

Generative model:

1) $\mu_{1} \cdots \mu_{k} \stackrel{i}{\sim} d$ ormal $^{\sim}\left(\mu_{0}, \sigma_{0}\right)$
2) $Z_{1} \ldots Z_{m} \stackrel{i d}{\sim}$ Categonical($\left.\underset{\sim}{i}\right)$
$X \sim$ Muntinome π)

$$
\underset{\sim}{\pi}=\left(\pi_{1}, \cdots \pi_{k}\right)
$$

$\left(\begin{array}{llll}0 & 0 & 1 & 00\end{array} \quad \quad k=5\right.$
3)
$X_{i} \sim \operatorname{Normal}\left(\mu_{z_{i}}\right.$, , 1)
Caleulete the posterion of unfrowns given data.
(*) $\operatorname{pr}\left(z_{1}, z_{2} \ldots z_{n}, \mu_{1}, \cdots \mu_{k} \mid x_{1}, \cdots x_{n}, \mu_{0}\right.$,
appposo imate
\checkmark ariationat infeneme (mem-fielal)
Chorre amony a fanily of distin

$$
\left\{\begin{aligned}
g(z, \mu)= & \frac{1<}{\prod_{k=1}} g\left(\mu_{k} \mid \tilde{\mu}_{k}, \tilde{\sigma}_{k}^{2}\right) \\
& \times \frac{\prod_{i=1}^{n}}{} g\left(z_{i} \mid \varphi_{i}\right)
\end{aligned}\right.
$$

1) $Z_{i:} \quad i=1, \ldots n, \quad$ (cluster menkerslip indact)
2) $\mu \xi_{k}, k=1 \ldots k$, (component Goussisin
$\frac{\text { Mpdate }^{q^{*}} z_{i} z_{i}^{-}}{\infty} \exp \left\{E_{-i}\left[\log p\left(\mu, z, z_{i}\right)\right\}\right.$

$$
\begin{aligned}
& E=\quad-\frac{1}{2} \log (2 \pi)-\frac{1}{2} x_{i}^{2}+x_{i} E\left(\mu_{2 i}\right) \\
& \text { I prior of } \mu_{z_{i}} \\
& \left.-E\left[\mu_{2_{i}}^{2}\right] \partial_{2}\right) \\
& \text { I variationd disth of } \mu_{s .} \text {. } \\
& \begin{array}{l}
\text { Meem-Field } \\
\text { Apprpximation }
\end{array}
\end{aligned}
$$

Update Mk $k=\frac{l . . k .}{}$
Aside: Exponential family: I sufticientstratisitio

$$
P(\pi)=h(x) \exp \left(\eta^{+}+(x)-a(\eta)\right)
$$

genervic
natural panametors
normetivio
nonstant

$$
\begin{aligned}
& a(\eta)=b s\left(\int h(\underset{\sim}{x}) \exp \left(\eta^{t}+(\underset{\sim}{x})\right) d x\right) \\
& \frac{\partial a(\eta)}{\partial \underset{\sim}{\eta}}=E(t(x)) \quad, \quad \frac{\partial^{2} a(\eta)}{\partial \eta^{2}}=\operatorname{Var}(f(x))
\end{aligned}
$$

For Gunssian distin.

$$
\begin{aligned}
& p(x)=\frac{1}{\sqrt{2 \sigma^{2} \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \left.\left.=\left(\frac{1}{\sqrt{2 \pi}}\right) \exp \left(\frac{\mu}{\sigma^{2}}\right) x-\frac{\pi}{2 \sigma^{2}}\right) x^{2}-\frac{1}{2 \sigma^{2}} \mu^{2}-\log \sigma\right) \\
& \eta=\left(\frac{\mu}{\sigma^{2}}, \frac{1}{\sigma^{2}}\right) \\
& \tau(x)=\left(x,-\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Back to updatis)

$$
q^{*}\left(\mu_{k}\right) \propto \exp \left(E_{\left\{\mu_{k}\right\}} \log p(\mu, z, \neq)\right)
$$

we can simplifo thi's yedete if we hue assume d a q (k) comes from

$$
q\left(\mu_{k} \mid \tilde{\mu}_{k}, \tilde{\sigma}_{k}\right), f_{k}=1 \ldots, k
$$

variational parameters.
from a Gaussian family.
pean, variance parameters.

$$
\left(\eta_{1}=\frac{\tilde{\mu}_{k}}{\tilde{\sigma}_{k}^{2}} \quad \eta_{2}=\frac{1}{\tilde{\sigma}_{k}^{2}}\right)
$$

to find $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ the maximizes the $E\left(B_{\mu_{k}}\right)$.

$$
=\left(\frac{\mu_{0}}{\sigma_{0}^{2}}, \frac{1}{\sigma_{0}^{2}}\right) .
$$

Prior Gaussian.
equivalently

$$
\begin{aligned}
& \mu_{k_{k}}^{*}=\frac{\eta_{1}^{*}}{\eta_{2}^{*}}=\left\{\begin{array}{l}
\frac{1}{\eta_{0}^{*}}+ \\
\sigma_{k}^{2_{0}^{2}}= \\
\frac{1}{\sigma_{0}^{2}}+
\end{array}\right] \frac{1}{\sigma_{0}^{2}+\sum_{i=1}^{n} E\left(I\left(z_{i}=k\right)\right)}
\end{aligned}
$$

Mean-variame parametrization

