be of a certain order.

Comparatively speaking, the `1-type test requires weaker conditions than the maximum-

type tests. Specifically, the `1-type test only requires the constant c1 in (A1) to be larger than

1/2 whereas the maximum-type test requires (NT )2c1−1 � L. Moreover, both the normalised

and unnormalised maximum-type tests require an additional assumption (A10).

We next establish the power property of the proposed test. In our theoretical analysis,

we focus on a particular type of alternative hypothesis where there is a single change-point

T ∗ such that Qopt
T0

= Qopt
T0+1 = · · · = Qopt

T ∗−1 and Qopt
T ∗ = Qopt

T ∗+1 = · · · = Qopt
T . We use

∆1 = T−1
∑

a

∑T−1
t=0

∫
s
|Qopt

T0
(a, s)−Qopt

T (a, s)|πt(a|s)pbt(s)ds and ∆∞ = supa,s |Q
opt
T0

(a, s)−

Qopt
T (a, s)| to characterise the degree of nonstationarity. Specifically, the null holds if ∆1 or

∆∞ equals zero and the alternative hypothesis holds if ∆1 or ∆∞ is positive. However, we

remark that the proposed test is consistent against more general alternative hypothesis as well.

See Section 6 for details. Notice that in the definition of ∆1, we integrate against the observed

state-action distribution T−1
∑T−1

t=0 πt(a|s)pbt(s). Alternatively, the reference distribution can

be taken for any measure that is absolutely continuous with respect the observed state-action

distribution. For any two positive sequences {aN,T}N,T and {bN,T}N,T , the notation aN,T �

bN,T means that bN,T/aN,T → 0 as NT →∞.

Theorem 2 (Power). Suppose (A1)-(A9) hold and L is proportional to (NT )c5 for some 0 <

c5 < 1/2. Suppose T0 + εT < T ∗ < (1 − ε)T and ε is proportional to log−c7(NT ) for some

c7 > 0.
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• If ∆1 � {
√
L(NT )−1 log(NT ) + L−c2} logc7/2(NT ) and (A10) holds, then the power

of the test based on TS1 approaches 1, as either N or T diverges to infinity;

• If ∆∞ �
√
L{
√
L(NT )−1 log(NT ) + L−c2} logc7/2(NT ), then the power of the test

based on TS∞ approaches 1, as either N or T diverges to infinity.

• If ∆∞ � {
√
L(NT )−1 log(NT ) + L−c2} logc7/2(NT ) and (A10) holds, then the power

of the test based on TSn,∞ approaches 1, as either N or T diverges to infinity.

The assumption T0 + εT < T ∗ < (1− ε)T is reasonable as we allow ε to decay to zero as

the number of observations grow to infinity. Under the given assumptions, the bias and stan-

dard deviation of the Q-function estimator are proportional to O(
√
L(NT )−1 log(NT )) and

O(L−c2), respectively. The conditions on ∆1 and ∆∞ essentially require the signal associated

with the alternative hypothesis to be much larger than the estimation error. Similar to the find-

ings in Theorem 1, the unnormalised maximum-type test requires a stronger condition on L to

detect the alternative hypothesis. To guarantee the proposed test has good power properties, we

use cross-validation to select the number of basis functions, as discussed in Section 6.1. This

ensures the bias and standard deviation of the Q-function estimator are approximately of the

same order of magnitude, thus minimising the requirements for ∆1 and ∆∞.

It is worthwhile to mention that establishing the power property of the test requires a less

stringent condition on L than deriving the size property. Specifically, we require L to grow at a

rate of o(
√
NT ) in Theorem 2. In contrast, this condition is strengthened to L = o(N1/4T 1/4)

in Theorem 1.

5.3 Asymptotic Properties of the Q-Function Estimator

In this section, we focus on investigating the asymptotic properties of the estimated Q-function

computed by FQI.

Theorem 3. Suppose (A2)-(A9) hold and L is proportional to (NT )c5 for some 0 < c5 < 1/2.

Suppose ε is proportional to log−c7(NT ) for some c7 > 0. Suppose that for any interval
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[T1, T2] such that Qopt
T1

= Qopt
T1+1 = · · · = Qopt

T2−1, we have poptT1
= poptT1+1 = · · · = poptT2−1 and

roptT1
= roptT1+1 = · · · = roptT2−1. Suppose the maximum number of iterations K in FQI satisfies

log(NT )� K = O(N c8T c8) for any c8 > 0. Then (A1) is satisfied for sufficiently large NT .

We again make a few remarks. First, Theorem 3 implies that the asymptotic linear repre-

sentation in (A1) holds for the FQI estimator. Under the null hypothesis, it follows from the

high-dimensional martingale central limit theorem (Belloni and Oliveira, 2018) that the set of

the estimated Q-functions {Q̂[T1,T2]}T1,T2 are jointly asymptotically normal.

Second, as mentioned in the statement of Theorem 3, we require the transition and reward

functions to be stationary over time. This is because FQI iteratively updates the Q-function

using supervised learning. In contrast, such a condition is not needed when the gradient Q-

learning algorithm is employed to learn the optimal Q-function. However, it is worth mention-

ing that FQI is much easier to implement in practice, as it suffices to implement OLS during

each iteration. It could be further extended to employ more general supervised learning algo-

rithms to fit more complicated nonlinear models (e.g., neural networks).

Finally, as commented in the introduction, most works in the literature focused on estab-

lishing non-asymptotic error bounds of the FQI estimator. To our knowledge, this is the first

work that investigates the limiting distribution of the FQI estimator in infinite horizon settings,

based on nonparametric sieve regression.

6 Simulations

In this section, we conduct simulation studies to evaluate the finite sample performance of the

proposed methods and compare against common alternatives. In Section 6.1, we detail the

implementation the proposed tests (integral, normalised, unnormalised). Section 6.2 presents

results based on four generative models with different nonstationarity scenarios (see Table 1).

In Section 6.3, we simulate data to mimic data setup in the motivating application of IHS. All

simulation results are aggregated over 100 replications.
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6.1 Implementation Details

To implement the proposed tests, the boundary removal parameter ε is set to 0.1; 2000 boot-

strap samples are generated to compute p-values. In our simulations, the state variables are

continuous. The set of basis functions φL is selected according to (5). In particular, we set Φ

to the random Fourier features following the Random Kitchen Sinks (RKS) algorithm (Rahimi

and Recht, 2007); we use RBFsampler function from the Python scikit-learn mod-

ule for implementation. The bandwidth in the radial basis function (RBF) kernel is selected

according to the median heuristic (Garreau et al., 2017). The number of basis functions in

Φ (denoted by M = L/m) is selected via 5-fold cross-validation. Specifically, for each M ,

let ΦM denote the resulting set of basis functions. We first divide all data trajectories into 5

non-overlapping data subsets with equal sizes. Let I` denote the set of these subsamples, and

Ic` denote its complement, ` = 1, 2, 3, 4, 5. For each combination of ` and M , we use FQI to

compute an estimated optimal Q-function Q̂`,M by setting Φ = ΦM , based on the data subsets

in Ic` . We next select M to minimise the FQI objective function,

5∑
`=1

∑
(i,t)∈I`

{
Ri,t + γmax

a
Q̂`,M(a, Si,t+1)− Q̂`,M(Ai,t, Si,t)

}2

. (20)

To mitigate the randomness introduced by the random Fourier features, we repeat each test

procedure four times with different random seeds. This yields p-values {pr, r = 1, . . . , 4}, for

each candidate change point. We then employ the method developed by Meinshausen et al.

(2009) to combine these p-values by defining

p0 = min
(
1, qτ

{
τ−1pr, r = 1, . . . , 4

})
, (21)

to be the final p-value. Here, τ is some constant between 0 and 1, and qτ is the empirical

τ -quantile. Compared to using a single set of Fourier features, such an aggregation method

reduces the type-I error and increases the power of the resulting test. In our simulations, results

hardly change under τ = 0.05, 0.1, 0.15, 0.2; hereafter, we report results under τ = 0.1.
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State transition function Reward function

(1) Time-homogeneous Piecewise constant
(2) Time-homogeneous Smooth
(3) Piecewise constant Time-homogeneous
(4) Smooth Time-homogeneous

Table 1: Simulation scenarios with different types of nonstationarity in Section 6.2.

6.2 Simulation I

We consider four nonstationary data generating mechanisms with one-dimensional states and

binary actions where the nonstationarity occurs in either the state transition function or the

reward function, as listed in Table 1. Specifically, in the first two scenarios, the transition

functionPt is stationary whereas the reward function rt varies over time. The last two scenarios

concern stationary reward functions and nonstationary transition functions. For nonstationary

setups, abrupt piece-wise constant and smooth changes are considered. See Appendix C.1

for more details about the true parameters of the transition and reward functions in these four

scenarios.

In all settings, we set T =100 and simulate data with sample sizes N = 25, 100. The

discount factor γ = 0.9, 0.95. The true location of the change point T ∗ is set to 50. We first

apply the each of the proposed tests to the time interval [T − κ, T ] to detect nonstationarity,

where κ takes value from a equally-spaced sequence between 25 and 75 with increments of 5.

According to our true data generating mechanisms, when κ ≤ 50, the null of no change point

over [T − κ, T ] is true; the alternative hypothesis is true if κ > 50. We fix the significance

level α to 0.05. The initial state is sampled from a normal random variable with mean zero and

variance 0.5. The actions are generated i.i.d. according to a Bernoulli random variable with a

success probability of 0.5.

Figure 3 shows the empirical rejection probabilities of each proposed test. We summarise

our findings here. First, in all settings, each test can properly control the type I error. Second,

the power increases with κ as a result of more pre-change-point data being included into the

interval [T − κ, T ]. It also increases with N , demonstrating the consistency of our tests. Third,
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as expected, gradual changes are more difficult to detect than abrupt changes. Specifically, it

can be seen from Figure 3 that when κ = 55, the power of the proposed test with a smooth

reward or state transition function is smaller than that with a piecewise constant reward or

state transition function. Finally, the normalised and unnormalised type test statistics achieve

slightly higher power than the integral type test statistic when N = 25, whereas the powers of

the three tests become comparable whenN = 100. However, the normalised and unnormalised

type test statistics are more computationally expensive especially when the dimension of the

state is high, since both require to search the maximum over the entire state-action space.

Next, we investigate the finite sample performance of the estimated change point location

T̂ ∗ = T − κj0−1. Figure 4 depicts the histogram of T̂ ∗ in each of the simulation scenarios.

It can be seen that in the first two scenarios with abrupt changes, the estimated change points

concentrate at 50, which is the true change point location. In the last two scenarios with smooth

changes, the estimated change points have a wider spread when N = 25, but are still close to

50 in most cases.

Finally, we compute the optimal policy based on the estimated change point and compare it

with some baseline methods. In each simulation, after computing T̂ ∗, we estimate the optimal

mean policy using the data subset {(Si,t, Ri,t, Ai,t) : 1 ≤ i ≤ N, T̂ ∗ ≤ t ≤ T}. Specifically, we

adopt a decision tree model to approximate Qopt to obtain interpretable policies for healthcare

researchers. We couple FQI with decision tree regression to compute the Q-estimator Q̂. The

decision tree model involves some hyperparameters such as the maximum tree depth and the

minimum number of samples on each leaf node. We use 5-fold cross validation to select

these hyperparameters from {3, 5, 6} and {50, 60, 80}, respectively. See the cross-validation

criterion in (20). After computing the estimated policy, we simulate 300 new subjects following

such a policy for 100 time points after T ∗ and aggregate the discounted rewards over these

subjects to estimate the expected return (e.g., value) under that policy. The proposed three tests

yield similar policies. We report the results based on the integral-type test only and compare

them with the following baseline methods:

Overall: Standard policy optimisation method that uses all the data;
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Figure 3: Empirical type I errors and powers of the proposed test and their associated 95% con-
fidence intervals under settings described in Section 6.2. Abbreviations: Hm for homogeneous,
PC for piecewise constant, and Sm for smooth.

Random: Policy optimisation with a randomly assigned change point location;

Kernel: The kernel-based approach developed by Domingues et al. (2021);

Oracle: The “oracle” policy optimisation method as well as if the oracle change point location

were known in advance.

For fair comparisons, we use FQI and decision tree regression to compute the optimal Q-

function for each competing method. To implement the random method, we randomly pick a
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Figure 4: Distribution of detected change points under simulation settings in Section 6.2.

time point T̃ ∗ uniformly from the interval [0, T ] and compute the optimal Q-function based on

the observations that occur after time T̃ ∗. We repeat the procedure for 20 times and take the

average values of the twenty policies as the values of the random method. To implement the

kernel-based method, at the kth FQI iteration, we consider the following objective function,

Q(k+1) = arg min
Q

∑
i,t

K

(
T − t
Th

){
Ri,t + γmax

a
Q(k)(a, Si,t+1)−Q(Ai,t, Si,t)

}2

, (22)

where K denotes the Gaussian RBF basis and h denotes the associated bandwidth parame-

ter taken from the set {0.2, 0.4, 0.8, 1.6}. According to (22), the kernel-based method assigns
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larger weights to more recent observations to deal with nonstationarity. To solve (22), we sam-

ple B � T data slices across all individuals from {(Si,t, Ai,t, Ri,t, Si,t+1; 1 ≤ i ≤ N)}0≤t<T

with weights proportional to K((T − t)/(Th)) and apply the decision tree regression to these

samples to compute Q(k+1). To implement the oracle method, we use observations that occur

after the oracle change point to compute the optimal Q-function.

Figure 5 reports the difference between the proposed policy’s value and values of policies

estimated based on these baseline methods with N = 25 and 100. We briefly summarise a few

notable findings. First, the proposed method achieves much larger policy values compared to

the “overall” method, demonstrating detrimental consequences of ignoring the nonstationarity.

Second, the proposed method is comparable to the oracle method, and outperforms the “ran-

dom” method in all cases. This implies that correctly identifying the change point location is

essential to policy optimisation in nonstationary environment. Third, the proposed method is

no worse (when h = 0.2 or 0.4) and better than (when h = 0.8 or 1.6) kernel-based approaches

in our cases. As shown in Figure 5, kernel-based method is sensitive to the choice of the ker-

nel bandwidth. A poor choice of h would yield a poor policy, and it remains unclear how to

determine this tuning parameter in practice.

6.3 Simulation II

To mimic the IHS study, we simulate N = 100 subjects, each observed over T = 50 time

points. Our aim is to estimate an optimal treatment policy to improve these interns’ long-term

physical activity levels. See Section 7 for more details about the study background. At time t,

the state vector Si,t comprises four variables to mimic the actual IHS study: the square root of

step count at time t (Si,t,1), cubic root of sleep minutes at time t (Si,t,2), mood score at time t

(Si,t,3), and the square root of step count at time t− 1 (Si,t,4 = Si,t−1,1), i.e., the state transition

is designed to follow an AR(2) process. See Supplementary C.2 for the true parameter values

that govern the dynamics. The actions are binary with P (Ait = 1) = 0.25; Ait = 1 means

the subject is randomised to receive activity messages at time t, and Ait = 0 means any other

types of messages or no message at all. Reward Ri,t = Si,t,1 is defined as the step count at time
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Figure 5: Distribution of the difference between the expected return under the proposed policy
and those under policies computed by other baseline methods, under settings in Section 6.2.
The proposed policy is based on the change point detected by the integral type test statistic. In
all scenarios, we find the value results based on the normalised or unnormalised test statistics
are similar to those of the integral test statistic.
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t. We assume that the state transition function has a change point at time T ∗ = 25. Under this

setting, the state transition function is nonstationary whereas the reward is a stationary function

of the state. In addition, the data follow the null hypothesis when κ = 1, . . . , 25 and follow the

alternative hypothesis for κ = 26, . . . , 49. The discount factor is set to γ = 0.9 or 0.95. We

test the null hypothesis along a sequence of κ = 10, 15, . . . , 40 for every five time points. The

number of basis M is chosen among {10, 15, 20, 25, 30}.

Figure 6 shows the empirical rejection rates of the proposed tests as well as the distribution

of the estimated change point location. Similar to the results in Section 6.2, our proposed

tests control the type I error at the nominal level (see κ < 25) and is powerful to detect the

alternative hypothesis (see κ > 25). At the boundary where κ = 25 however, the proposed

test fails to control the type-I error. Nonetheless, the proposed procedure yields a much better

policy compared to the overall and random methods, as we show below. We also remark that

the reason the proposed test fails at the boundary is because the marginal distribution of the first

few states after the change point is very different from the stationary state distribution. After an

initial burn-in period of 5 points, the proposed test is able to control the type-I error at κ = 20.

In addition, the distribution of the estimated change point concentrates on 30, which is very

close to the oracle change point location 25, implying the consistency of the proposed change

point detection procedure. We remark that consistency here requires T−1|T̂ ∗−T ∗| P→ 0 instead

of P(T̂ ∗ = T ∗)→ 1, the latter being usually impossible to achieve in change-point settings.

We also compare the proposed policy (based on the integral test) with the policies identi-

fied by the oracle, overall and random method. Table 2 reports the value difference between the

proposed method and the aforementioned methods. It can be seen that the proposed method

produces higher values than methods that do not properly address nonstationarity and is com-

parable to values produced with an oracle change point location. These results again highlight

the necessity to identify a change point before applying Q-leaning.
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(b) Estimated change point T̂ ∗ = T − κj0−1 where the first rejection based on
isonotic regression fit occurred at κj0 .

Figure 6: Simulation II: Empirical rejection rates of the proposed tests (integeral, normalised,
and unnormalised) and the distribution of the estimated change points.

7 Application to Intern Health Study

The 2018 Intern Health Study (IHS) is a micro-randomised trial (MRT) that seeks to evalu-

ate the efficacy of different push notifications sent via a customised study App upon proximal

physical and mental health outcomes (NeCamp et al., 2020), a critical first step for designing

effective just-in-time adaptive interventions. Over the T = 26 study period, each study sub-

ject was re-randomised weekly to receive activity suggestions or not; daily self-reported mood

scores were assessed via ecological momentary assessments; step count and sleep duration

in minutes were measured by wearables (Fitbit). In this paper, we focus on policy optimisa-

tion for improving time-discounted cumulative step counts under the infinite horizon setting.

However, as have been shown by previous studies (Klasnja et al., 2019; Qian et al., 2022), the

longer a person is under intervention, the more they may habituate to the prompts or become
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Difference Mean value (s.e)
(in value) γ =0.9 γ =0.95

Proposed - Oracle -0.06 (0.04) -0.03 (0.03)
Proposed - Overall 22.92 (1.04) 35.92 (2.42)
Proposed - Random 5.75 (0.86) 9.62 (1.49)

Table 2: Simulation II: Value difference between the proposed method and the oracle, overall
and random method. Positive numbers indicate higher values based on the proposed method.

overburdened, resulting in subjects being less responsive to the contents of the suggestions.

The treatment effect of activity suggestions may transition from positive to negative, suggest-

ing treatment policies may benefit from adaptation over time. Failure to recognise potential

nonstationarity in treatment effects over time may lead to suboptimal policies that overburden

subjects, resulting in app deletion and study dropouts. Here we demonstrate how to use the

proposed method to detect change point and perform optimal policy estimation in the presence

of potential temporal nonstationarity.

7.1 Data and method: Setup

Let the state vector St be comprised of the following: square root of average step count in week

t, cubic root of average sleep minute in week t, average mood score in week t, and square root

of average step count in week t− 1; all state variables are normalised after respective transfor-

mations (NeCamp et al., 2020). The reward Rt is defined as the average step count in week t.

The binary actionAt = 1 (0) corresponds to pushing (not pushing) an activity message in week

t. The randomisation probabilities are known under MRT: P(At = 1) = 1−P(At = 0) = 1/4.

In the change point detection procedure, we set ε = 0.08 and search for change points for

t ∈ [5, 22]. The number of RBF basis functions M ∈ {3, 5, 8, 10} is selected through 5-fold

cross validation (see Section 6.1 for implementation details). We focus on three specialties:

emergency (N = 141), pediatrics (N = 211), and family practice (N = 125). One consid-

eration is that work schedules and activity levels vary greatly across different specialties, and

thus medical interns might experience distinct change points. Stratification by specialty may

38



improve homogeneity of the study groups so that the assumption of a common change point

is more plausible; see Section 8.4 for discussions on potential extensions to heterogeneous

change points.

7.2 Results

Figure 7 shows the trajectories of p-values and the isotonic regression results using integral type

test statistic; the results are similar when normalised and unnormalised tests were applied to the

data (not reported here). We consider γ = 0.9 or 0.95, which produce similar results. Notice

that when κ is small, many p-values are close to 1. This is due to the use of the aggregation

method in (21), which tends to increase insignificant p-values and reduce the type-I error. The

emergency specialty displays roughly monotonic p-values over time, indicating a single change

point at κ = 12 for γ = 0.9, and κ = 11 for γ = 0.95. On the other hand, the U-shaped p-

value trajectory of the pediatrics specialty shows evidence for multiple change points, one at

κ = 9 and another one around κ = 15. As we have discussed earlier, when only a single

change point exists, the significant p-values are likely to decrease with κ. The U-shaped p-

value trajectory can occur only when the data interval contains at least two change points and

the system dynamics after the second change point is similar to that before the first change

occurs, yielding a small CUSUM statistics. Because we focus on the latest detected change

point (first κj0−1 where κj0 results in a rejection of the null) to inform the latest data segment

to use for optimal policy estimation, we perform isotonic regression on p-values up to κ = 15,

which yields κj0−1 = 9. In addition, the p-value trajectories of the family practice specialty

are mostly flat and are close to 1, indicating the stationarity assumption is compatible with this

data subset, for which estimate the optimal policy using data from all time points.

We next compare the proposed policy optimisation method with two other methods: 1)

overall, which was described in Section 6.2) and 2) behavior, which is the treatment policy

used in the completed MRT. We first split all the subjects into training and evaluation data sets

with a ratio of 3/2. The training data are used to learn an optimal policy π̂opt through FQI and

decision tree regression, based on the estimated change point location. Hyperparameters of
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Figure 7: P-value over different values of κ (the number of time points from the last time
point T ). γ = 0.9 and 0.95, from top plots to bottom plots. The specialties corresponds to
emergency, pediatrics and family practice, from left plots to right plots.

the decision tree regression are selected via 5-fold cross-validation, similar to the simulation

sections. Next, based on the evaluation data, we employed fitted-Q evaluation (FQE, Le et al.,

2019), which is designed for off-policy value evaluation. We normalise the value estimates by

1−γ to reflect value per time point, as shown in Table 3. In the emergency specialty, the optimal

policy estimated using data after the detected change point improves weekly average step count

per day by about 170 ∼ 200 steps relative to the estimated policy using data from all time

points (“Overall”). The proposed and overall methods have equal values in the family practice

specialty because no change point is identified. These results show that policy improvement

can be achieved by identifying a change point and applying standard reinforcement learning to

data after the detected change point that is compatible with the stationarity assumption.

40



# Change points Specialty Method Value
γ = 0.9 γ = 0.95

1 Emergency

Proposed 8073.27 8003.38
Overall 7902.39 7794.77

Behavior 7823.75 7777.32

≥ 2 Pediatrics

Proposed 7783.86 7762.81
Overall 7680.04 7686.46

Behavior 7730.98 7721.29

0 Family Practice

Proposed 8087.15 8072.78
Overall 8087.15 8072.78

Behavior 7967.67 7957.24

Table 3: Mean value estimates using decision tree in anaylsis of IHS. Values are normalised by
multiplying 1− γ. All values are evaluated over 10 splits of data.

8 Discussion

8.1 Online Change Point Detection

We consider testing nonstationarity and policy optimisation based on a pre-collected offline

dataset. Meanwhile, the proposed methodology can be implemented online as data accumulate.

In practice, we may choose to update the policy and the change point in batches rather than

at every time point. Then we can repeatedly apply the proposed offline method to moderately

large batches of observations for change point detection and policy optimisation. We also

notice that there are some recent works on online nonstationary RL in the computer science

literature (see e.g., Lecarpentier and Rachelson, 2019; Cheung et al., 2020; Padakandla et al.,

2020; Fei et al., 2020; Xie et al., 2021; Zhong et al., 2021). In particular, Padakandla et al.

(2020) proposed to apply the online change point detection algorithm developed by KJ et al.

(2022) to the state-reward-next state triples to identify changes in the environment. When the

behavior policy varies over time, the marginal distribution of the triplet can be nonstationary

despite the state transition and reward functions being stationary. As such, their method would

not apply in this case.
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8.2 Alternative Change Point Detection Methods

In this paper, we focus on detecting change points of the optimal Q-function. Alternatively,

one could directly detect changes in the reward and transition functions. The estimated reward

and transition functions are more easily computable than the estimated optimal Q-function.

However, changes in the reward and transition functions do not necessarily cause changes in

the optimal Q-function. In other words, it is possible that the reward and transition functions are

nonstationary over time whereas the optimal Q-function is stationary. In addition, notice that

the transition function is a multi-output function. It remains challenging to detect its change

points in high-dimensional settings. We leave it for future research.

Moreover, our procedure first estimates the optimal Q-function based on fitted Q-iteration

and then constructs test statistics based on the Q-estimator for change point detection. Alterna-

tively, one could develop a hybrid procedure that couples fitted Q-iteration with change point

detection. That is, at each Q-iteration, we construct CUSUM-type statistics based on the es-

timated Q-function for change point detection. If not detected, then we proceed with the next

Q-iteration. It would be interesting to investigate the performance of the resulting algorithm.

However, this is beyond the scope of the current paper. We leave it for future research.

8.3 Nonregular Settings

As discussed in Section 5.1, the proposed test requires the optimal policy to be uniquely de-

fined. Such an assumption essentially requires thatQopt(a1, St)−Qopt(a2, St) is nonzero almost

surely for any a1 6= a2 and any t. It is violated when some treatment is neither beneficial nor

harmful for a subset of patients in the population compared to the standard control (see e.g.

Luedtke and van der Laan, 2016). In that case, we can couple the proposed test with data

splitting to ensure its validity. Specifically, we first divide all trajectories into two disjoint

subsets. We next learn the optimal policy using each data subset, evaluate its Q-value on the

other dataset based on linear sieves (see e.g. Shi et al., 2021) and construct a CUSUM-type test

statistic based on these estimated Q-values. This yields two test statistics, for each of the data

subsets. Finally, we use bootstrap to compute the p-value for each test statistic and combine
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them based on the Bonferroni correction.

8.4 Heterogeneous Change Points

The proposed method relies on a common change point assumption. That is, all the subjects

share the same change point location. This assumption can be violated in practice, due to

the subject heterogeneity. In our data application, we stratify the medical interns by their

specialties. This helps improve homogeneity of the study groups to some extent. However,

interns within the same specialty may also have different change points. Detecting the change

point using each individual intern’s trajectory is impossible, due to data scarcity. It remains

unclear how to efficiently detect the change points without the homogeneity assumption. We

leave it for future research.
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