
DRAFT
CFRL: A Python library for counterfactually fair offline1

reinforcement learning via sequential data2

preprocessing3

Jianhan Zhang1, Jitao Wang2, Chengchun Shi3, John D. Piette4, Donglin4

Zeng2, and Zhenke Wu2¶
5

1 Department of Statistics, University of Michigan, USA 2 Department of Biostatistics, University of6

Michigan, USA 3 Department of Statistics, London School of Economics, UK 4 Department of Health7

Behavior and Health Equity, School of Public Health, University of Michigan, USA ¶ Corresponding8

author9

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary10

Reinforcement learning (RL) aims to learn and evaluate a sequential decision-making rule,11

often referred to as a “policy”, that maximizes expected discounted cumulative rewards to12

optimize population-level benefit in an environment across possibly infinitely many time steps.13

RL has gained popularity in fields such as healthcare, banking, autonomous driving, and more14

recently large language model pre-training. However, the sequential decisions made by an15

RL algorithm may disadvantage individuals with certain values of a sensitive attribute (e.g.,16

race, ethnicity, gender, education level). An RL algorithm learns an optimal policy that makes17

decisions based on observed state variables. If certain values of the sensitive attribute influence18

the state variables in a way that leads the policy to systematically withhold an action from an19

individual, unfairness will result. For example, Hispanics may under-report their pain levels due20

to cultural factors, misleading the RL agent to assign less therapist time to them (Piette et al.,21

2023). Deployment of RL algorithms without careful fairness considerations can raise concerns22

and erode public trust in high-stake settings.23

To formally define and address the unfairness problem in sequential decision making settings,24

Wang et al. (2025) extended the concept of single-stage counterfactual fairness (CF) in a25

structural causal framework (Kusner et al., 2018) to the multi-stage setting and proposed a26

data preprocessing based algorithm that ensures CF. A policy is CF if, at every time step, the27

probability of assigning any action does not change had the individual’s sensitive attribute28

taken a different value, while holding constant other historical exogenous variables and actions.29

In this light, the data preprocessing algorithm ensures CF by constructing new state variables30

that are not impacted by the sensitive attribute(s). The rewards in data are also preprocessed,31

but the purpose of preprocessing the rewards is to improve the value of the learned optimal32

policy rather than ensure CF. We refer interested readers to Wang et al. (2025) for more33

technical details.34

The CFRL library implements the data preprocessing algorithm proposed by Wang et al. (2025)35

and provides a suite of tools to evaluate the value and CF level achieved by any given policy.36

The library produces preprocessed trajectories that can be used by any off-the-shelf offline RL37

algorithms, such as fitted Q-iteration (FQI) (Riedmiller, 2005), to learn an optimal CF policy.38

The library can also simply read in any policy following a required format and return its value39

and CF level in the environment of interest, where the environment can be either pre-specified40

or learned from the data.41

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

1

https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
Statement of Need42

Many existing Python libraries implement algorithms that ensure fairness in machine learning.43

For example, Fairlearn (Weerts et al., 2023) and aif360 (Bellamy et al., 2018) provide tools44

for mitigating bias in single-stage machine learning predictions under statistical assocoiation-45

based fairness criterion such as demographic parity and equal opportunity. However, they do46

not focus on counterfactual fairness, which defines an individual-level fairness concept from a47

causal perspective, and they cannot be easily extended to the reinforcement learning setting48

in general. Additionally, ml-fairness-gym (D’Amour et al., 2020) allows users to simulate49

unfairness in sequential decision-making, but it neither implements algorithms that reduce50

unfairness nor addresses CF. To our knowledge, Wang et al. (2025) is the first work to study51

CF in RL. Correspondingly, CFRL is also the first code library to address CF in the RL setting.52

The contribution of CFRL is two-fold. First, it implements a data preprocessing algorithm53

that ensures CF in offline RL. For each individual in the data, the preprocessing algorithm54

sequentially estimates the counterfactual states under different sensitive attribute values and55

concatenates all of the individual’s counterfactual states at each time point into a new state56

vector. The preprocessed data can then be directly used by existing RL algorithms for policy57

learning, and the learned policy should be counterfactually fair up to finite-sample estimation58

accuracy. Second, it provides a platform for assessing RL policies based on CF. After passing59

in any policy and a data trajectory from the environment of interest, users can estimate the60

value and CF level achieved by the policy in the environment of interest.61

High-level Design62

The CFRL library is composed of 5 major modules. The functionalities of the modules are63

summarized in the table below.64

Module Functionalities

reader Implements functions that read tabular trajectory data from either a .csv file
or a pandas.Dataframe into an array format required by CFRL. Also
implements functions that export trajectory data to either a .csv file or a
pandas.Dataframe.

preprocessor Implements the data preprocessing algorithm introduced in Wang et al.
(2025).

agents Implements a fitted Q-iteration (FQI) algorithm (Riedmiller, 2005), which
learns RL policies and makes decisions based on the learned policy. Users can
also pass a preprocessor to the FQI; in this case, the FQI will be able to take
in unpreprocessed trajectories, internally preprocess the input trajectories, and
directly output counterfactually fair policies.

environment Implements a synthetic environment that produces synthetic data as well as a
simulated environment that estimates and simulates the transition dynamics
of the unknown environment underlying some real-world RL trajectory data.
Also implements functions for sampling trajectories from the synthetic and
simulated environments.

evaluation Implements functions that evaluate the value and CF level of a policy.
Depending on the user’s needs, the evaluation can be done either in a
synthetic environment or in a simulated environment.

A general CFRL workflow is as follows: First, simulate a trajectory using environment or read in65

a trajectory using reader. Then, train a preprocessor using preprocessor and preprocess the66

training trajectory data. After that, pass the preprocessed trajectory into the FQI algorithm in67

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
agents to learn a counterfactually fair policy. Finally, use functions in evaluation to evaluate68

the value and CF level of the trained policy.69

Data Example70

We provide a data example to demontrate how CFRL learns a counterfactually fair policy from71

real-world trajectory data with unknown underlying transition dynamics. We also show how72

CFRL evaluates the value and CF level of the learned policy. We note that this is only one of73

the many workflows that CFRL can perform. For example, CFRL can also generate synthetic74

trajectory data and use it to evaluate the value and CF level resulting from some custom data75

preprocessing methods. We refer interested readers to the “Example Workflows” section of76

the CFRL documentation for more workflow examples.77

Load Data78

In this demonstration, we use an offline trajectory generated from a SyntheticEnvironment79

following some pre-specified transition rules. Although it is actually synthesized, we treat it as80

if it is from some unknown environment for pedagogical convenience.81

The trajectory contains 500 individuals (i.e. 𝑁 = 500) and 10 transitions (i.e. 𝑇 = 10). The82

sensitive attribute variable and the state variable are both univariate. The sensitive attribute83

is binary (0 or 1). The actions are also binary (0 or 1) and were sampled using a behavior84

policy that selects 0 or 1 randomly with equal probability. The trajectory is stored in a tabular85

format in a .csv file. We use read_trajectory_from_csv() to load the trajectory from the86

.csv format into the array format required by CFRL.87

zs, states, actions, rewards, ids = read_trajectory_from_csv(

path='../data/sample_data_large_uni.csv', z_labels=['z1'],

state_labels=['state1'], action_label='action', reward_label='reward',

id_label='ID', T=10)

We then split the trajectory data into a training set (80%) and a testing set (20%) using88

scikit-learn’s train_test_split(). The training set is used to train the counterfactually fair89

policy, while the testing set is used to evaluate the value and CF level achieved by the policy.90

(zs_train, zs_test, states_train, states_test,

actions_train, actions_test, rewards_train, rewards_test

) = train_test_split(zs, states, actions, rewards, test_size=0.2)

Train Preprocessor & Preprocess Trajectories91

We now train a SequentialPreprocessor and preprocess the trajectory. The SequentialPreprocessor92

ensures the learned policy is counterfactually fair by constructing new state variables that93

are not impacted by the sensitive attribute. Due to limited trajectory data, the data to be94

preprocessed will also be the data used to train the preprocessor, so we set cross_folds=595

to reduce overfitting. In this case, train_preprocessor() will internally divide the training96

data into 5 folds, and each fold is preprocessed using a model that is trained on the other 497

folds. We initialize the SequentialPreprocessor, and train_preprocessor() will take care98

of both preprocessor training and trajectory preprocessing.99

sp = SequentialPreprocessor(z_space=[[0], [1]], num_actions=2, cross_folds=5,

mode='single', reg_model='nn')

states_tilde, rewards_tilde = sp.train_preprocessor(

zs=zs_train, xs=states_train, actions=actions_train, rewards=rewards_train)

Counterfactually Fair Policy Learning100

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

3

https://cfrl-documentation.netlify.app/tutorials/example_workflows
https://doi.org/10.xxxxxx/draft


DRAFT
Now we train a counterfactually fair policy using the preprocessed data and FQI with sp as its101

internal preprocessor. By default, the input data will first be preprocessed by sp before being102

used for policy learning. However, since the training data state_tilde and rewards_tilde103

are already preprocessed in our case, we set preprocess=False during training so that the104

input trajectory will not be preprocessed again by the internal preprocessor (i.e. sp).105

agent = FQI(num_actions=2, model_type='nn', preprocessor=sp)

agent.train(zs=zs_train, xs=states_tilde, actions=actions_train,

rewards=rewards_tilde, max_iter=100, preprocess=False)

SimulatedEnvironment Training106

Before moving on to the evaluation stage, there is one more thing to do: We need to train a107

SimulatedEnvironment that mimics the transition rules of the true environment that generated108

the training trajectory, which will be used by the evaluation functions to simulate the true109

data-generating environment. To do so, we initialize a SimulatedEnvironment and train it on110

the whole trajectory data (i.e. training set and testing set combined).111

env = SimulatedEnvironment(num_actions=2, state_model_type='nn',

reward_model_type='nn')

env.fit(zs=zs, states=states, actions=actions, rewards=rewards)

Value and Counterfactual Fairness Evaluation112

We now use evaluate_value_through_fqe() and evaluate_fairness_through_model() to113

estimate the value and CF level achieved by the trained policy when interacting with the114

environment of interest, respectively. The CF level is represented by a metric from 0 to 1, with115

0 representing perfect fairness and 1 indicating complete unfairness. We use the testing set for116

evaluation.117

value = evaluate_reward_through_fqe(zs=zs_test, states=states_test,

actions=actions_test, rewards=rewards_test, policy=agent, model_type='nn')

cf_metric = evaluate_fairness_through_model(env=env, zs=zs_test, states=states_test,

actions=actions_test, policy=agent)

The estimated value is 7.358 and CF metric is 0.042, which indicates our policy is close to118

being perfectly counterfactually fair. Indeed, the CF metric should be exactly 0 if we know119

the true dynamics of the environment of interest; the reason why it is not exactly 0 here is120

because we need to estimate the dynamics of the environment of interest during preprocessing,121

which can introduce finite-sample errors.122

Comparisons Against Baseline Methods123

We can compare the sequential data preprocessing method in CFRL against a few baselines:124

Random, which selects each action randomly with equal probability; Full, which uses all125

variables, including the sensitive attribute, for policy learning; and Unaware, which uses all126

variables except the sensitive attribute for policy learning. We implemented these baselines127

and evaluated their values and CF levels as part of the code example of the “Assessing Policies128

Using Real Data” workflow in the “Example Workflows” section of the CFRL documentation.129

We summarize below the values and CF metrics calculated in this code example, where “ours”130

stands for the SequentialPreprocessor.131

Random Full Unaware Ours

Value −1.444 8.606 8.588 7.358
CF Metric 0 0.407 0.446 0.042

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

4

https://cfrl-documentation.netlify.app/tutorials/example_workflows
https://doi.org/10.xxxxxx/draft


DRAFT
By definition, the “random” baseline always achieves perfect CF. On the other hand,132

“ours” resulted in much fairer policies than “full” and “unaware”, which suggests that the133

SequentialPreprocessor can effectively improve CF. Nevertheless, as a trade-off for higher134

CF, “ours” achieved a lower value than “full” and “unaware”.135

Conclusions136

CFRL is a Python library that enables CF reinforcement learning through data preprocessing.137

It also provides tools to calculate the value and unfairness level of a given policy. To our138

knowledge, it is the first library to address CF problems in the context of RL. The practical139

utility of CFRL can be further improved via extensions. First, the current CFRL implementation140

requires every individual in the offline dataset to have the same number of time steps. Extending141

the library to accommodate variable-length episodes can improve its flexibility and usefulness.142

Second, CFRL can further combine the preprocessor with popular offline RL algorithm libraries143

such as d3rlpy (Seno & Imai, 2022), or connect the evaluation functions with established RL144

environment libraries such as gym (Towers et al., 2024). Third, generalization to non-additive145

counterfactual states reconstruction can make CFRL theoretically more versatile. We leave146

these extensions to future updates.147

References148

Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P.,149

Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K. N., Richards, J., Saha,150

D., Sattigeri, P., Singh, M., Varshney, K. R., & Zhang, Y. (2018). AI Fairness 360: An151

extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias.152

D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., & Halpern, Y. (2020).153

Fairness is not static: Deeper understanding of long term fairness via simulation studies.154

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 525–534.155

https://doi.org/10.1145/3351095.3372878156

Kusner, M. J., Loftus, J. R., Russell, C., & Silva, R. (2018). Counterfactual Fairness.157

https://arxiv.org/abs/1703.06856158

Piette, J. D., Thomas, L., Newman, S., Marinec, N., Krauss, J., Chen, J., Wu, Z., & Bohnert,159

A. S. B. (2023). An automatically adaptive digital health intervention to decrease opioid-160

related risk while conserving counselor time: Quantitative analysis of treatment decisions161

based on artificial intelligence and patient-reported risk measures. J Med Internet Res, 25,162

e44165. https://doi.org/10.2196/44165163

Riedmiller, M. (2005). Neural fitted Q iteration – first experiences with a data efficient neural164

reinforcement learning method. In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, & L.165

Torgo (Eds.), Machine learning: ECML 2005 (pp. 317–328). Springer Berlin Heidelberg.166

ISBN: 978-3-540-31692-3167

Seno, T., & Imai, M. (2022). d3rlpy: An offline deep reinforcement learning library. Journal of168

Machine Learning Research, 23(315), 1–20.169

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão, M.,170

Kallinteris, A., Krimmel, M., KG, A., & others. (2024). Gymnasium: A standard interface171

for reinforcement learning environments. arXiv Preprint arXiv:2407.17032.172

Wang, J., Shi, C., Piette, J. D., Loftus, J. R., Zeng, D., & Wu, Z. (2025). Counterfactually fair173

reinforcement learning via sequential data preprocessing. https://arxiv.org/abs/2501.06366174

Weerts, H., Dudík, M., Edgar, R., Jalali, A., Lutz, R., & Madaio, M. (2023). Fairlearn:175

Assessing and improving fairness of AI systems. In Journal of Machine Learning Research176

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.1145/3351095.3372878
https://arxiv.org/abs/1703.06856
https://doi.org/10.2196/44165
https://arxiv.org/abs/2501.06366
https://doi.org/10.xxxxxx/draft


DRAFT
(No. 257; Vol. 24, pp. 1–8).177

Zhang et al. (2025). CFRL: A Python library for counterfactually fair offline reinforcement learning via sequential data preprocessing. Journal of
Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

6

https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	High-level Design
	Data Example
	Conclusions
	References

