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Summary: This paper presents a model-based method for clustering multivariate binary observations that incorpo-

rates constraints consistent with the scientific context. The approach is motivated by the precision medicine problem

of identifying autoimmune disease patient subsets who may require different treatments. We start with a family

of restricted latent class models or RLCMs (e.g., Xu and Shang, 2018). However, in the motivating example and

many others like it, the unknown number of subsets and the definitions of the latent classes are among the targets

of inference. We use a Bayesian approach to RCLMs in order to use informative prior assumptions on the number

and definitions of latent classes to be consistent with scientific knowledge so that the posterior distribution tends

to concentrate on smaller numbers of clusters and sparser binary patterns. The paper presents a novel posterior

inference algorithm to handle discrete mixture parameters. Through simulations under the assumed model and

realistic deviations from it, we demonstrate greater interpretability of results and superior finite-sample clustering

performance for our method compared to common alternatives. The methods are illustrated with an analysis of

protein data to detect clusters representing autoantibody classes among scleroderma patients.
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1. Introduction

This paper proposes a model-based method for clustering multivariate binary observations

while imposing constraints dictated by the scientific context. Suppose Y is an N ×L binary

data matrix of N observations, each with L dimensions or “features”. Let Yi` be a noisy

measurement of Γi` that indicates the true presence/absence of feature ` for observation i.

In the motivating example, Yi` and Γi` are the observed and actual presence or absence of a

protein of molecular weight ` in the serum of patient i. The scientific structure is respected by

imposing constraints that the Γi` can be represented by a smaller number (M) of unobservable

or latent binary indicators ηi = (ηi1, . . . , ηiM)> that represent the true states of scientific

interest. In the motivating example, multiple proteins form a complex or “machine” that

performs a cellular function (e.g., Rosen and Casciola-Rosen, 2016). The immune system

responds to abnormal machines rather than to individual proteins. ηim indicates whether or

not the immune system of subject i responded to machine m, that is to all of its proteins.

Given these definitions, we define clusters to be comprised of those observations with identical

latent states ηi = α. We assume that α takes values within a finite but unknown subset A

of {0, 1}M with M 6 L.

Figure 1 shows a hypothetical patient whose ηi = (1, 0, 1)> indicating that her immune

system produced autoantibodies to the proteins (autoantigens) in Machines 1 and 3 but

not Machine 2 (middle panel). Subjects with identical ηi form a latent class. The M × L

binary matrix Q denotes which proteins constitute each machine: Qm` = 1 if protein ` is a

component in machine m. We refer to the rows of Q as “machine profiles”. The right panel

of Figure 1 shows a simple example of three different machines with non-overlapping protein

components. There may exist a protein component ` that is not an immunological target and

does not contribute to the estimation of clusters. This biological knowledge is represented

by
∑

mQm` = 0.
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Γ represents the actual immune responses that can not be directly observed. We char-

acterize the stochastic discrepancies between the actual Γi` and observed presence/absence

of autoantibodies Yi` using: true positive rates θ = {θ` = P(Yi` = 1 | Γi` = 1}) and false

positive rates ψ = {ψ` = P(Yi` = 1 | Γi` = 0)}. In the motivating example, we will assume

a priori high true and low false positive rates (θ` > ψ`) because the measurement method

using immunoprecipitation (IP) is known to be both sensitive and specific (e.g., Orito et al.,

2006).

[Figure 1 about here.]

As detailed below, the models proposed to address the protein clustering problem are

members of the family of restricted latent class models or RLCMs (e.g., Xu and Shang,

2018). In our problem, however, the definitions of machine profiles Q and the number of

distinct latent states |A| are unknown and the dimension L is large relative to M . This

corresponds to not knowing either the subsets of proteins that form each cellular machine

or the combination of machines that the immune systems can target in the population of

patients. The knowledge that the immune system attacks machines of multiple proteins rather

than single proteins is why we refer to this approach as scientifically-structured clustering

(SSC).

SSC for multivariate binary data has a number of potential advantages beyond the mo-

tivating example. Most importantly, the resulting clusters conform to the existing scientific

context and therefore can be used to address relevant questions. SSC can also estimate clus-

ters more efficiently than standard all-feature clustering methods such as latent class analysis

or hierarchical clustering when the true clusters differ from one another at a relatively smaller

number of features. The Supplementary Material A1.1 provides other similar examples from

psychology (e.g., Junker and Sijtsma, 2001) and epidemiology (e.g., Wu et al., 2016).

In addressing the motivating problem, this paper makes three primary contributions to the
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literature on RLCMs. First, in many applications, LCM or RLCM likelihood functions can

be multimodal or relatively flat. The use of scientifically-based prior distributions can resolve

these ambiguities. The Bayesian RLCM also improves finite-sample estimation efficiency, at

the expense of some bias, by 1) inducing sparsity that propagates into the posterior distribu-

tion to encourage fewer clusters with sparser latent state patterns, and by 2) shrinking class-

specific response probability estimates toward the model-based probabilities imposed by the

scientific structure. Second, the paper presents a novel Markov chain Monte Carlo (MCMC)

algorithm for Bayesian RLCMs building on the sampling techniques of Jain and Neal (2004),

Miller and Harrison (2017) and Chen et al. (2017). The proposed algorithm addresses

inferential issues unique to mixture models with discrete component parameters and jointly

infers the number of clusters |A| and the matrix of machine profiles Q in addition to the

other model parameters. Third, we connect three other model-based clustering methods for

multivariate binary data to the latent class models to better understand their identifiability:

probabilistic Boolean matrix decomposition (Rukat et al., 2017), subset clustering models

(Hoff, 2005), and partially latent class models (Wu et al., 2016).

The rest of paper is organized as follows: Section 2 presents the model formulation and

Section 3 derives its MCMC algorithm for posterior inference. Section 4.1 compares via simu-

lations the proposed clustering method to three common alternatives. Section 4.2 illustrates

the methods with an analysis of the autoantibody data from the motivating example. The

paper concludes with a discussion of model extensions and limitations.

2. Models

2.1 Latent Class Models

First formulated by Lazarsfeld (1950), latent class models (LCMs) have become an important

tool for modeling multivariate discrete responses (e.g., Goodman, 1974; Dunson and Xing,
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2009) and model-based clustering (e.g., Vermunt and Magidson, 2002). LCMs are examples of

latent variable models that assume the observed dependence among multivariate responses is

induced by variation among unobserved or “latent” variables. In particular, LCMs attribute

the covariance among discrete outcomes to individuals’ shared, but unobserved membership

in a few latent classes. Let Yi = (Yi1, . . . , YiL)> ∈ {0, 1}L be the binary response vector for

observation i = 1, . . . , N . Let Z̃i ∈ {1, . . . , K̃} indicate the unobserved class assignment for

observation i. An LCM assumes that subject i has a positive response for feature ` with

probability: P(Yi` = 1 | Z̃i = k, λk`) = λk`, 0 6 λk` 6 1, k = 1, . . . , K̃, ` = 1, . . . , L.

Traditional LCMs impose no structure upon the response probabilities for feature ` other

than that they differ among classes almost surely: λk` 6= λk′` for latent classes k 6= k′, referred

to as between-class differential measurement errors.

LCMs are based upon a conditional independence assumption whereby the measurements

from distinct dimensions are independent of one another given the latent class and response

probabilities in that class so that the conditional probability is given by P(Yi | Z̃i, {λk`}) =∏L
`=1(λZ̃i`

)Yi`(1 − λZ̃i`
)1−Yi` . Because Z̃i is assumed to be unobserved, it is integrated out

with respect to its distribution P(Z̃i = k | πK̃) = πk > 0, where πK̃ = (π1, . . . , πK̃)> are

population mixing weights. Based on N independent observations, the LCM likelihood takes

the form of “mixture of Bernoulli products”:
∏N

i=1

∑
k πkP

(
Yi | Z̃i, {λk`}

)
.

Any multivariate discrete data distribution can be approximated arbitrarily closely by an

LCM with a sufficiently large K̃ (Dunson and Xing, 2009, Corollary 1) and, up to class

relabeling, is generically identifiable whenever L > 2dK̃e+ 1 (Allman et al., 2009, Corollary

5). LCM estimates quantify how the estimated response probability profiles differ by class.

Estimation of clusters in finite mixture models often makes use of class indicator {Z̃i}, for

example, by maximizing the plugged-in conditional posterior Ẑi = arg maxk P(Z̃i = k |

Y, π̂K̃) where π̂K̃ estimates the mixing weights, or in a fully Bayesian framework by a
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least-square estimate of clusters based on the distance from pairwise co-clustering posterior

probabilities π̂ii′ = P(Z̃i = Z̃i′ | Y) (Dahl, 2006).

To impose scientific structure, we introduce binary latent variables to indicate classes. In

our motivating example, these latent states indicate responses to each machine. We assume

that subject i’s class membership Z̃i is defined by a latent state vector ηi ∈ A, where

A = {αk, k = 1, . . . , K̃} ⊆ {0, 1}M is a set of M dimensional binary vectors and K̃ =

|A| (6 2M) represents the number of distinct latent state patterns. In most applications, K̃

is unknown. We further link a subject’s response probability λi` to the subject’s latent states

ηi via λi` = λ`(ηi), where λ` : A → [0, 1] is an unknown function and as we will illustrate

below may depend on other parameters. We recover λi` = λ`(Z̃i) = λZ̃i`
in traditional LCMs

once replacing ηi with the corresponding class membership indicator Z̃i. Taken together, the

likelihood contributed by subject i conditional on her class membership P(Yi | Z̃i = k, {λk`})

in Section 2.1 is equivalent to:

Li(αk, λ`(αk)) = P(Yi | ηi = αk, {λ`(ηi)}) =
L∏
`=1

{λ`(αk)}Yi`{1− λ`(αk)}1−Yi` . (1)

We integrate (1) with respect to the distribution of latent states P(ηi = αk | πK̃) = πk > 0,

forαk ∈ A to obtain the likelihood forN independent observations:
∏N

i=1

∑
αk∈A πkLi(αk, λ`(αk)).

2.2 Model Formulation with Scientific Structures for the Motivating Example

We specify the model for the motivating example in two steps: 1) impose scientific structure

upon the actual presence or absence of proteins ({Γi`}) as a function of latent states ηi, and

2) parameterize the joint distribution of their noisy measurements {Yi`}. The first step is

needed to respect existing biological knowledge in the scientific context and the second step

characterizes the measurement process.

Γi` indicates whether or not subject i mounted an immune response to protein `. Biological

knowledge dictates that protein ` is present because subject i responded to one or more

machines containing protein `. And it is of scientific interest to estimate and classify patients
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based on the machine(s) to which they responded. Let the latent states ηi indicate which

protein complexes (“machines”) are present in patient i’s class. We impose the scientific

structure {Γi`} as follows:

Γi` = Γ(ηi, Q?`) = 1−
M∏
m=1

(1− ηim)Qm` , ` = 1, . . . , L, (2)

where the m-th machine is represented by the m-th row of a M by L binary matrix Q and the

ones in {Qm`, ` = 1, . . . , L} indicate which proteins constitute Machine m, for m = 1, . . . ,M

(Q?` and Qm? denote the `-th column and m-th row, respectively). For example, the class

of subjects who did not respond to any machine has all zeros in the corresponding row of

Γ, which can be seen from Γi` = Γ(0M×1, Q?`) = 1 −
∏M

m=1(1 − 0)Qm` = 0, ` = 1, . . . , L.

As another example, suppose protein `∗ is in machine m∗ (Qm∗`∗ = 1) to which subject i

responded (ηim∗ = 1). Protein `∗ will actually be present in subject i’s serum (Γi`∗ = 1)

regardless of whether or not the same protein `∗ was targeted as a component in another

machine m 6= m∗. This can be seen from the irrelevant product term in Γi`∗ = 1 − (1 −

1)1
∏

m 6=m∗(1−ηim)Qm`∗ = 1. Finally, (2) simplifies to η>i Q?` if machines have non-overlapping

components represented by orthogonal rows in Q (Q>m?Qm′? = 0 for any m 6= m′) as in Figure

1.

Yi` represents the observed presence/absence of protein ` on the immunoprecipitation gel

for patient i. The probability of observing a protein given it is present is its true positive rate

or sensitivity. The probability of observing the protein given it is absent is its false positive

rate or one minus its specificity. We write this parameterization of response probabilities as

λi` = λ`(ηi;Q?`,θ,ψ) = θΓi`
` (ψ`)

1−Γi` , ` = 1, . . . , L, (3)

where θ = {θ`} and ψ = {ψ`} are the true positive rates assumed to be larger than the false

positive rates. The sensitivity for a given protein is assumed to be the same regardless from

which machine(s) it comes. Importantly, both the sensitivities and specificities are allowed

to vary across proteins.
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Remark 1: Model (1,2,3) is related to some existing models proposed in cognitive diag-

nosis and epidemiology. In general, consider N subjects each responding to L items where

Qm` = 1 means item ` requires positive latent state m, otherwise Qm` = 0. This model,

referred to as a partially latent class model (PLCM) in disease epidemiology (Wu et al.,

2016, PLCM) or Deterministic In and Noisy Or (DINO) model in cognitive science (e.g.,

Templin and Henson, 2006, DINO), needs just one required state ({m : Qm` = 1}) for a

positive error-free response Γi` = 1. Imposing constant and symmetric error rates θ` = ψ`,

` = 1, . . . , L, gives the one-layer model of Rukat et al. (2017). The model can also be

viewed as Boolean matrix factorization (BMF, Miettinen et al., 2008) because model (2)

is equivalent to Γi` = ∨Mm=1ηimQm` where the logical “OR” operator “ ∨ ” outputs one if

any argument equals one. The rows in Q are basis patterns for compactly encoding the L

dimensional Γi? vector by M(� L) bits in ηi. BMF further reduces to nonnegative matrix

factorization (e.g., Lee and Seung, 1999) Γ = HQ where H = {ηim} if Q has orthogonal

rows (Figure 1).

Supplementary Material A1.2 presents a general technical formulation of RLCMs that

include (2) as a special case. Three specifications define a RLCM: the latent state space

(A), design matrix (Γ), and measurement likelihood. Table S1 in the Supplementary Ma-

terials summarizes these and other variants of LCMs. Supplementary Materials A1.3 and

A1.4 provide more examples and connections to another model-based clustering method

for multivariate binary observations (Hoff, 2005). Finally, our connection to general RLCMs

makes existing identifiability results available to evaluating the theoretical limit of recovering

parameters with an unbounded sample size, which is discussed Supplementary Material A1.5.

2.3 Priors

Given M , a Bayesian approach must specify the prior distributions for: the latent states

H = {ηi} that a priori cluster subjects; the measurement error parameters θ and ψ; and the
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Qmatrix if unknown. Since in this application, the number of classesA is a scientific focus, we

treat it as unknown and seek to infer it from the data and prior distribution. Following Miller

and Harrison (2017), we specify a prior distribution for A. In our application, identifying a

parsimonious set of machines is desirable so we use a prior like the geometric distribution that

assigns larger prior probabilities to fewer classes. We also need a prior distribution for the

assignment of individuals to clusters. We achieve this by randomly drawing cluster indicators

given M . The next step is to draw the latent states in each group of subjects. Since they

are also unknown, we specify a prior distribution to encourage sparser binary patterns. We

specify the prior distributions for the rest of parameters in Supplementary Material A1.10

and the joint distribution of data Y = {Yi}, the true and false positive rates, Q matrix, and

latent state vectors H = {ηi} in Supplementary Material A1.11.

In the following, we provide the details of the prior specifications that enable inference of

the unknown number of classes, the clusters and the unknown latent states for each cluster.

Prior for clustering observations with an unknown number of classes. Though

used interchangeably by many authors, we first make a distinction between a “component”

that represents one of the true mixture components in the specification of a mixture model

(referred to as “classes” in LCMs) and a “cluster” that represents one element in any partition

of observations. Let K be the number of mixture components in the population and T the

number of clusters in the sample (Miller and Harrison, 2017).

To establish notation, let Zi ∈ {1, 2, . . . , K} be the subject-specific component indicators,

Ez = {i : Zi = z} the set of subjects in component j, C = {Cj : |Cj| > 0, j = 1, . . . , T}

the partition of N subjects induced by Z = {Zi, i = 1, . . . , N}; Note the partition C is

invariant to component relabeling. Let T = |C| be the number of clusters formed by the

N subjects ; it may differ from K (T 6 K), the number of components for the population.

Let C−i = {Cj \ {i} : |Cj \ {i}| > 0} be the partition of subjects excluding subject i. For
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simplicity, let YC = {Yi, i ∈ C} be the collection of data in a cluster C ∈ C. Finally, let

ηi(∈ {0, 1}M) be the latent state vector for subject i = 1, . . . , N , and η∗j (∈ {0, 1}M) be the

latent state vectors for cluster j = 1, . . . , T .

We specify a prior distribution of partition C induced by the following three steps that

produce samples of cluster indicators Z: 1) draw the number of components K ∼ pK where

pK is a probability mass function over positive integers {1, 2, . . .}, 2) draw mixing weights

πK ∼ Dirichlet(γ, . . . , γ) where γ > 0 is the hyperparameter for symmetric Dirichlet distri-

bution, 3) draw the cluster indicators Zi ∼ Categorical{πK = (π1, . . . , πK)}, i = 1, . . . , N .

Note that though K̃ 6 2M , K is not upper bounded (unless constrained through the

support of pK). It can be shown that partition C is a priori distributed according to p(C |

γ, pK) = VN(T )
∏

C∈C γ
(|C|), where VN(T ) =

∑∞
k=1

k(T )

(γk)(N)pK(k), T = |C| is the number

of blocks/partitions for N subjects and by convention k(n) = k · (k + 1) · · · (k + n − 1),

k(n) = k · (k − 1) · · · (k − n+ 1), and k(0) = k(0) = 1, k(n) = 0 if k < n (Miller and Harrison,

2017).

Prior for the cluster-specific latent states η∗j . Pre-specified latent state space A. In

some applications, the latent state space may be known: A = {α1, . . . ,αK̃}. We enumerate

the elements in A by setting cluster-specific latent states to be η∗j = αj, j = 1, . . . , K̃.

We specify a simple categorical distribution for these distinct latent states with probability

parameters πK̃ = (π1, . . . , πK̃), referred to as mixing weights in finite mixture models. For

example, Wu et al. (2016) analyzed data from a childhood pneumonia etiology study to

estimate the mixing weights which represent the population fractions of cases caused by

different pathogen infections in the lung. They specified A = {e1, . . . , eM ,0M} among pneu-

monia cases to represent the latent states of lung infection caused by pathogen 1, 2, . . . ,M or

none-of-the-above and ηi = 0M among observed controls. The pre-specification is therefore

appealing especially when the scientific interest lies in the estimation of mixing weights πK̃ ,
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one for each pattern of latent states. Absent the uncertainty in A, simpler posterior sampling

algorithms result.

However, in other applications, pre-specifying A $ {0, 1}M ignores its uncertainty in

estimating clusters. For example, A is unknown because of lack of strong prior knowledge

about the machines to which the patients respond. Analysts may conservatively specify

A = {0, 1}M , fit the model and keep the most important patterns. However, latent states

ηi = αZi
then take value from a space that grows exponentially in size with M (e.g.,

M = 30 in Wu et al. (2016)). One can fit a model like (2) to infer πk, k = 1, . . . , K̃(= 2M).

However, many marginal posterior distributions of mixing weights [πk | Y ], k = 1, . . . , 2M ,

may concentrate near zero, but not exactly zero. Important elements in A are commonly

selected by ad hoc post-processing of the posterior samples of {πk}, for example, by requiring

the posterior probability of exceeding a low threshold τ that is deemed meaningful in the

application (e.g., greater than 0.05).

Unknown latent state space A. Absent knowledge of A, we specify the prior distribution for

the component-specific parameters H∗ = {η∗jm} so that we regularize η∗j towards sparser

binary patterns:

hyperprior for probability of positive state m : pm | α1, α2 ∼ Beta(α1α2/M,α2), (4)

prior for latent states : η∗jm | pm ∼ Bernoulli(pm), j = 1, . . . , T, (5)

for m = 1, . . . ,M . The two-step prior induces a marginal prior [H∗ | α1, α2] upon integrating

over {pm} (see Supplementary Material A1.6). Supplementary Material A1.7 extends the

prior on H∗ to M =∞ and connects it to Indian Buffet Process (Ghahramani and Griffiths,

2006). In what follows, α2 is set to 1 which offers good clustering results in simulations

and data analyses. Finally in applications where no pooling across j is needed, one can set

pm = 0.5 in (5) to specify a uniform distribution over all possible patterns over A = {0, 1}M .

Remark 2: (4) and (5) may generate a random draw of identical η∗j = η∗j′ for some j 6=
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j′ = 1, . . . , T where the equality holds element-wise. Because we are interested in estimating

distinct η∗j ’s that represent distinct latent states in particular scientific contexts, we will

merge such clusters j and j′ into one, referred to as a “scientific cluster”; We denote the

resultant merged clusters by C̃. We also denote the unique values in H∗ = {η∗j , j = 1, . . . , T}

by H̃∗ = {η̃∗j , j = 1, . . . , T̃} where by definition T̃ 6 T 6 K. Supplementary Materials A1.8

and A1.9 further remark on the induced priors on the partitions C and C̃.

3. Posterior Inference

We develop inferential procedures to address the following three questions: 1) how many

scientific clusters (T̃ ) in the sample (data); 2) what are the unique latent states {η̃∗j , j =

1, . . . , T̃} in the sample; and 3) what are the subjects’ latent states ηi and the scientific

clusters C̃.

Given Q and θ, ψ, model (1-3) as a mixture model has discrete component-specific

parameters ηi ∈ A ⊆ {0, 1}M . This is to be contrasted with mixture models with a

continuous distribution from which component parameters are drawn and differ from one

another with probability one. When sampled conditional on other parameters, the discrete

mixture component parameters {η∗j , j = 1, . . . , T} may be duplicated. At each MCMC

iteration, we post-process the posterior samples by merging clusters in C associated with

identical η∗j to obtain scientific clusters with distinct latent states. Given M , no more than 2M

distinct latent state patterns η̃∗j results after merging. More generally, for inference based on

mixture of finite mixture (MFM) models with discrete component parameters, pK is a prior

for K (not K̃) over all non-negative integers and offers technical convenience of removing

the otherwise hard constraint K = K̃ 6 2M (would be so if we force distinct latent states in

the prior). This greatly simplifies the design of posterior algorithms.

We use Markov chain Monte Carlo (MCMC) algorithm for posterior inference which by

design upon convergence simulates samples that approximate the joint posterior distribution
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of any functions of unknown parameters and latent variables (Gelfand and Smith, 1990):

(Z, H∗, Q,θ,ψ, α1). The posterior algorithms also sets an upper bound M † for M and at each

iteration may produce less than M † effective machines. All model estimations are performed

by an R package “rewind”, which is freely available at https://github.com/zhenkewu/rewind.

Given our focus on estimating clusters, we choose to directly sample C from its posterior

without the need for considering component labels or empty components. See Supplementary

Material A2 for more details of the sampling algorithms and convergence checks as well as a

discussion about information from data that updates the clusters C. Supplementary Material

A3 presents posterior summaries of co-clustering and latent states.

4. Results

We illustrate the utility of RLCM on both simulated and real data where Q is unknown.

First, we assess the performance of RLCM on cluster estimation under simulation scenarios

corresponding to varying levels of measurement error, dimension, sparsity level of each

machine, sample size and mixing weight. Using data simulated under the assumed RLCM

and realistic deviations from it, the proposed Bayesian analyses performs clustering as well as

or better than common alternative binary-data clustering methods (including two likelihood-

based methods that include the RLCM simulation truths as special cases). We first analyze

a single randomly generated data set to highlight differences among the methods. We then

evaluate frequentist performance of Bayesian RLCM in cluster estimation and contrast with

the alternatives. Finaly, protein data from scleroderma patients are analyzed.

4.1 Simulated Examples to Study Model Performance

Simulation 1: More accurate clustering through feature selection in scientifically structured

classes. We set N = 50, L = 100 and M = 3. We randomly generate a matrix Q (M by

L) where each row has on average s = 20% non-zero elements: Qm`
i.i.d∼ Bernoulli(0.2), ` =

https://github.com/zhenkewu/rewind


Bayesian restricted latent class analysis 13

1, . . . , L. In the rare event where a randoml Q /∈ Q (identifiability constraint (S7) in Supple-

mentary Material A1.5), we randomly permute pairs of elements in Qm? until Q ∈ Q. We

draw latent states for each observation independently according to ηi
d∼ Categorical (A;π0 = πb)

where π0 = {P(ηi = (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1))},

and πb = (1/6, 1/6, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12). Because we focus on model (2), we

assume the response probabilities shift between two levels θ` = 0.8 and ψ` = 0.15. The

distinct subsets of features where shifts occur define eight classes K̃ = 8 = (2M), which

upon enumeration by observation gives an N by L design matrix Γ. Figure 2 shows the

resulting data Y, the design matrix Γ, as well as the clusters obtained using complete-linkage,

Hamming distance hierarchical clustering (HC), standard eight-class Bayesian latent class

analysis (LCA, e.g., Garrett and Zeger (2000)), subset clustering analysis (Hoff, 2005) and

our Bayesian RLCM with unknown number of clusters fitted with truncation level M † = 5.

In this setting, HC is sensitive to noise and tends to split a true cluster or group observations

from different true clusters. Unlike the others, the Bayesian RLCM automatically selects and

filter subsets of features that distinguish eight classes (through scientific structures in (2))

hence has superior clustering performance producing clusters that agrees quite well with

the truth. This relative advantage of Bayesian RLCM persists under data replications (see

Simulation 2).

In contrast to traditional all-feature clustering methods, through the inference of all-zero

columns of design matrix Γ?` = 0, Bayesian RLCM removes irrelevant features hence reduces

the impact of noise at less important features and in the current setting has better clustering

performance (see Supplementary Material A4 for additional simulations on this point).

Simulation 2: Assess clustering performance under various parameter settings. We simu-

lated R = 60 replication data for each of 1, 920 combinations of (#features, sample size,

true positive rate, false positive rate, mixing weights, sparsity level of the rows of Q):
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(L,N, θ0, ψ0,π0, s) ∈ {50, 100, 200, 400} ⊗ {50, 100, 200} ⊗ {0.8, 0.9} ⊗ {0.05, 0.15} ⊗ {πa =

(1
8
, . . . , 1

8
),πb = (1

6
, . . . , 1

6
, 1

12
, . . . , 1

12
)} ⊗ {10%, 20%}. The parameter values are designed to

mimic what would be expected in the motivating example. We use adjusted Rand index (aRI,

Hubert and Arabie, 1985) to assess the agreement between two clusterings, e.g,. the estimated

and the true clusters. aRI is defined by aRI(C, C ′) =
∑

r,c (nrc
2 )−[

∑
r (nr·

2 )
∑

c (n·c
2 )]/(N

2 )
0.5[

∑
r (nr·

2 )+
∑

c (n·c
2 )]−[

∑
r (nr·

2 )
∑

c (n·c
2 )]/(N

2 )
,

where nrc represents the number of observations placed in the rth cluster of the first partition

C and in the cth cluster of the second partition C ′,
∑

r,c

(
nrc

2

)
(6 0.5

[∑
r

(
nr·
2

)
+
∑

c

(
n·c
2

)]
) is

the number of observation pairs placed in the same cluster in both partitions and
∑

r

(
nr·
2

)
and

∑
c

(
n·c
2

)
calculates the number of pairs placed in the same cluster for the first and the

same cluster for second partition, respectively. aRI is bounded between −1 and 1 and corrects

for chance agreement. It equals one for identical clusterings and is on average zero for two

random partitions; larger values indicate better agreements.

The performance of Bayesian RLCM of recovering the true clusters varies by the sparsity

level (s) in each machine, level of measurement errors (θ`, ψ`), mixing weights and sample

sizes (N) (the leftmost boxes in groups of four in Figure 3). Firstly, clustering performance

improves by increasing the sparsity level in each machine from s = 10% to 20% (compare the

1st and 3rd, 2nd and 4th RLCM boxplots with solid lines in each panel of Figure 3). In the

context of our motivating example, given a fixed number of protein landmarks L, patients

will be more accurately clustered if each machine comprises more component proteins. This

observation is also consistent with simulation studies conducted in the special case of Q = IL

(Hoff, 2005, Table 1). For a given s, a larger L means a larger number of relevant features

per machine and leads to better cluster recovery. In Figure S2 of Supplementary Materials

(Figure 3 here shows its 8 subplots), increasing L from 50 to 400 (from the top to the

bottom row), the mean aRI (averaged over replications) increases, e.g., in the first column,

from 0.7 to 0.98 at the sparsity level s = 10%, 0.88 to 0.99 under s = 20%. Secondly, more
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accurate clustering results under larger discrepancies between θ` and ψ`. The aRI averaged

over replications is higher under ψ0 = 0.05 than ψ0 = 0.15 over all combinations of other

parameters. Thirdly, under non-uniform mixing weights π0 = πb, Bayesian RLCM performs

similarly or slightly worse than under uniform mixing weights (πa). Finally we observe mixed

relative performances at distinct sample sizes as a result of two competing factors as the

sample size increases: more precise estimation of measurement error parameters that improve

clustering and a larger space of clusterings.

The Bayesian RLCM on average most accurately recovers the clusters compared to three

common alternatives. In Figure 3, Bayesian RLCM produces the highest aRIs (boxes with

solid lines) compared to others (boxes with dotted lines) and are in many settings perfect.

For example, under false positive rate (ψ0 = 0.05) the ratio of the mean aRIs (averaged over

replications) for Bayesian RLCM relative to subset clustering is 2.06, 2.04, 1.88, 1.71 for the

sample-size-to-dimension ratios N/P = 1, 0.5, 0.25, 0.125, respectively. As another example,

under a higher ψ0 = 0.15, the relative advantage of Bayesian RLCM to HC narrows as shown

by the smaller aRI ratios 1.23, 1.62, 1.49, 1.16.

[Figure 2 about here.]

We remark on the performance of the other three methods. Over all parameter settings

investigated here, the traditional LCA performed worst in the recovery of true clusters (aRI

< 0.68). The advantage of RLCM comes from the regularization of estimated response

probability profiles towards a scientific structure that improves finite-sample clustering per-

formance. We also obtain better clustering performance of RLCMs compared to LCM for data

simulated from LCMs with realistic deviations from RLCMs (not shown here). The likelihood

function of subset clustering is a special case of the RLCM that assumes a non-parsimonious

Q = IL and therefore loses power for detecting clusters compared to RLCM that estimates

a structured Q with multiple non-zero elements in its rows. HC is fast and recovers the
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true clusters reasonably well (ranked second or first among the four methods for more than

two thirds of the parameter settings here; See Figure S3 in Supplementary Materials). The

performance of HC is particularly good under a low level of measurement errors (ψ0 = 0.05)

and a large number of relevant features per machine and sometimes performs much better

than traditional LCA and subset clustering (e.g., L = 200, N = 50, θ` = 0.8, ψ` = 0.05 in

Figure S2, Supplementary Materials). The HC studied here requires a pre-specified number

of clusters to cut the dendrogram at an appropriate level and produces clusters that re-

quire separate methods for uncertainty assessment (e.g., Suzuki and Shimodaira, 2006). The

proposed Bayesian RLCM, in contrast, enjoys superior clustering performance and provides

direct internal assessment of the uncertainty of clusters and measurement error parameters

through the posterior distribution.

[Figure 3 about here.]

4.2 Analysis of GEA Data

GEA Data, Preprocessing and Informative Priors. The goal is to estimate autoimmune

disease patient clusters via reconstructing components of protein complexes. Autoantibodies

are the immune system’s response to specific cellular protein complexes or “machines”.

We seek to identify components of the machines and to quantify the variations in their

occurrence among individuals. The binary responses Yi indicate the observed presence of

autoantibodies at equi-spaced molecular weight landmarks as produced via a preprocess-

ing method (Wu et al., 2019) implemented using publicly available software R package

“spotgear” (https://github.com/zhenkewu/spotgear). We ran 4 GEA gels, each loaded with

immunoprecipitations (IPs) performed using sera from 19 different patients, and one reference

lane. All sera were from scleroderma patients with cancer, and were all negative for the

three most common autoantibodies found in scleroderma (anti-RNA polymerase III, anti-

topoisomerase I, and anti-centromere). The IPs were loaded in random order on each gel;

https://github.com/zhenkewu/spotgear
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the reference sample is comprised of known molecules of defined sizes (molecular weights)

and was always loaded in the first lane. The left panel in Figure 4 shows for each sample lane

(labeled in the left margin; excluding the reference lanes) the binary responses indicating

the observed presence or absence of autoantibodies at L = 50 landmarks.

Patients differ in their antibody protein presence or absence patterns at the protein

landmarks. Eleven out of L = 50 aligned landmarks are absent among the patients tested.

The rest of the landmarks are observed with prevalences between 1.3% and 94.7%. We

apply two-parameter RLCM (2) with unknown M(< L/2 = 50) and Q, θ, ψ. The GEA

technologies are known to be highly specific and sensitive for nearly all proteins studied

in this assay so we specify the priors for the true and false positive rates by Beta(aθ`, bθ`)

and Beta(aψ`, bψ`), ` = 1, . . . , L respectively. We set aθ` = 9, bθ` = 1, aψ` = 1, bψ` = 99

and conducted sensitivity analyses varying these hyperparameter values. Because proteins

of distinct weights may have systematically different response probabilities, we choose not

to share measurement error rates across dimension. In our analysis, we sampled many Q

values across the iterations of the MCMC. Because the interpretation of ηi depends on the

row patterns in Q, we condition on the least square clustering (Ĉ(LS)) and refit the model to

obtain the least square Q (Section 3). We also draw posterior samples of α1 for inference.

In this application, the scientists had previously identified and independently verified

through additional protein chemistry the importance of a small subset of protein bands in

determining clusters among a subset of subjects. They proposed that these subjects should

be grouped together. We therefore fitted the Bayesian RLCM without further splitting these

partial clusters C(0) so that the number of scientific clusters visited by the MCMC chain has

an upper bound T̃ (b) 6 |C(0)|+N−
∑|C(0)|

j=1 C
(0)
j , where C

(0)
j counts the number of observations

in the initial cluster j. We fitted models and compared the results under multiple working

truncation levels M † = 8, 9, . . . , 15 and obtained identical clustering results.
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GEA Results. Figure 4 shows: the observations grouped by the RLCM-estimated clusters (not

merged) Ĉ(LS) (left), the estimated Q-matrix Q̂(Ĉ(LS)) (right), and the conditional posterior

probabilities of the machines P(ηim = 1 | Ĉ(LS), Q̂(Ĉ(LS)),Y) (middle).

The matrix Q is estimated from the observed marginal associations (positive or negative)

among the protein landmarks. Landmark protein pairs observed with positive association

tend to be placed in the same estimated machine. For example, Landmarks 4, 7 and 8

appear together in Machine 5. Subjects either have all three landmarks or none at all, which

induces strong positive pairwise associations among these landmarks. Indeed, the estimated

log odds ratio (LOR) is 3.13 (standard error 1.16) for Landmark 4 versus 7, 2.21 (s.e., 0.98)

for Landmark 4 versus 8, and 2.92 (s.e. 1.2) for Landmark 7 versus 8. The observed negative

marginal associations between two landmarks suggest existence of machines with discordant

landmarks. For example, Landmarks 10 and 27 are rarely estimated to be present or absent

together in a subject as a result of 1) estimated machines with discordant landmarks and

2) subject-specific machine assignments. First, the model estimated that Landmark 10 (in

Machine Set A: 1, 3 and 4) belongs to machines not having Landmark 27 (it is in Machine Set

B: 2). Second, with high posterior probabilities, most observations have machines from one

of, not both Set A and B hence creating discordance (high posterior probability P(Γi,10 6=

Γi,27 | Y)). In the presence of observation errors, strong negative marginal association results

(observed LOR for Landmark 10 versus 27: −1.98, s.e. 0.8).

[Figure 4 about here.]

Our algorithm also directly infers the number of scientific clusters in the data given an

initial partial clustering C(0). The marginal posterior of the number of scientific clusters T̃

can be approximated by empirical samples of {T̃ (b)} which result in a posterior median of

12 (95% credible interval: (8, 16); Figure S4 in Supplementary Materials). The advantage of

Bayesian RLCM is the posterior inference about both the clusters and the distinct latent state
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variables ηi interpreted based on the inferred Q matrix. The middle panel of Figure 4 shows

that clusters differ in their posterior probabilities of having each of the estimated machines.

Among 76 subjects analyzed, 23 of them have greater than 95% posterior probabilities of

having both Machine 4 and 6. A group of seven observations are enriched with Machine 4 and

7 which as expected from the raw band patterns have distinctive combination of Landmarks

35, 40 and 49 (33, 27 and 18 kDa bands, respectively). Such inference about ηi is not available

to us based on hierarchical clustering or traditional latent class models.

We performed posterior predictive checking to assess model fit (Gelman et al., 1996). At

each MCMC iteration, given the posterior sample of model parameters (without conditioning

on the best clustering Ĉ(LS) or the best Q̂), we simulated a data set of the same size

as the original set. For each replicated data set, we compute the marginal means and

marginal pairwise log odds ratios (0.5 adjustment for zero counts). Across all replications,

we compute the 95% posterior predictive confidence intervals (PPCI) defined by the 2.5%

and 97.5% quantiles of the PPD. All the observed marginal means are covered by their

respective PPCIs; The 95% PPCIs cover all but 24 of
(
L
2

)
= 1, 225 landmark pairs of

observed pairwise log odds ratios (see Figure S6 and S7 in Supplementary Materials).

The proposed model adequately fits the GEA data. Supplementary Materials A5 provides

additional results, model interpretations for model fits without a partial cluster C(0) as well

as potential improvements.

5. Discussion

Modern scientific technologies give rise to measurements of varying precision and accuracy

that are better targeted at the underlying state variables than ever before. In this paper

we have focused on finite-sample Bayesian inference of restricted latent class model for

analyzing multivariate binary data in the presence of between-class differential errors. The

primary advantage of such models lies in their expressive characterization of the between-
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class differential errors structured to respect specific scientific context about the biological

and measurement processes. Using simulations and real data analysis, we studied the clus-

tering of observations with an unknown number of clusters, uncertainty assessment of the

clustering and the prediction of individual latent states. We develop and apply a novel

Markov chain Monte Carlo (MCMC) algorithm for Bayesian RLCMs. The proposed method

addresses inferential issues unique to mixture models with discrete component parameters

and jointly infers the number of clusters, the design matrix Γ and other model parameters.

We have compared the proposed method with variants of latent class models through their

specifications in Table S1 in Supplementary Materials and illustrated its advantage through

simulations relative to three commonly used binary-data clustering. Finally, viewed from reg-

ularization perspective, in the scleroderma example, the inferential procedure automatically

selects subsets of features for each latent class and filters them through a low-dimensional

model that shrinks class-specific response probability estimates toward one that represents

the scientific structure and improves our ability to accurately estimate clusters. We have

also implemented an extension to settings where some subjects’ latent classes are known

or important prior knowledge about differential measurement accuracy is available from

external sources.

RLCMs decompose the variation among multivariate binary responses into structure that

reflects prior scientific knowledge and stochastic variation without a known explanation. In

our motivating example, it is certainly likely that there is some variability related to the

vagaries of the measurement assay. However, it is also highly likely that there are systematic

biological and biochemical processes not included in the structural part because they are

unknown to us today. RLCM analyses can be a useful tool in the effort to uncover the

unknown structure. One approach would be to show that the latent classes are diagnostic of

specific diseases. Another is that we might uncover a novel mechanism by defining distinct



Bayesian restricted latent class analysis 21

patterns of the same autoantigen machine in patients with the same disease or potentially

in patients with different diseases that target the same machines. Though the present paper

focused on an example in medicine, the developed method and algorithms apply to many

problems in psychology and epidemiology (see Supplementary Material A1.1).

We are currently studying a few potentially-useful extensions. First, nested partially LCMs

(Wu et al., 2017) incorporate local dependence and multiple sensitivity parameters that

would improve the utility of Bayesian RLCMs. Second, because the algorithm involves

iterating over subjects to find clusters, the computational time increases with the number of

subjects N . Divide-Cluster-Combine schemes that estimate clusters in subsamples which are

then combined may improve the computational speed at the expense of the approximation

introduced by the multi-stage clustering (Ni et al., 2018). Finally, in applications where the

clustering of multivariate binary data comprises an important component of a hierarchical

Bayesian model with multiple components, the posterior uncertainty in clustering propagates

into other parts of the model and can be integrated into posterior inference of other model

parameters (e.g., Jacob et al., 2017).

Supplementary Materials

The supplementary materials contain referenced remarks, figures, a table and further techni-

cal details, e.g., on identifiability and sampling algorithms, as well as additional simulations

and extended data analysis results.
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Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., and Mannila, H. (2008). The discrete

basis problem. IEEE Transactions on Knowledge and Data Engineering 20, 1348–1362.

Miller, J. W. and Harrison, M. T. (2017). Mixture models with a prior on the number of

components. Journal of the American Statistical Association pages 1–17.

Ni, Y., Müller, P., Diesendruck, M., Williamson, S., Zhu, Y., and Ji, Y. (2018). Scalable

Bayesian Nonparametric Clustering and Classification. ArXiv e-prints .

Orito, H., Kaji, K., Komura, K., Takehara, K., Fujimoto, M., Hasegawa, M., Kondo, M.,

Matsushita, T., Hamaguchi, Y., Saito, Y., Ogawa, F., Yanaba, K., Itoh, M., Seishima,

M., Sato, S., and Asano, Y. (2006). Identification of a novel autoantibody reactive with

155 and 140kDa nuclear proteins in patients with dermatomyositis: an association with

malignancy. Rheumatology 46, 25–28.

Rosen, A. and Casciola-Rosen, L. (2016). Autoantigens as partners in initiation and



24 Biometrics, XXXX XXX

propagation of autoimmune rheumatic diseases. Annual review of immunology 34, 395–

420.

Rukat, T., Holmes, C. C., Titsias, M. K., and Yau, C. (2017). Bayesian boolean matrix

factorisation. In International Conference on Machine Learning, pages 2969–2978.

Suzuki, R. and Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty

in hierarchical clustering. Bioinformatics 22, 1540–1542.

Templin, J. L. and Henson, R. A. (2006). Measurement of psychological disorders using

cognitive diagnosis models. Psychological methods 11, 287.

Vermunt, J. K. and Magidson, J. (2002). Latent class cluster analysis. Applied latent class

analysis 11, 89–106.

Wu, Z., Casciola-Rosen, L., Shah, A. A., Rosen, A., and Zeger, S. L. (2019). Estimating

autoantibody signatures to detect autoimmune disease patient subsets. Biostatistics 20,

30–47.

Wu, Z., Deloria-Knoll, M., Hammitt, L. L., and Zeger, S. L. (2016). Partially latent class

models for case–control studies of childhood pneumonia aetiology. Journal of the Royal

Statistical Society: Series C (Applied Statistics) 65, 97–114.

Wu, Z., Deloria-Knoll, M., and Zeger, S. L. (2017). Nested partially latent class models for

dependent binary data; estimating disease etiology. Biostatistics 18, 200.

Xu, G. and Shang, Z. (2018). Identifying latent structures in restricted latent class models.

Journal of the American Statistical Association 0, 1–12.



Bayesian restricted latent class analysis 25

Figure 1: Binary matrix factorization generates autoantibodies that are further subject
to misclassification. The hypothetical individual has latent states ηi = (1, 0, 1)> and is
expected to mount immune responses against six antigens in Machines 1 and 3. The expected
antibodies Γi? = η>i Q are produced against three orthogonal machines with 3, 4 and 3
landmark proteins, respectively.
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Figure 2: In the 100-dimension multivariate binary data example (a), the eight classes
differ with respect to subsets of measured features (b). In (c) HC, we indicate co-
clustering by filled cells. The true clusters are separated (dashed grids) and ordered
according to the truth; (d, e, f): For Bayesian LCA, RLCM and subset clustering (Hoff,
2005), we plot the posterior co-clustering probability matrix {π̂i,i′} for N observations.
Filled blocks on the main diagonal only indicate perfect recovery of the true clusters;
Blank cells within the main diagonal blocks indicate true cluster being split and blue
cells in the off-diagonal blocks indicate two observations being incorrectly co-clusted.
Bayesian restricted latent class analysis accounts for measurement errors, selects the
relevant feature subsets and filters the subsets by a low-dimensional model (2) and
therefore yields superior clustering results.
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Figure 3: Based on R = 60 replications for each parameter setting, from the left to the right
in each group of four boxplots, Bayesian RLCM (boxplots with solid lines) most accurately
recovers the true clusters compared to subset clustering (Hoff, 2005) hierarchical clustering
(HC) and traditional Bayesian latent class analysis (LCA). See Figure S2 in Suppmentary
Materials for an expanded version over more parameter settings.
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Figure 4: Results for GEA data. Left : Aligned data matrix for band presence or absence; row
for 76 serum lanes, reordered into optimal estimated clusters (not merged) Ĉ(LS) separated
by gray horizontal lines “—–; columns for L = 50 protein landmarks. A blue vertical line
“|” indicates a band; Middle: lane-machine matrix for the probability of a lane (serum
sample) having a particular machine. The blue cells correspond to high probability of having a
machine in that column. Smaller probabilities are shown in lighter blue;. Right : The estimated
machine profiles. Here seven estimated machines are shown, each with component proteins
shown by a blue bar “|”.
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