baker: An R package for Nested Partially-Latent
Class Models

Irena Chen Qiyuan Shi
University of Michigan, Ann Arbor University of Michigan, Ann Arbor

Scott L. Zeger Zhenke Wu
The Johns Hopkins University, Baltimore University of Michigan, Ann Arbor

Abstract

This paper describes and illustrates the functionality of the baker R package. The
package estimates a suite of nested partially-latent class models (NPLCM) for multivari-
ate binary responses that are observed under a case-control design. The baker package
allows researchers to flexibly estimate population-level class prevalences and posterior
probabilities of class membership for individual cases. Estimation is accomplished by
calling a cross-platform automatic Bayesian inference software JAGS through a wrapper
R function that parses model specifications and data inputs. The baker package provides
many useful features, including data ingestion, exploratory data analyses, model diag-
nostics, extensive plotting and visualization options, catalyzing communications between
practitioners and domain scientists. Package features and workflows are illustrated using
simulated and real data sets.

Keywords: Case-control studies, Latent class models, Measurement error, Markov chain Monte
Carlo, R, JAGS.

1. Introduction

This paper introduces the baker R package that estimates a suite of nested partially-latent
class models (NPLCM) for multivariate binary responses that are observed under a case-
control design. There are five popular R packages that provide functionalities to perform
latent class analysis and some extensions on Comprehensive R Archive Network (CRAN)
Task View of “Cluster Analysis and Finite Mixture Models” (Leisch and Gruen 2022). Our
software is unique in its contribution to provide models and associated diagnostic and plotting
functions for conducting Bayesian latent class analyses using data collected under a case-
control design, where the primary statistical goal is to estimate the population- and individual-

https://orcid.org/0000-0002-9366-8506
https://orcid.org/0000-0001-8907-1603
https://orcid.org/0000-0001-7582-669X

2 baker: Nested Partially-Latent Class Models

level class mixing weights among the cases. In particular, functions in baker implement
recent methodological developments in Wu, Deloria-Knoll, Hammitt, Zeger, and the PERCH
Study Team (2016), Wu, Deloria-Knoll, and Zeger (2017), and Wu and Chen (2021). In
practice, the package provides a simple interface that will allow researchers to reap the benefits
of the NPLCMs via Markov chain Monte Carlo (MCMC) sampling without having to code
the algorithms.

First formulated by Lazarsfeld (1950), latent class models (LCMs) have become an impor-
tant tool for modeling multivariate discrete responses (e.g., Goodman 1974; Dunson and Xing
2009) and model-based clustering (e.g., Vermunt and Magidson 2002). LCMs and various ex-
tensions have been used as primary workhorses driving discoveries and improved predictions
in numerous scientific fields including psychology (e.g., Xu 2017), sociology (e.g., McCormick,
Li, Calvert, Crampin, Kahn, and Clark 2016), and public health (e.g., Stephenson, Her-
ring, and Olshan 2019). There are currently several popular R packages that can perform
general-purpose latent class analysis. The poLCA package developed by Linzer and Lewis
(2011) provides a rich collection of functions to conduct latent class analysis for polytomous
response variables and allows for the inclusion of regression variables to influence the class
membership probabilities for each individual. Missing data is also handled under the as-
sumption of missing at random. The BayesLCA package (White and Murphy 2014) provides
functions for latent class analysis of multivariate binary responses in a Bayesian framework
via expectation-maximization, MCMC, or variational Bayes. However, missing data is not
handled in its current version (Version 1.9). In addition, we note that the models fitted by
both poLCA and BayesLCA make a classical local independence (LI) assumption for the mul-
tiple responses given class membership, which may be violated in many real-world settings.
The randomLCA package provides functions to fit LCMs with optional random effects that
cause local dependence (LD), of which LI is a special case.

The baker package provides multiple novel advantages to existing software. First, baker
enables case-control analyses with or without covariates in the NPLCM framework. The case-
control design is vital to valid scientific inference in many large-scale clinical and biomedical
applications. For example, in the largest pediatric pneumonia etiology study to date (PERCH
Study Group 2019), biological samples are collected from subjects with clinically-defined
disease (“cases”) and subjects without disease (“controls”). Panel molecular diagnostic tests
targeting multiple putative disease-causing agents may be performed on the collected samples,
resulting in multivariate binary data under a case-control design. The control subjects have
the observed class of not having the said disease. Their data serve as statistical control to
estimate the measurement specificity when interpreting the error-prone test results in the
cases.

Second, baker can fit models under deviations from the classical LI assumption in latent
class analyses. Different from the continuous random effects approach taken in Qu, Tan, and
Kutner (1996), the methodology implemented by baker uses a parallel factor decomposition
with a stick-breaking prior to enable parsimonious approximation of potential LD between
the multivariate binary responses given class membership. This enables faster computation
and data-driven learning of empirical LD structures.

Third, baker is designed to handle multiple sets of case-control or case-only measurements
of distinct degrees of measurement error. These measurements are classified into two broad
types: 1) bronze-standard (BrS) data that are available for both cases and controls but with
imperfect sensitivity or specificity; and 2) silver-standard (SS) data that are only available

Chen I, Shi Q, Zeger SL, Wu Z 3

among cases, with perfect specificity but imperfect sensitivity. The baker can also work under
missing data under the assumption of missing at random.

Finally, the baker package conducts full Bayesian inference via MCMC by calling a cross-
platform and versatile automatic Bayesian software JAGS (Plummer et al. 2003; Plummer
2022) via a wrapper function baker: :nplcm() that parses model specifications and data in-
puts (see Section 3 for the software design choice). The main quantities of interest are 1) the
population-level class prevalences and 2) posterior probabilities of class membership for the in-
dividual cases. The baker package quantifies the uncertainty associated with these estimates
and provides numerical and graphical summaries to assist in interpreting and communicating
these results.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of the
NPLCM framework as a case-control extension of the classical LCMs. The NPLCM likelihood
and prior specifications are detailed in Section 2.3 without explanatory covariates; Section 2.4
covers the regression extension. Section 2.5 discusses model fitting and diagnostics. Section 3
gives a brief description of workflows and code underlying baker. This is followed in Section 4
by analyses of simulated and real data sets that demonstrate many of the package’s features.
Finally, Section 5 summarizes the main advantages of the baker package relative to existing
software and future developments to expand its utility.

All figures in this paper can be reproduced by following the user vignette provided along
with this article. The stable version of the package is available via CRAN (https://
CRAN.R-project.org/package=baker); the development version can be accessed at https:
//github.com/zhenkewu/baker.

2. Model

2.1. Latent class models: A brief review

Latent class models (LCMs) for discrete latent and discrete manifest variables were developed
and widely applied since the 1950s (e.g. Lazarsfeld 1950; Goodman 1974). LCMs constitute
a family of distributions for correlated discrete measurements. The conventional LCM gen-
erally makes local independence (LI) assumption that manifest variables are independent of
one another given the latent class. In the multivariate binary case, individual i’s measure-
ment vector, M; = (M, ..., M;;)T, is linked to her latent class (I;) by the simple product
likelihood P(M; | I; = ¢,0) = H}]:1 P(M;; | I; = ¢,0), where I; takes value from {1,...,L}
and 0 represents the collection of measurement parameters — sensitivities and specificities.
We then obtain the observed likelihood by summing over all the possible values of I;, i.e.,
P(M; | 0,7) = Sk =, H‘jle P(M;; | I; = ¢,0), where 7 is a vector of mixing weights of
length L. The LI assumption implies that the latent membership I; completely explains
the marginal dependence in M;. Under local identifiability conditions (Allman, Matias, and
Rhodes 2009), we can estimate 7 and @ by the values that optimally reduce the observed de-
pendence among measurements given latent class, e.g., through the expectation-maximization
(EM) algorithms. Individual classification can then proceed by applying Bayes rule using the
estimated parameters.

Below, we introduce the NPLCM family of models using case-control BrS measurements
obtained from a single source (referred to as a “slice” in the baker package). In Section 3.1,

https://CRAN.R-project.org/package=baker
https://CRAN.R-project.org/package=baker
https://github.com/zhenkewu/baker
https://github.com/zhenkewu/baker

4 baker: Nested Partially-Latent Class Models

we generalize the model to using multiple slices of BrS measurements, and to integrating
case-only SS measurements which are special cases of BrS measurements having false positive
rate of zero (perfect specificity).

2.2. Data structure and notation for case-control studies

Let Y; = 1 indicate a case subject with the clinically-defined disease and Y; = 0 indicate
a control subject without disease. Let M; = (M, ..., M;;)" € {0,1}” represent the mul-
tivariate binary case-control, non-gold-standard diagnostic test results from subject i. Let
D = {(M;,Y;, X;Y;, W;),i = 1,...,N} represent data, where X; = (X,-l,...,Xip)T are
the p primary covariates in CSCF functions and hence must be available for cases, and
W; = Wi,..., I/Viq,)T are g covariates that are available in the cases and the controls. X
and W, may be identical, overlapping or completely different. X,;Y; = X, for a case Y; = 1;
X;Y; is a vector of zeros for a control subject. For notational convenience, we have ordered
the continuous variables, if any, in X; and W; as the first p; and ¢; elements, respectively.
In this paper, we focus on pre-specified X; and W;.

Classes defined by latent states

We first introduce notation for the true but unobserved latent classes (e.g, causes of disease)
among the case subjects. Suppose a total of J “agents” or “items” are measured by the
diagnostic tests. Let a binary variable ¢;; indicate whether (¢;; = 1) or not (¢;; = 0) the j-th
agent caused case i’s disease. We also allow more than one agent to cause the disease. We
therefore have ¢; = (1i1,...,t5) € {0,1}” which is a vector of multiple binary indicators
that represents the causes for subject i. We will also refer to ¢; as “latent states” for case
subject i. Note that we allow the all-zero latent states ¢; = 041 to represent a case with
a “Not Specified” (NoS) cause. For example, in the Pneumonia Etiology Research for Child
Health (PERCH) study, “NoS” can represent the subgroup of cases whose diseases are caused
by agents not specified as molecular targets in the diagnostic tests (such as polymerase chain
reaction, PCR). We will refer to cases having the same pattern of multivariate binary pattern
L; as belonging to the same “disease class” or “class” for short.

In this paper, we assume that there are L classes of pre-specified latent state patterns (possibly
“NoS”) among the cases. Let the set A comprise the pre-specified distinct multivariate binary
patterns so that |A| = L, where |A| is the cardinality of .A. We then introduce class indicators
by arbitrarily labeling elements in A from 1 to L. We can now use I; that takes value from
{1,..., L} to indicate case subject i’s class. We alsolet Cp ={j :v; =1,1; =0,7=1,...,J}
represent the subset of causative agents for disease class ¢; for the NoS class, we have Cnos = 0.
For a control 7, we use I;; = 0 to indicate t;; = 0741, e.g., no lung infection in the PERCH
study. For a case or a control, the value of I; thus corresponds to a particular state pattern,
so we can write ¢; = ¢;([;).

To illustrate the scientific meaning of the notation, consider a hypothetical list of J = 5
species of pathogens (“items”) in the context of PERCH study; they are targeted by the panel
diagnostic tests. First, under the assumption that there are only single-pathogen causes and
no NoS class, we have L = J = 5 disease classes with distinct patterns of ¢:

A = {(1?07070a O)Tv (07]-a 07 07 O)Ta T, (07 07 07 07]-)T}

We can label the five disease classes by 1,..., L =5, so that, for example, I; = 2 corresponds

Chen I, Shi Q, Zeger SL, Wu Z 5

to ¢; = (0,1,0,0,0)" and Cy = {2}, I; = 5 corresponds to ¢; = (0,0,0,0,1)" and C5 = {5}.
Second, under a less restrictive assumption of single- or double-pathogen causes (still no NoS
class), we have L = (‘17) + (‘2]) =5+ 10 = 15 disease classes. For example, cases with the first
and the third pathogen infecting the lung are represented by ¢; = (1,0, 1,0, O)T. It has the
subset of causative agents C; = {1,3} where I; = £ is an arbitrary integer label of the disease
class.

2.3. Nested partially latent class models for case-control studies

Wu et al. (2016) and Wu et al. (2017) introduce a generalization to the latent class model
in order to address two aspects of our particular setting. First, the latent classes are called
“partially latent” since class membership is known for the subset of controls, but not cases.
Second, the conditional independence assumption is relaxed by allowing for nested subclasses
within each class. The inclusion of subclasses accounts for the possibility of correlation or
dependence between measurements. The baker package implements this nested partially
latent class model (NPLCM) framework. For ease of interepretation, we present the models
by referring to terminologies in the PERCH study.

Likelihood

The NPLCM model likelihood can be specified via the following generative processes for the
controls and the cases, respectively.

control subclass : Z; | Y; = 0 ~ Categorical {v},v € Sk_1, (1)
control data : M;j; | vij =0,Z; = k ~ Bern {@Z),(gj)}, independently for j =1,...,J, (2)
where v = (v1,...,vk)! is the vector of subclass probabilities and lies in a probability

simplex. When K = 1, the model is referred to as PLCM (Wu et al. 2016). Let ¥ = {w,(cj) €
(0,1)} be a J x K matrix comprising false positive rates (FPRs), which are necessary for
modeling the imperfect binary measurements among the controls. Let 1) and 1), represent
the j-th row and k-th column. The data generating process for cases is as follows, with an
additional Step (4) for drawing a subclass indicator Z; for each case subject:

disease class : I; | Yi =1 ~ Categorical, {7}, 7 € Sr_1, (3)
case subclass : Z; |'Y; =1 ~ Categoricalg {n},n € Sk_1, (4)
convert class to states : ¢; = ¢;([;) € A;
case data : M;j | vij, Z; = k,1; = £,~ Bern {p](jg} , independently for j =1, ..., J,
(5)
. ov) .
response probabilities : pgg) = k(j)’ " 0’ k=1,...,K, and ¢ =1,...,L. (6)
Loy bLijg =Y,

At Step (4), the NPLCM introduces K unobserved subclasses with weights 9 = (11, ...,7x)".

The weights are shared across L disease classes. Let © = {49,(5) e (0,1)} be a J x K matrix
where 9,9) represents the positive response probability in subclass k if item j is causative in
a disease class. We also refer to 9,(5) as true positive rate (TPR) or sensitivity as in PLCM.

6 baker: Nested Partially-Latent Class Models

Let 0 and 6, represent the j-th row and k-th column. In Step (6), p,(jé) represents the
positive response probability of M;; in subclass k of disease class £, which equals the TPR

0,(;) for a causative pathogen and the FPR w,(cj) otherwise. We collect all the positive response

probabilities for subclass k in disease class ¢ into pgp = (p,(clg), el p,g‘z))T.

The population-level class prevalences in the cases are referred to as “cause-specific case
fractions”(CSCF): ® = (71,...,7)", which represent the population-level distribution of
disease classes. 7 is the population-level class prevalences among the cases and is often of
primary scientific interest. 7 is also referred to as cause-specific case fractions (CSCFs Wu
and Chen 2021).

Prior

For NPLCM, we specify the prior distributions on unknown parameters as follows:

7w ~ Dirichlet(ay,...,ar), (7)
YY)~ Beta(bij,bogj)ij =1, Jik < K, 8)
09~ Beta(cigj, con;)j =1, Jik < K, (9)

me o~ U [J[1-Us, Uk~ Beta(l,a1),k < K;Ug =1; (10)

s<k

Ve ~ Vk H[l—VS], VkNBeta(l,ao),k‘<K;VK:1; (11)

s<k
ap, a1 ~ Gamma(0.25,0.25), (12)

where prior independence is also assumed among these parameters. As discussed in more
detail by Wu et al. (2016), the NPLCM likelihood similarly has the TPRs © that are not
fully identified by the model likelihood and hence is partially identified (Jones, Johnson,
Hanson, and Christensen 2010). Therefore, we choose (cixj, coxj),Vk,j, so that the 2.5%
and 97.5% quantiles of the Beta distribution with parameters (cij;, cox;) match the prior
minimum and maximum TPR values elicited from domain experts. Otherwise, we use the
default value of 1s for the Beta hyperparameters. Hyperparameters for the etiology prior,
(ai,...,az)T, are usually 1s to denote equal and flat prior weights for each disease class if
expert prior knowledge is unavailable. Finally, in (10) and (11), we have specified truncated
stick-breaking priors for both 1 and v that on average place decreasing weights on the kth
subclass as k increases (Sethuraman 1994).

2.4. Regression extensions of NPLCM

Likelihood

An extension of the NPLCM allows for covariates to predict latent class membership by
allowing the priors of the CSCFs and the subclass mixing weights to be a function of the
observed explanatory variables. There may be biological or epidemiological support to include
covariates in the likelihood function. For example, date of diagnosis may be informative if
the disease of interest is known to have seasonal patterns.

Chen I, Shi Q, Zeger SL, Wu Z

We let the CSCFs depend on X; by using a classical multinomial logistic regression:

mie = me(X;) = exp{de(X;)}/ Z exp{op(X;)}, 0 =1,..., L, (13)

=1

where ¢y(X;) — ¢ (X;) is the log odds of case i in disease class ¢ relative to L: log m/m;L.
We treat all the disease classes symmetrically in this formulation, which simplifies the prior
specification.

The regression extension assumes the control subclass weights are covariate-dependent:

Extend (1) — control subclass : Z; | W;,Y; = 0 ~ Categorical {v;} ,v; = v(W;) € Sk_1,
(14)

where, as in NPLCM (Wu et al. 2017), the subclass indicators Z;’s are nuisance quantities for
inducing dependence among the multivariate binary responses M;, but now given covariates.
vi = (Vi1 .., VZ'K)T is the vector of control subclass probabilities that now may depend on
W;. Scientifically, we are not interested in how the subclass probabilities are associated with
covariates. We introduce v(W) here because, upon integrating over the distribution of Z; in
(14), it helps define a flexible conditional distribution of M; given covariates W;.

For cases, we follow the case model for NPLCM, but extend in two aspects: let CSCFs depend
on covariates X; and let case subclass weight depend on covariates W;. That is,
Extend (3) — disease class: I; | X;,Y; = 1 ~ Categorical; {m;} ,m; = w(X;) € Sp—1, (15)
Extend (4) — case subclass: Z; | W;,Y; = 1 ~ Categorical {m;},mi = n(W;) € Sk_1, (16)
where w(X;) = (71(X;),...,7(X;))" are CSCF functions evaluated at X;, and n(W;) =

(min(W5), ... ,771-K(VV'¢))T is the vector of case subclass probabilities evaluated at W;. Both
7; and 7); are quantities from probability simplexes.

Detailed regression specification

CSCF regression. We further assume additivity in a partially linear model:

(b Z; FZ Zféj $]7B£j)+£T7?7 (17)
where @ is the subvector of the predictors x that enters the model for all disease classes as
linear predictors which may include an intercept, and I'f = [(85) ', ..., (,ngl)T, (vF)"T s

the vector of the regression coefficients for disease class . For covariates such as enrollment
date that serve as proxy for factors driven by seasonality, non-linear functional dependence
is expected. We approximate unknown functions of a standardized continuous variable such
as fg; via basis expansions and along with a prior on the basis coefficients to encourage
smoothness.

Control subclass weight regression. We specify v;, by logistic stick-breaking parameterization:

vir, = g(ay, H{l ai)}, if k< K, and H{l — g(af;)} otherwise, where (18)
s<k s<k
@
an. = af (W = w;TY) = pugo + Zf,?j(wj;ﬁzj) + ’lI)T’Y;Cj, fork=1,...,K — 1. (19)
j=1

8 baker: Nested Partially-Latent Class Models

Let TY = [(BY) T, .., (ﬁ,’gql)T, (v%)T]" be the regression coefficients in the k-th subclass, and
o is subject i’s linear predictor at stick-breaking step k =1,..., K —1; g(-) : R [0,1] is
a link function. In the baker package, we use the logistic function g(a) = 1/{1 + exp(—a)}
which is consistent with (13) so that the priors of the coefficients I'} and I'j can be similar.

Case subclass weight regression. The case subclass weight curve n, (W) is also specified via
a logistic stick-breaking regression as in the controls but with different linear predictors oz :
Nik = gl) Mser{l —g(al)}, VE=1,.. ., K — 1; ik = [[ie {1 — g(a]})}. Given © and ¥,
k(W) fully determines the joint distribution [M | W, I = ¢ # 0,©, ¥]. We do not assume
Nk (w) = vp(w), Vw. Consequently, relative to the controls, the individuals in disease class
¢ may have different strength and direction of observed dependence between the causative
{M; : j € C} and non-causative {M; : j ¢ Cy} pathogens, or between the non-causative
pathogens. Let the k-th linear predictor

q1
aj, = (Wi = wiT]) = puo + Z flgj(wj; ﬁZj) + @T’ng (20)
=1

where f,?j and fi (from the control model) share the basis functions but the regression

coefficients I'} = [(B{))",..., (,BZqI)T, (v/)"]" differ from the control counterpart (I'7). In
addition, we have used the same intercepts {uxo} in (19) to ensure only important subclasses
in the controls are used in the cases. For example, absent covariates W, a large and positive
puro effectively halts the stick-breaking procedure at step k for the controls. This is because
the k-th stick-breaking will take almost the entire remaining stick, resulting in vy that is
approximately zero. Applying the same intercept uxg to the cases makes n;1 = 0.

Section 4 provides examples of how to include discrete and continuous covariates in the model
specification using the baker package.

Priors

The number of parameters in the model likelihood for the regression model

{71 AT AT} { ko }, ©,) is O(LCwaxp1 + K Caxqr + JK) where Cax is the maximum
number of basis functions in { f}j, f,;’j, f,?]} It easily exceeds the number of observed distinct
binary measurement patterns. To overcome potential overfitting and increase model inter-
pretability, we a priori encourage the following two features: (a) few non-trivial subclasses
uniformly over W; values, and (b) constant subclass weights over W; values nx(-) = n; and
v(-) = vg. See Wu and Chen (2021) for the exact technical specifications.

2.5. Posterior inference via MCMC

We perform posterior inference via Markov chain Monte Carlo (MCMC) algorithm that draws
posterior samples of the unknowns to approximate their joint posterior distribution (Gelfand
and Smith 1990). Flexible posterior inferences about any functions of the model parameters
and individual latent variables are available by plugging in the posterior samples of the un-
knowns. All the models presented so far are available in the baker package. See Wu et al.
(2016, 2017); Wu and Chen (2021) for details of the sampling algorithm.

3. Software: design features and main function

Chen I, Shi Q, Zeger SL, Wu Z

The Bayesian method for estimating population-level class prevalences and posterior prob-
abilities of class memberships for individual cases is implemented by connecting R with an-
other freely available cross-platform automatic Bayesian fitting program (JAGS 4.2.0 Plummer
2022). Figure 1 shows a schematic workflow that connects some baker functions and argu-
ments to the steps in a data analysis or simulation pipeline. The baker package implements
both exploratory and model-based analyses of case-control multivariate binary data. The
package enables an analyst to organize multivariate binary diagnostic test results by their
measurement standards (BrS or SS) and to calculate summaries such as the marginal posi-
tive rates for each item in the cases and controls; pairwise odds ratios can also be computed
and visualized. The analyst can then specify which subsets of measurement data to use,
the model likelihood, and the prior distributions for true positive rates and population-level
CSCFs, among other model components. Based on these model specifications, R calls and
instructs JAGS to fit the corresponding model to the data, performs model diagnostics, and
stores the posterior results for ensuing inference of the key unknown quantities, such as the
population-level class prevalences and class membership for individual cases. Finally, the
package offers numerical and graphical summaries to display the evidence in the data and to
facilitate model criticism.

The baker package uses the JAGS program to fit the specified NPLCMs; pre-installation of
JAGS is required - the accompanying vignette contains detailed instructions about setting up
JAGS for baker along with other required R package dependence.

nplcm() is the main function of the baker package and takes in three required arguments:

o data_nplcm: a named list containing data consisting of the following: 1) measurements
Mobs - a named list containing MBS for BrS measurements and MSS for SS measurements,
2) case-control status Y, and 3) covariates X;

e model_options: a named list that specifies the data sources, model likelihood, and
prior distributions for the model parameters;

e mcmc_options: a named list that specifies how to set up the MCMC sampling algorithm
for posterior inference.

We will provide detailed examples for each of the three arguments in the next section. The
output of nplem() is an object of class "nplcm" which contains the path to where results were
stored (accessible via $DIR_NPLCM) and the sampled values of model parameters which can
be further manipulated via external posterior processing packages such as coda and ggmemece
(see Section 4.5). It is designed such that intermediate model results, model specifications,
input data are retained for debugging and re-purposing for analyses not included in baker,
such as post-stratification of CSCFs by discrete covarates (e.g., age group) using model re-
sults obtained from an NPLCM fitted without covariates. In addition, in high-performance
computing, we may organize simulation settings by folder with proper names indicating the
differences in the ground truth. Separate functions can be written and applied to these fold-
ers to obtain simulation results for various comparisons. Although the downside is the extra
storage of results in the folder (and thus, the cost of additional disk memory), we believe
that retaining this information is often more beneficial in complex substantive applications.
Fortunately, generic functions in the baker package can read and organize these information
if the fitted object is provided.

10

baker: Nested Partially-Latent Class Models

Raw Data Ground Truth

Preprocess Simulate

* create meas_object() * simulate_nplcm()

Format Data

list: data_nplcm

* Mobs (measurements)

* Y (case-control status)
* X (covariates)

Model

list: model options
. * use_measurements
Specify Model « likelihood
* prior
* assign_model (model_ options,
data_nplcm)
Inference list: mcmc_options
main baker function
* nplcm(data nplcm,
model options,
mcmc_options)

Results
Diagnose Summarize

* plot_check_pairwise_ SLORD() * summary(); print()

* plot_check common_pattern() * plot()

Q0 OO0 &L X
@V G @Y ot s
ohgeenyslts:h

2.4

L 8,00 .8, 7,3
ORISR
seseo

A

controls

Figure 1: baker package workflow.

Chen I, Shi Q, Zeger SL, Wu Z 11

3.1. Multiple slices of BrS data and SS data

nplcm() can readily integrate more than one source of BrS measurements by supplying data
to the argument data_nplcm and using data as specified in the argument model_options. For
example, in the PERCH study, besides the NPPCR test for bacteria and viruses, pleural fluid
PCR on the same set of pathogen targets may be performed; they are obtained from a different
specimen with the same technology PCR and have different TPRs and FPRs. In the argument
data_nplcm (a list), we can add these measurements to the list data_nplcm$Mobs$MBS which
itself may contain multiple elements; we refer to each source of BrS measurements as a
“slice”. The baker package can integrate multiple slices of BrS measurements. In addition,
case-only SS measurements may be available, e.g., blood culture results on the subset of
bacteria. SS measurements are assumed to have perfect specificity, i.e., measurements on
controls are assumed to never return positive results; SS data are by definition case-only.
Similarly, one may add SS data into the list data_nplcm$Mobs$MSS which itself may contain
multiple elements or “slices”. The model likelihood with additional BrS and/or SS data will
be modified automatically by the nplem() function. In the argument model_options (a list),
we simply set the element use_measurements = "BrS" ("SS") to use all slices of the provided
BrS (SS) data; setting use_measurements = c("BrS","SS") will use both BrS and SS data
for model estimation. We illustrate these data source specifications in Section 4.3.

4. Tllustrations

In this section, we give code snippets with explanations for data simulation, model specifi-
cation, fitting, and numerical and graphical summaries of model results. By using simulated
and a real data set, we illustrate the practical functionalities of the baker package. See the
reproducible RMarkdown file provided along with this article for more illustrative examples of
standard workflows.

Below, we first illustrate the three required arguments of the main function nplem(): data_nplcm
(Section 4.1), model_options (Section 4.3), mcmc_options (Section 4.4). Second, we fit spec-
ified models to illustrate the outputs of the main function nplcm(). Finally, we demonstrate
how to use functions in the baker package to produce numerical and graphical summaries of
the model results. Section 4.2 considers data simulation with covariates.

4.1. Setting up data inputs: Simulation and structure

In the following, we simulate and store BrS and SS measurement data to be used in the
argument data_nplcm. simulate_nplcm() is a function that takes in the data generating
parameters stored in a named list (e.g., "set_parameter_noreg" below) and outputs a data
set containing 1) measurements (Mobs), which itself is a list with an element MBS that stores
BrS case-control measurements and another element MSS that stores SS case-only measure-
ments, and 2) case-control status (Y).

Here, we provide an example of relevant parameters that are useful in simulating data. We
illustrate the values that these model parameters can take. We need to specify the number of
items in a slice of bronze-standard measurements (J.BrS = 7), the number of items in a slice
of silver-standard measurements (J.SS), and the number of subclasses (K). In the code snippet
below, we simulate data for Nd = 300 cases and Nu = 300 controls. cause_list specifies

12 baker: Nested Partially-Latent Class Models

the names of the true causes, with etiology specifying the population-level proportions of
cases due to each cause (CSCFs). The BrS data used to infer the classes are case-control
measurements on six items c("A","B","C","D","E","F") which in this example happens to
be the exact set of agents that can cause the disease; in general, the measured items may
include non-causative items or miss causative items. SS data are case-only and can measure
fewer items targeted by BrS measurements. For the BrS data, true (ThetaBS) and false
positive rates (PsiBS) for all the subclasses must be specified; they are of identical dimensions
(J.BrS by K). In addition, one needs to specify two possibly different vectors of subclass
weights for the case (Eta) and the control populations (Lambda), respectively; they determine
the conditional dependence structure of the BrS measurements in the cases and the controls.
For SS data, the false positive rates (PsiSS) must be all zeros indicating perfect specificity;
the true positive rates (ThetaSS) can take positive values between 0 and 1. No subclass is
assumed by the NPLCM models for SS data. We then use function simulate_nplcm() to
produce a simulated data set:

R> J.BrS <- 6; J.SS <- 2; K <- 2
R> set_parameter_noreg <- list(Nd = 300, Nu = 300,

+ cause_list = c("A","B","C","D","E","F"),

+ etiology = ¢(0.5,0.2,0.15,0.05,0.05,0.05),

+ meas_nm = 1list (MBS = c("MBS1"),MSS=c("MSS1")),
+ pathogen_BrS = c("A","B","C","D","E","F"),

+ PsiBS = ¢bind(c(0.25,0.25,0.2,0.15,0.15,0.15),
+ c(0.2, 0.2, 0.25,0.1,0.1,0.1)),
+ ThetaBS = ¢cbind(c(0.95,0.9,0.9,0.9,0.9,0.9),

+ c(0.95,0.9,0.9,0.9,0.9,0.9)),

+ Eta = t(replicate(J.BrS,c(0,1))),

+ Lambda = ¢(0.5,0.5) ,

+ pathogen_SS = c("A","B"),

+ PsiSS = ¢c(0,0,NA,NA,NA,NA),

+ ThetaSS = ¢(0.15,0.1,NA,NA,NA,NA)

+)

R> data_nplcm_noreg <- simulate_nplcm(set_parameter_noreg)$data_nplcm

The data set can also be directly accessed by data(data_nplcm_noreg). We can use the
summarize_BrS() function to get summary statistics of the BrS measurements of the sim-
ulated data set. This function outputs the number of cases and controls, the observed
marginal means for each measured item in the cases and the controls, along with the names
of the measurements. The following line of code computes summaries for the single slice
of the BrS data (data_nplcm_noreg$Mobs$MBS[[1]1]) given the vector of case-control sta-
tuses (data_nplcm_noreg$Y); another function summarize_SS() can be used similarly for SS
measurements:

R> summarize_BrS(data_nplcm_noreg$Mobs$MBS[[1]],data_nplcm_noreg$Y)
R> summarize_SS(data_nplcm_noreg$Mobs$MSS[[1]],data_nplcm_noreg$Y)

In addition to producing quick summary statistics, baker also provides functionalities to or-
ganize and store pertinent information about the BrS (or SS) measurements. For example, in

Chen I, Shi Q, Zeger SL, Wu Z 13

the context of the PERCH study, the specimen name can be saved in the specimen argument,
e.g., "NP" for a nasopharyngeal specimen. Another piece of information can be saved in the
test argument, e.g. "PCR" (polymerase chain reaction) - here we use "1" for illustration;
quality specifies the measurement quality (e.g. "BrS" or "SS"). The output of this function
can be found in Appendix C.1.

R> BrS_object_1 <- make_meas_object(patho = set_parameter_noreg$pathogen_BrS,
+ specimen = "MBS", test = "1", quality = "BrS", cause_list =

+ set_parameter_noreg$cause_list)
R> SS_object_1 <- make_meas_object(patho=LETTERS[1:J.SS],
+ "MSS","1","SS",set_parameter_noreg$cause_list)

R> clean_options <- 1list(BrS_objects = make_list(BrS_object_1),
+ S8S_objects = make_list(SS_object_1))

4.2. Simulate data with covariates

In Appendix A, we provide 1) example code to simulate data data_nplcm_reg_nest_strat

with two subclasses (“nested”) and two covariate strata; and 2) code to load a pre-simulated

data set with a continuous covariate and a two-level discrete covariate: data(data_nplcm_reg_nest).
We refer the reader simulate_nplcm() in the help files of baker for more examples of how

to simulate data with individual-level covariates.

4.3. Specifying models

We provide examples of model_options by specifying four models:

model_options_no_reg;

model_options_no_reg_with_SS;

model_options_reg_nest_strat;

model _options_reg_nest,

the first two of which does not perform regression and the last two perform regression. Various
NPLCMs can be specified via three named lists:

e use_measurements: can be "BrS" or "SS" or c("BrS","SS") to represent the quality
of the data sources used for model fitting;

e likelihood: a named list defining the model likelihood of the desired NPLCM;

o prior: a named list defining the prior distributions for the associated parameters.

Specify models without regression

In the code example below, use_measurements = "BrS" indicates that only the bronze-
standard data are used in fitting an NPLCM. For specifying the likelihood, k_subclass

14 baker: Nested Partially-Latent Class Models

indicates whether or not to use the conditional independence model (k_subclass = 1 corre-
sponds to the model with conditional independence given a cause, referred to as “non-nested
model"). Eti_formula specifies the regression formula for relating the CSCFs to case co-
variates; FPR_formula specifies the regression formula for relating the subclass weights to
covariates (must be common to case and control subjects). In terms of the prior distribution
(prior), Eti_prior here specifies a numeric vector of length equal to the number of causes;
this vector are Dirichlet hyperparameter for the population CSCFs. The TPR_prior specifies
informative priors for the true positive rates; for example, we can specify a range "0.55" to
"0.99" for MBS1 measurement.

R> Cause 1lSt <_ C(IIA" IIBII IIC" ||Dll IIEII IlFll)
R> model_options_no_reg <- list(use_measurements = c("BrS"),

+ 1likelihood = list(cause_list = cause_list, k_subclass = 2,

+ Eti_formula = ~-1, FPR_formula = list(MBS1 = ~-1)),

+ prior= list(Eti_prior = overall_uniform(1,cause_list),

+ TPR_prior = list(BrS = list(info = "informative", input = "match_range",
+ val = 1ist(MBS1 = list(up = 1list(rep(0.99,J.BrS)),

+ low = list(rep(0.55,J.BrS))))))))

The main function (nplcm()) will use another built-in function assign_model() to check
the model_options argument against the data_nplcm argument and will return informa-
tion about the desired NPLCM. Users can use this to check that they have set up their
model_options correctly. In particular, the output from the following code snippet can be
found in Appendix C.2.

R> assign_model (model_options_no_reg,data_nplcm_noreg)

In addition, we can specify a model that uses both BrS and SS data to fit an NPLCM without
regression. To do this, we just need to modify the data_nplcm argument by adding SS data
to the list data_nplcm$Mobs$MSS and specify a TPR prior for the SS data, e.g., "0.01" to
"0.5" for "MSS1" measurements. This flexibility shows the package can work with multiple
sources of data.

R> model_options_no_reg_with_SS <- model_options_no_reg
R> model_options_no_reg_with_SS$use_measurements <- c("BrS","SS")
R> model_options_no_reg with_SS$prior$TPR_prior$SS <-
list(info = "informative", input = "match_range",
val = list(MSS1 = list(up = list(rep(0.5,length(SS_object_1$patho))),
low = list(rep(0.01,length(SS_object_1$patho))))))

Specify models for regression analyses

To set the model_options argument with regression covariates, we need to modify the
Eti_formula and FPR_formula arguments. Here we use simulated data for illustration (see
the final line of Appendix A). Recall that we do not let TPR vary by covariates in standard
NPLCMs. In the following, because all the covariates are discrete, we specify symmetric
Dirichlet priors with hyperparameters 1s for the vector of CSCFs in each stratum of the co-
variate SITE. Other priors that have been set to defaults include the smoothness selection

Chen I, Shi Q, Zeger SL, Wu Z 15

hyperparamters for the case and control FPRs (usually taken to be non-informative, given
that FPRs can be estimated from the data).

R> model_options_reg_nest_strat <- list(use_measurements = c("BrS"),

val = 1list(MBS1 = list(up = 1list(rep(0.99,J.BrS)),
low = list(rep(0.55,J.BrS))))))))

+ 1likelihood = list(cause_list = cause_list,

+ k_subclass = 2, Eti_formula = ~ -1+as.factor(SITE),

+ FPR_formula = 1list(MBS1 = ~ -1 + as.factor(SITE))),

+ prior= list(Eti_prior = c(2,2),

+ TPR_prior = 1list(BrS = list(info = "informative", input = "match_range",
+

+

Again, we can check that we have set up the NPLCM correctly using assign_model ().

To fit the same model as above, but with an additional continuous covariate "DATE", all we
need to do is modify the regression formula:

R> model_options_reg_nest <- model_options_reg_nest_strat
R> model_options_reg _nest$likelihood$Eti_formula <-

+ ~ -1+s_date_Eti(DATE,Y,basis='ps',dof=7)+as.factor(SITE)
R> model_options_reg_nest$likelihood$FPR_formula <-
+ list(MBS1 = ~ -1 +s_date_FPR(DATE,Y,basis = "ps",dof=5) + as.factor(SITE))

4.4. Setting up MCMC

Finally, we specify the mcmc_options argument of nplecm(), including the number of chains
(n.chains), the number of total iterations (n.itermcmc), the number of burn-in iterations
(n.burnin), the thinning interval (n.thin), whether or not individual level latent class pre-
dictions are desired (individual.pred = TRUE or FALSE) and whether or not to sample from
the posterior predictive distributions (ppd = TRUE or FALSE). In addition, we must specify the
path to the directory where the model should write the posterior samples (result.folder)
and the path to the directory of the .bug model files (bugsmodel.dir).

R> thedir <- pasteO(tempdir(),"_no_reg"); dir.create(thedir)

R> dput(data_nplcm_noreg,file.path(thedir,"data_nplcm.txt"))

R> dput(clean_options, file.path(thedir,"data_clean_options.txt"))
R> mcmc_options_no_reg <- list(n.chains = 3, n.itermcmc = 2000,

+ n.burnin = 1000, n.thin = 1, individual.pred = TRUE,

+ ppd = TRUE, result.folder = thedir, bugsmodel.dir = thedir)

Now that we have specified all the required arguments for nplcm(), we can fit our NPLCM
using the following code:

R> nplcm_noreg <- nplcm(data_nplcm_noreg, model_options_no_reg,
+ mcmc_options_no_reg)

We can similarly obtain the other fitted models: nplcm_noreg_with_SS,nplcm_reg_nest_strat,
and nplcm_reg_nest; see Appendix B for three separate uses of the main function nplem().

16 baker: Nested Partially-Latent Class Models

Because we use JAGS for automatic and versatile Bayesian inference of the models, we need
to supply JAGS with .bug files with the requested forms of model likelihood and prior dis-
tribution. In the above code, nplcm() automatically interprets the specified model options
and writes them in .bug files. In this case, nplcm() uses some internal function to gen-
erate a .bug model file for conditional independence models without regression, using BrS
data. This model file will be stored in the path specified by result.folder. In addition,
fs::dir_tree(path = nplcm_noreg$DIR_NPLCM, recurse = TRUE) lists all the resulting
files in the folder storing model results. The output of nplcm() is an S3 object of class
nplcm which may be used by generic methods such as summary (), print (), and plot () (see
Section 4.6).

4.5. Convergence and model diagnostics

After MCMUC iterations are completed, we can assess convergence of the sampling chains for
parameters using recorded information. The file jagsdata.txt contains all the data and
pre-specified hyperparameters used when fitting the model. The files CODAchainl.txt and
CODAindex.txt together record the posterior samples. Here we illustrate by using pEti,
which stores the posterior samples of the CSCFs; we illustrate by focusing on model results
obtained from an NPLCM without regression nplcm_noreg. Our package does not provide
built-in functions to assess convergence and mixing of the sampling algorithm; in the following,
we illustrate how to extract sampled values based on the outputs of nplem(). However, baker
provides built-in functions for performing posterior predictive checking. Posterior samples can
be read into the coda format using the coda package. In particular, to retrieve the posterior
samples, recall that the output from the nplcm() function contains the path to the directory
where we stored the posterior samples and can be called using $DIR_NPLCM, as shown in the
following example:

R> res_nplcm_noreg <- coda::read.coda(file.path(nplcm_noreg$DIR_NPLCM,
"CODAchainl.txt"), file.path(nplcm_noreg$DIR_NPLCM, "CODAindex.txt"),quiet=TRUE)
R> get_res <- function(x,res) res[,grep(x,colnames(res))]

R> res <- get_res("pEti",res_nplcm_noreg)

Convergence diagnostics

The posterior samples obtained above can be further manipulated using external packages
that provide algorithm convergence diagnostic functionalities. For example,

coda: :raftery.diag(mcmc.list(res)) produces the Raftery diagonistic for convergence
and the effective sample sizes for our model parameters. As another example,

ggmeme: :ggs_traceplot (ggmeme: : ggs (res)) plots the sampling trajectories for parameters
of interest. See Brooks, Gelman, Jones, and Meng (2011) for a more complete review of
approaches and considerations for convergence assessment.

Model diagnostics

The baker package provides two useful posterior predictive checking functions. For each slice
of BrS measurement data:

o Standardized log odds ratio differences (SLORD); this is based on pairwise associations

Chen I, Shi Q, Zeger SL, Wu Z

among the BrS measurements: near-zero SLORDs indicate the association is adequately
characterized by the model;

o Probabilities of multivariate binary patterns with the highest frequencies; this is based
on all the dimensions of measurements, not just pairwise, hence providing additional
capability to assess the adequacy of the model in capturing the observed frequencies of
multiple binary patterns.

Because the posterior predictive samples are stored in $DIR_NPLCM (when ppd = TRUE was
set in the MCMC options), one can read in these samples and perform desired posterior
predictive checking with other statistics if desired.

First, the following code snippet outputs a figure of posterior predicted pairwise LOR (log-
odds ratios) compared with the observed LOR for the BrS data.

R> plot_check_pairwise_SLORD(nplcm_noreg$DIR_NPLCM,slice=1)

Second, the following code snippet produces a figure shown in Figure 6 of Appendix based on
the S3 object of class nplcm ("nplcm_noreg"), for the first slice of the bronze-standard data
(slice_vec = 1), and npat = 5 patterns with the highest frequency in the observed data:

R> plot_check_common_pattern(list(nplcm_noreg$DIR_NPLCM),slice_vec=1,n_pat=5)

4.6. Summary, plot, print

The baker package provides summary() methods to produce quick numerical summaries of
the model specifications, posterior means and 95% credible intervals for population CSCFs.
For example, summary (nplcm_no_reg) shows information about the result obtained from an
NPLCM without regression; the actual outputs are shown in the Appendix C.3.

The generic plot() methods in baker produces graphical summaries of the fitted model
according to the type of NPLCMs fitted. For an NPLCM without regression, this will produce
a multi-paneled figure that summarizes the data, prior and posterior. In our experience, the
figure facilitates answering questions like “where does the information come from?”, e.g., how
the BrS and SS data summaries are consistent with the obtained posterior inferential results
for each cause. Figure 2 displays the output of the following code snippet. The detailed
explanation of the details in the resulting figures can be found in the user manual of the
baker package:

R> plot(nplcm_noreg _with_SS, bg_color = NULL)

In the case of an NPLCM with one or more discrete covariates for CSCF regression (without
continuous covariates), plot () will visualize the posterior distributions of the CSCFs for each
covariate stratum. Figure 3 displays the output of the following code snippet:

R> plot(nplcm_reg _nest_strat,show_levels = c(0,1,2))

The above code produces a figure for each stratum (the final row is for the overall CSCF
estimates as a weighted average across strata). To only plot the marginalized posterior dis-
tributions, we can set show_levels = 0.

17

18 baker: Nested Partially-Latent Class Models

I=>

BrS: MBS1 SS: MSS1

conditional OR prior @ posterior
data: A A
control 21%
7.3 A
case 60% ke 93% He11556.6% A
posterior mean:
(FPR)--A(fitted)-—+(TPR) * & + 5 109 a +
sterior CI: '[-95%; [I-50% HH HH 162%
prior: ''=95%;'[]'-50% -
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10]%0 02 04 o6 o8 °
data: s 8
control 21.7%
2.2 A
case 31.3% e 2.3% He—{ TEl?.G% e
posterior mean:
(FPR)--A(fitted)-—+(TPR) * A + 14 33 A+
sterior CI: '[-95%; [I-50% —— H—— 137%
prior: ''=95%;'[]'-50% .
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 0.7 08 09 10]%0 02 a4 o6 o8 b
data:
c

control »XZ:J%
2.7 A
case 37% He— ®13.9% Fco

posterior mean

(FPR)--A(fitted)——+(TPR) *o A + 18 41
isterior Cl: '|'-95%;'[]'-50% —t
prior: ''~95%; ['-50% h
00 01 02 03 04 05 06 07 08 09 10 00 02 04 06 08 10
data: b
control 12%
1.6 A
case 163% Hot T76.6% ro®
posterior mean:
TFPR)—-A(fitted)——+(TPR) *B + 09 27
isterior CI: '|'-95%;'[]'-50% —
prior: ''~95%;'['-50%
00 01 02 03 04 05 06 07 08 09 10 00 02 04 06 08 10
data:
o, F
control 3%
1.3 A
case 18.7% e 54.2% rFo
posterior mean: 08 23
{FPR)--A(fitted)-—+(TPR) * + . -
sterior CI: '|'-95%; []-50% ——
prior: '['~95%;'['-50%
00 01 02 03 04 05 06 07 08 09 10 00 02 04 06 08 o
data: E
control 13.3%
0.7 A
case 11.7% L] 51.1% reo
posterior mean: 04 13
TFPR)--A(fitted)-—+(TPR) # +))
sterior CI: ''-95%; 1-50% —t—
prior: '['~95%; ['-50%
T T T T T T T T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1.0
positive rate positive rate probability

Figure 2: Output from plot for an nplcm object "nplcm_no_reg_with_SS". The data, prior,
and posterior summaries are displayed for each latent class in the rows; see Wu et al. (2016,
Figure 3,) for additional figure descriptions.

Chen I, Shi Q, Zeger SL, Wu Z

Posterior distributions of CSCFs for stratum: 1; weight: 0.5

Posterior mean displayed as solid line
95% Crls displayed as dashed lines

A B © D E F
i | o o | |
i i I i i i i i
' ' 1 ' ' i ']
40- ' ' N ' ' | ' I
- ! !] ! ! i ! |
3 ! ! 1 ! ! i ' |
S | | e T of g]
E ' ' 1 ' ' i i]
o
9 2- v i . o 1 o
N 1 1 1 1 1 1 1 1 1 1 1
' ' iy ' ' 1] |
' ' 0 ' ' il] il
'] il : ' Al) 11
O e o e e) A | e e I e I e e
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 00 0.2 0.4 06 00 0.2 0.4 0.6 00 0.2 0.4 06 00 0.2 0.4 0.6
CSCF
Posterior distributions of CSCFs for stratum: 2; weight: 0.5
Posterior mean displayed as solid line
95% Crls displayed as dashed lines
A B © D E F
] i | o o) i il
o-] ———— it - i
' ' ' ' i T il il
Zis- 0| - : i ol i i B i %
S O i i N (I i i Il
S | ' ' ! v I] iy |
g 207l | | L d K L
w 1 1 1 ! 1 | ol il il
5- ' ' ' o Sl il il il
i i i ! o JlFfk il ; il |
! ; i | it llff ol i
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 06 00 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
CSCF
Posterior distributions of CSCFs (across all levels using weights: (0.5,0.5))
Posterior mean displayed as solid line
95% Crls displayed as dashed lines
A B © D E F
40- !
30-

Frequency
. N
5 5
i T

Pyt

00 01 02 03 0 1 02 03 04 o

Figure 3: A graphical summary from plot of a fitted nplcm object "nplcm_reg nest_strat"
with a two-level discrete covariate. The final row shows the marginal posterior distributions
for causes "A" to "F" where stratum weights are 0.5 and 0.5; the weights default to empirical
weights and can be user-specified. The other rows show the marginal posterior distributions
of the CSCFs for each stratum.

19

20 baker: Nested Partially-Latent Class Models

case —-
control-—>
1.0

1) 0.8 1 0.8 - 0.8 0.8 1 0.8 1 0.8 -

0.6 1 0.6 - 0.6 4 0.6 1 0.6 1 06 -

positive rate

04 4 0.4 o 0.4 0.4 04 0.4 -

024 0.2 4 02 4 02 4 024 0.2

0.0 - 0.0 -

control——> i -

14 14
49.2% <- Overall Pie - 16.2%
41.6% 56.3%<'653 cri o 8.6% 25.8%

3.1%
0.5% 6.5%

18.9% 9.1% 3.4%
11.3% 26.4% 4.3% 14.5% 0.5% 7.2%

N—
o
©

!
o
©

!
o
©

1

o
©

!

o
©

!

o
©

!

o
>
!
o
=
!
o
=S
1
o
®
!
o
°
!
o
=
!

etiologic fraction

o
=
!

2010:Feb-01 —
2010:Feb-01 —

Figure 4: Output from plot for an nplcm object "nplcm_reg_nest" with a continuous re-
gression covariate (seasonality). The top plot displays the estimated TPR for each latent
class and the bottom plot displays the estimated CSCFs for each latent class. See for detailed
description of the figure in Wu and Chen (2021).

In the case of an NPLCM with a continuous covariate, the plot () will produce a figure with
two rows: one of the estimated marginal positive rates for cases and controls and one of the
CSCFs for each disease class among the cases. We show an example of this plot in Figure 4
where CSCFs may vary by enrollment date (x-axis). If we have discrete covariates as well as
a continuous covariate in the CSCF regression, we can make these plots for each stratum of
the discrete covariates by including the stratum as an argument in the plot function:

R> DISCRETE_BOOL <- data_nplcm_reg nestXSITE ==
R> plot(nplcm_reg_nest, stratum_bool = DISCRETE_BOOL)

4.7. PERCH study example

Pneumonia is a clinical condition associated with infection of the lung tissue, which can be
caused by multiple species of pathogens. In studies of pneumonia etiology, a cause is the
subset of one or more pathogens infecting the lung. Knowledge about population-level cause-
specific etiologic contributions can help prioritize prevention programs and design treatment
algorithms. The Pneumonia Etiology Research for Child Health (PERCH) study is a seven-
country case-control study of the etiology of severe and very severe pneumonia. (PERCH
Study Group 2019) The primary aim of the study is to estimate the etiologic contributions
quantified by cause-specific case fractions (CSCFs), which may vary by individual-level factors
such as age, disease severity, nutrition status and human immunodeficiency virus (HIV) status.

Chen I, Shi Q, Zeger SL, Wu Z

In the PERCH study, tabulating case frequencies by cause is infeasible, because the lung-
infecting pathogen(s) can rarely be directly observed due to potential clinical complications
associated with invasive lung aspiration procedure (PERCH Study Group 2019). As an
alternative, a non-invasive real-time polymerase chain reaction (PCR) test was made on each
case’s nasopharyngeal (NP) specimen, outputting presence or absence of a list of pathogens
in the nasal cavity. The NP multivariate binary measurements are imprecise indicators for
what pathogens infected the lung. In particular, detecting a pathogen in a case’s nasal cavity
does not indicate it caused lung infection. To provide statistical control for false positive
detections, the PERCH study also performed NPPCR tests on pneumonia-free controls.

We illustrate with a regression analysis with 518 cases and 964 controls from one of the
PERCH study sites in the Southern Hemisphere that collected more complete information
on age (dichotomized to younger or older than one year), HIV status (positive or negative),
disease severity for cases (severe or very severe), and presence or absence of seven species of
pathogens (five viruses and two bacteria, representing a subset of pathogens evaluated) in
NPPCR. The names of the pathogens and the abbreviations are (i) bacteria: Haemophilus
influenzae (HINF) and Streptococcus pneumoniae (PNEU), (ii) viruses: adenovirus (ADENO),
human metapneumovirus type A or B (HMPV_A_B), parainfluenza type 1 virus (PARA_1),
rhinovirus (RHINO), and respiratory syncytial virus (RSV). We also include in the analysis
the case-only, perfectly specific but imperfectly sensitive blood culture (BCX) diagnostic test
results for two bacteria from cases only. For BCX data, we assume perfect specificity which
is guided by the fact that if a pathogen did not infect the lung, it cannot be cultured from
the blood (so we do not need control data to estimate the specificities). Detailed analyses of
the entire data are reported elsewhere (The PERCH Team 2019).

Since the PERCH study data is not yet public and freely accessible, we provide example
code of running nplem() with model specifications (perch_model) and model fitting options
(perch_mcmc). To more fully illustrate the functionality of baker, we use a pre-run posterior
analysis of PERCH data and demonstrate numerical and graphical summaries of a simple
regression analysis using baker. Sampling for this model in JAGS took approximately 5
minutes on a machine with an Quad-Core Intel i7 2.9 GHZ CPU and 16 GB of RAM running
OSX Version 12.3 Beta.

First, we show the structure of the input data:

R> str(perch_data)
List of 3
$ Mobs:List of 2

..$ MBS:List of 1

..$ NPPCR:'data.frame': 1488 obs. of 7 variables:

. ..$ HINF : int [1:1488] 01 00110000 ...
..$ PNEU : int [1:1488] 000000000 O ..
.. ..$ ADENO : int [1:1488] 0 0 0 O NA NA NA NA 0 1
.. ..$ HMPV_A_B: int [1:1488] 0 0 O O NA NA NA NA 0 O
..$ PARA_1 : int [1:1488] 0 0 0O O NA NA NANA O O
..$ RHINO : int [1:1488] 0 0 O O NA NA NA NA 0 O
..$ RSV : int [1:1488] 0 0 O O NA NA NA NA O O
..$ MSS:List of 1

..$ BCX:'data.frame': 1488 obs. of 2 variables:

21

22 baker: Nested Partially-Latent Class Models

..$ HINF: int [1:1488] 0000000000 ...

..$ PNEU: int [1:1488] 0 0 0O OO0 O0O0O ...

#$ X :'data.frame': 1488 obs. of 4 variables:

..$ patid : chr [1:1488] "S00021" "S00023" "S00026" "S00027"
..$ AGE : int [1:1488] 01 00000010 ...

..$ HIV2 : int [1:1488] 0000000010 ...

..$ ALL_VS : int [1:1488] 001 01 01000 ..

#$Y :num [1:1488] 1111111111

We specify L = 8 causes comprised of seven singleton-pathogen causes along with a cause
named "other" that represents a generic non-specified (“NoS”) cause. For BrS data, we use
nasopharyngeal polymerase chain reaction (NPPCR), which results in case-control measure-
ments upon J.BrS targeted pathogens (bacteria and viruses with abbreviated names "HINF",
"PNEU","ADENO","HMPV_A_B“,"PARA_l","RHIND","RSV“) For SS data, we use blood cul-
ture (BCX) results for two species of bacteria ("HINF","PNEU"). We then organize these
measurement information into BrS_object_1 and SS_object_1, respectively. Finally, we
create a temporary folder for storing model results.

R> cause_list <- c("HINF","PNEU","ADENO","HMPV_A_ B","PARA_1","RHINO","RSV","other")
R> patho_BrS_NPPCR <- c("HINF","PNEU","ADENQO","HMPV_A_B","PARA_1",6"RHINO","RSV")

R> patho_SS_BCX <- c("HINF","PNEU")

R> BrS_object_1 <- make_meas_object(patho_BrS_NPPCR,"NP","PCR","BrS",cause_list)

R> SS_object_1 <- make_meas_object(patho_SS_BCX,"B","CX","SS",cause_list)

R> perch_clean <- list(BrS_objects = list(BrS_object_1),

+ SS_objects = 1list(SS_object_1))

R> result_folder <- tempdir()

R> dir.create(result_folder)

We the specify an NPLCM with five subclasses. In addition, we 1) let population etiology
(“CSCEFs”) depend on age, severity status, and HIV status, and 2) let subclass weights depend
on age and HIV status. We use both BrS and SS data for estimation. The TPR priors are
specified via prior 2.5% and 97.5% prior Beta quantiles (0.5 to 0.9 for BrS measurement
TPRs; 0.05 to 0.2 for SS measurement TPRs); these prior ranges were elicited from domain
scientists. This can be achieved by the following code.

R> perch_model <- list(use_measurements = c("BrS","SS"),
+ likelihood = list(cause_list = cause_list, k_subclass = c(5),
+ Eti_formula = ~ -1+as.factor(AGE)+as.factor(ALL_VS)+as.factor (HIV2),
FPR_formula = 1ist(NPPCR = ~ -1+as.factor(AGE)+as.factor(HIV2))),
prior = list(Eti_prior = c(2,2),
TPR_prior = list(
BrS = list(info = "informative", input = "match_range",
val = 1ist(NPPCR = list(up = list(rep(0.9,length(BrS_object_1$patho))),
low = list(rep(0.5,length(BrS_object_1$patho)))))),
SS = list(info = "informative", input = "match_range",
val = 1list(MSS1 = list(up = list(rep(0.2,length(SS_object_1$patho))),
low = list(rep(0.05,length(SS_object_1$patho)))))))))

+ o+ o+ + o+ o+ o+ o+ o+

We

R>
+
+

Chen I, Shi Q, Zeger SL, Wu Z 23

then specify the settings for the MCMC algorithm (perch_mcmc):

perch_mcmc <- list(n.chains = 1, n.itermcmc = 200, n.burnin = 100,
n.thin = 1, individual.pred = TRUE, ppd = TRUE,
result.folder = result_folder, bugsmodel.dir = result_folder)

Below, we fit the specified model. Here we assume the data set (data_nplcm) has been loaded
from the real data (not yet publicly available). We store data (to "data_nplcm.txt"), store
data cleaning information (to "data_clean_options.txt") check model specifications via
assign_model (), and fit the model by nplcm():

R>
R>
R>
R>
R>

We
We

dput (perch_data,file.path(perch_data$result.folder,"data_nplcm.txt"))

dput (perch_clean,file.path(perch_mcmc$result.folder,"data_clean_options.txt"))
assign_model(perch_model,perch_data)

rjags::load.module("glm")

perch_fit <- nplcm(data_nplcm,model_options,perch_mcmc)

can summarize the fitted object using summary(perch_fit) (results not shown here).
can also visualize rich information about the posterior distribution of the population-level

CSCFs in the cases using generic function plot() which shows the high population level
etiologic importance of the virus RSV:

R>

Frequency

o

0-

plot(perch_fit)

Posterior distributions of CSCFs (across all levels using weights: (0.401,0.137,0.229,0.046,0.071,0.063,0.048,0.006))

Posterior mean displayed as solid line
95% Crls displayed as dashed lines

HINF PNEU ADENO HMPV_A_B PARA_1 RHINO RSV other

00 02 04 06 00 02 04 06 00 02 04 06 00 02 04 00 02 04 06 00 02 04 06 00 02 04 0B

- cscF

Figure 5: Marginal posterior distributions for each of L = 8 pre-specified causes as visualized
by the output from plot for an nplcm object "perch_fit".

As mentioned before, baker can produce versatile posterior inferences about various unknown
quantities based on the posterior samples. In particular, we can estimate the posterior proba-
bilities of class membership probabilities for each individual case given each individual case’s
observed measurements:

R>
#

get_individual _prediction(perch_fit)
HINF PNEU ADENO HMPV_A_B PARA_1 RHINO RSV other

24 baker: Nested Partially-Latent Class Models

[1,] 0.03 0.00 0.02 0.03 0.04 0.03 0.49 0.36
[2,] 0.59 0.01 0.06 0.04 0.02 0.050.11 ©0.12
[3,] 0.056 0.01 0.07 0.06 0.02 0.050.71 0.03
[4,] 0.04 0.00 0.02 0.02 0.01 0.01 0.59 0.31
[5,] 0.10 0.00 0.02 0.03 0.02 0.07 0.76 0.00

Here we show the posterior probabilities of eight disease classes (columns) for five random
cases (rows). For each individual, the probabilities differ across causes indicating varying
posterior etiologic importance. For each cause, subjects differ in the BrS and SS measurements
and covariates, leading to distinct posterior class membership probabilities.

5. Summary

The baker package provides functionalities to estimate a suite of NPLCM-based models (Wu
et al. 2016, 2017; Wu and Chen 2021) for multivariate binary responses that are observed
under a case-control design. baker has three major strengths: 1) it enables case-control
analyses with or without covariates in the NPLCM framework, 2) it relaxes the “conditional
independence” assumption often used in latent class analyses, and 3) it is designed to handle
multiple sets of case-control or case-only measurements of distinct quality. Model results,
posterior uncertainty assessment, and model diagnostics can also be readily summarized by
baker.

Our future aim is to accommodate mixed categorical, ordinal, and continuous responses. The
latent class model is naturally suited for multivariate discrete responses. We can extend
our framework to handle multiple response levels by adding additional response probabil-
ity parameters for each response level. Second, to accommodate ordinal and continuous
responses, e.g., those produced by measurement technologies such as antibody titers and
real-time PCR, class-specific mixture component likelihood functions may be specified via la-
tent random Gaussian vectors, a subset of which are then linked to non-continuous responses
via thresholding. Fast computational techniques for sampling Gaussian covariance matrices
in multivariate probit models akin to Zhang, Nishimura, Bastide, Ji, Payne, Goulder, Lemey,
and Suchard (2021) can be implemented. Finally, our current functions for NPLCM regres-
sion analyses will be expanded to accommodate higher dimensional covariates for CSCF and
subclass weights using sparse Bayesian Additive Regression Trees (Linero 2018).

Acknowledgments

This work was supported by a Michigan Institute of Data Science (MIDAS) seed grant (to
Z.W.); the Patient-Centered Outcomes Research Institute (PCORI) Award [ME-1408-20318
to Z.W. and S.L.Z.]; and the National Institutes of Health grants [P30CA046592 to Z.W.]. We
thank the PERCH study team led by Katherine O’Brien for providing the data and scientific
advice, Maria Deloria-Knoll and Christine Prosperi for valuable feedback about baker and
Jing Chu for preliminary simulations. We also thank John Kubale for valuable feedback.

References

Chen I, Shi Q, Zeger SL, Wu Z

Allman ES, Matias C, Rhodes JA (2009). “Identifiability of parameters in latent structure
models with many observed variables.” The Annals of Statistics, 37(6A), 3099-3132.

Brooks S, Gelman A, Jones G, Meng XL (2011). Handbook of Markov Chain Monte Carlo.
CRC press.

Dunson D, Xing C (2009). “Nonparametric Bayes modeling of multivariate categorical data.”
Journal of the American Statistical Association, 104(487), 1042-1051.

Gelfand A, Smith A (1990). “Sampling-based approaches to calculating marginal densities.”
Journal of the American Statistical Association, 85(410), 398-409.

Goodman L (1974). “Exploratory latent structure analysis using both identifiable and uniden-
tifiable models.” Biometrika, 61(2), 215-231.

Jones G, Johnson W, Hanson T, Christensen R (2010). “Identifiability of models for multiple
diagnostic testing in the absence of a gold standard.” Biometrics, 66(3), 855-863.

Lazarsfeld PF (1950). The logical and mathematical foundations of latent structure analysis,
volume IV, chapter The American Soldier: Studies in Social Psychology in World War 11,
pp- 362-412. Princeton, NJ: Princeton University Press.

Leisch F, Gruen B (2022). “CRAN Task View: Cluster Analysis and Finite Mixture Models.”
https://cran.r-project.org/web/views/Cluster.html. [Online; accessed 01-January-
2022].

Linero AR (2018). “Bayesian regression trees for high-dimensional prediction and variable
selection.” Journal of the American Statistical Association, 113(522), 626-636.

Linzer DA, Lewis JB (2011). “poLCA: An R Package for Polytomous Variable Latent Class
Analysis” Journal of Statistical Software, 42(10), 1-29. URL http://www.jstatsoft.
org/v42/110/.

McCormick TH, Li ZR, Calvert C, Crampin AC, Kahn K, Clark SJ (2016). “Probabilistic
cause-of-death assignment using verbal autopsies.” Journal of the American Statistical
Association, 111(515), 1036-1049.

PERCH Study Group (2019). “Causes of severe pneumonia requiring hospital admission in
children without HIV infection from Africa and Asia: the PERCH multi-country case-
control study.” The Lancet, 392(10200), 757-779.

Plummer M (2022). “JAGS: Just Another Gibbs Sampler.” https://sourceforge.net/
projects/mcmc-jags/files/JAGS/4.x/. [Online; accessed 01-January-2022].

Plummer M, et al. (2003). “JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling.” In Proceedings of the 3rd International Workshop on Distributed
Statistical Computing, volume 124.

Qu Y, Tan M, Kutner MH (1996). “Random effects models in latent class analysis for evalu-
ating accuracy of diagnostic tests.” Biometrics, 52(3), 797-810.

Sethuraman J (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica, pp.
639-650.

25

https://cran.r-project.org/web/views/Cluster.html
http://www.jstatsoft.org/v42/i10/
http://www.jstatsoft.org/v42/i10/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/

26 baker: Nested Partially-Latent Class Models

Stephenson BJ, Herring AH, Olshan A (2019). “Robust clustering with subpopulation-specific
deviations.” Journal of the American Statistical Association.

The PERCH Team (2019). ““Visualizing PERCH Results: Etiology of Pneumonia in Children
Hospitalized in 7 Countries”” http://perchresults.org/. [Online; accessed 21-Feb-2022].

Vermunt JK, Magidson J (2002). “Latent class cluster analysis.” Applied Latent Class Anal-
ysis, 11, 89-106.

White A, Murphy TB (2014). “BayesLCA: An R Package for Bayesian Latent Class Analysis.”
Journal of Statistical Software, 61(13), 1-28. URL http://www. jstatsoft.org/v61/i13/.

Wu Z, Chen I (2021). “Probabilistic cause-of-disease assignment using case-control diagnostic
tests: A latent variable regression approach.” Statistics in Medicine, 40(4), 823-841.

Wu Z, Deloria-Knoll M, Hammitt LL, Zeger SL, the PERCH Study Team (2016). “Partially
latent class models for case—control studies of childhood pneumonia aetiology.” Journal of
the Royal Statistical Society: Series C (Applied Statistics), 65(1), 97-114.

Wu Z, Deloria-Knoll M, Zeger SL (2017). “Nested partially latent class models for dependent
binary data; estimating disease etiology.” Biostatistics (Ozxford, England), 18, 200-213.
ISSN 1468-4357. doi:10.1093/biostatistics/kxw037.

Xu G (2017). “Identifiability of restricted latent class models with binary responses.” The
Annals of Statistics, 45(2), 675 — 707. doi:10.1214/16-A0S1464. URL https://doi.
org/10.1214/16-A0S1464.

Zhang Z, Nishimura A, Bastide P, Ji X, Payne RP, Goulder P, Lemey P, Suchard MA (2021).
“Large-scale inference of correlation among mixed-type biological traits with phylogenetic
multivariate probit models.” The Annals of Applied Statistics, 15(1), 230-251.

A. Additional code to simulate data with covariates

R> N.SITE <- 2

R> N <- N.SITE*(300+300)

R>

R> CSCF_allsites <- 1ist(c(0.5,0.2,0.15,0.05,0.05,0.05),

R> c(0.2,0.5,0.15,0.05,0.05,0.05))
R>

R> out_list <- lapply(1:N.SITE,function(siteID){
R> set_parameter <- list(

R> cause_list = c("A","B","C","D","E","F"),

R> etiology = CSCF_allsites[[siteID]],

R> pathogen_BrS = LETTERS[1:J.BrS],

R> SS = TRUE,

R> pathogen_SS = c("A","B"),

R> meas_nm = 1ist (MBS = c("MBS1") ,MSS=c("MSS1")),

R> Lambda = c(0.5,0.5), # control subclass weight for BrS

http://perchresults.org/
http://www.jstatsoft.org/v61/i13/
https://doi.org/10.1093/biostatistics/kxw037
https://doi.org/10.1214/16-AOS1464
https://doi.org/10.1214/16-AOS1464
https://doi.org/10.1214/16-AOS1464

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

R>

R>

R>
+

Chen I, Shi Q, Zeger SL, Wu Z 27

Eta = t(replicate(J.BrS,c(0,1))),
PsiBS = ¢bind(c(0.25,0.25,0.2,0.15,0.15,0.15),
c(0.2, 0.2, 0.25,0.1,0.1,0.1)),
PsiSS = cbind(rep(0,J.BrS),rep(0,J.BrS)),
ThetaBS = ¢bind(c(0.95,0.9,0.9,0.9,0.9,0.9),
c(0.95,0.9,0.9,0.9,0.9,0.9)),
ThetaSS = ¢bind(c(0.25,0.10,0.15,0.05,0.15,0.15),
c(0.25,0.10,0.15,0.05,0.15,0.15)),
Nd = 300,
Nu = 300
)
out <- simulate_nplcm(set_parameter)

res <- out$data_nplcm
res$X <- data.frame(SITE=rep(sitelD, (set_parameter$Nd+set_parameter$Nu)))
return(res)
b
data_nplcm_unordered <- combine_data_nplcm(out_list)
data_nplcm_reg _nest_strat <- subset_data_nplcm_by_index(data_nplcm_unordered,
order (-data_nplcm_unordered$Y))
load another data in “baker™ with a continuous covariate
data(data_nplcm_reg_nest)

B. Additional code to fit models

nplcm_noreg_with_SS <- nplcm(data_nplcm_noreg,
model_options_no_reg with_SS,mcmc_options_no_reg_with_SS)
nplcm_reg_nest_strat <- nplcm(data_nplcm_reg_nest_strat,
model_options_reg_nest_strat,mcmc_options_reg nest_strat)
nplcm_reg_nest <- nplcm(data_nplcm_reg_nest,
model_options_reg_nest,mcmc_options_reg_nest)

C. Selected code outputs

C.1. Organized BrS data meta-information

R>

#
#
#
#
#
#

BrS_object_1

$quality

[1] "BrS"

$patho

[1] "A" "B" "CM "D" WEM VE

$name_in_data

[1] "A_MBS1i" "B_MBS1" "C_MBSi" "D_MBSi" "E_MBS1" "F_MBS1"

28 baker: Nested Partially-Latent Class Models
$template

(,11 [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 0 1 0 0 0 0
[3,] 0 0 1 0 0 0
[4,] 0 0 0 1 0 0
[5,] 0 0 0 0 1 0
[6,] 0 0 0 0 0 1
[7,] 0 0 0 0 0 0
$specimen

[1] "MBS"

$test

[1] nqn

$nm_spec_test

[1] "MBS1"

C.2. Specifying model

R> assign_model (model_options_no_reg,data_nplcm_noreg)
$num_slice
MBS MSS MGS

1 0 O
$nested
[1] TRUE
$regression
$regression$do_reg_Eti
(1] FALSE
$regression$do_reg_FPR
MBS1
FALSE
$regression$is_discrete_predictor
$regression$is_discrete_predictor$Eti
[1] FALSE
$regression$is_discrete_predictor$FPR
MBS1
FALSE

H OH H H H HH HHEHHEHHEHHEHH

C.3. Summary

R> summary(nplcm_noreg_with_SS)

[baker] summary: model structure

fitted type: mno_reg

—_—

name measurements: MBS MSS MGS

H OH H H H K HHHEHHHH

**

H H H H H HH

Chen I, Shi Q, Zeger SL, Wu Z

slices of measurements: 1
nested: T
regression:
etiology:
name FPR:
FPR:
all discrete predictor:
etiology:
name FPR:
FPR:
——————— posterior summary
post.mean post.sd
A 0.56573053 0.036129324 0
B 0.17558873 0.037365233 0
C 0.13901539 0.032986620 0
D 0.06632659 0.021147999 0
E 0.01137363 0.009374251 0
F 0.04196514 0.019310869 0

10
RUE

FALSE
MBS1
FALSE

FALSE
MBS1
FALSE

CrI_025
.4992234000
.1216957500
.0864293800
.0300819800
.0003651512
.0084014205

C.4. Posterior predictive checking

Model 8 results

CrI_0975
0.63213780
0.26571990
0.21263615
0.10015262
0.03293634
0.08096354

Model 8 results

04 case

frequency

o o o o
o o N N
& & Q&
B\ Q N
factor(pattern

@

E

O 53

N ¢
& &

frequency

o
03 $

o o
o o
& S°
o o

control

o
o s
N o
) &

factor(pattern

&

O

[+)

<
o
@

ot

Yy

29

Figure 6: For the cases and the controls, posterior predictive checking based on the probability

of multivariate binary patterns (five top patterns in the actual data and the rest aggregated).

For each pattern, the posterior predictive distribution is shown by a boxplot; the horizontal
blue bar indicates the actual observed frequency. A large deviation of a horizontal bar from
the corresponding boxplot suggests potential model misfit.

30 baker: Nested Partially-Latent Class Models

Affiliation:

Irena Chen, Qiyuan Shi, Zhenke Wu*

Department of Biostatistics

University of Michigan

1415 Washington Heights

Ann Arbor, Michigan 48109, U.S.A.

*Corresponding author E-mail: zhenkewu@umich.edu
*Corresponding author URL: zhenkewu. com

Scott L. Zeger

Department of Biostatistics

The Johns Hopkins University

615 N. Wolfe Street

Baltimore, Maryland 21205, U.S.A.

mailto:zhenkewu@umich.edu
zhenkewu.com

	Introduction
	Model
	Latent class models: A brief review
	Data structure and notation for case-control studies
	Classes defined by latent states

	Nested partially latent class models for case-control studies
	Likelihood
	Prior

	Regression extensions of NPLCM
	Likelihood
	Detailed regression specification
	Priors

	Posterior inference via MCMC

	Software: design features and main function
	Multiple slices of BrS data and SS data

	Illustrations
	Setting up data inputs: Simulation and structure
	Simulate data with covariates
	Specifying models
	Specify models without regression
	Specify models for regression analyses

	Setting up MCMC
	Convergence and model diagnostics
	Convergence diagnostics
	Model diagnostics

	Summary, plot, print
	PERCH study example

	Summary
	Additional code to simulate data with covariates
	Additional code to fit models
	Selected code outputs
	Organized BrS data meta-information
	Specifying model
	Summary
	Posterior predictive checking

