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Summary: Recurrent events are common in clinical, healthcare, social and behavioral studies. A recent analysis

framework for potentially censored recurrent event data is to construct a censored longitudinal data set consisting of

times to the first recurrent event in multiple prespecified follow-up windows of length τ . With the staggering number

of potential predictors being generated from genetic, -omic, and electronic health records sources, machine learning

approaches such as the random forest are growing in popularity, as they can incorporate information from highly

correlated predictors with non-standard relationships. In this paper, we bridge this gap by developing a random forest

approach for dynamically predicting probabilities of remaining event-free during a subsequent τ -duration follow-up

period from a reconstructed censored longitudinal data set. We demonstrate the increased ability of our random forest

algorithm for predicting the probability of remaining event-free over a τ duration follow-up period when compared

to the recurrent event modeling framework of Xia et al. (2020) in settings where association between predictors

and recurrent event outcomes is complex in nature. The proposed random forest algorithm is demonstrated using

recurrent exacerbation data from the Azithromycin for the Prevention of Exacerbations of Chronic Obstructive

Pulmonary Disease (Albert et al., 2011).
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1. Introduction

Recurrent events are common in healthcare settings, such as exacerbations of pulmonary

diseases, or bleeding events for chemotherapy patients, and clinicians would often be inter-

ested in predicting the probability of remaining event-free until a patient’s next check-up.

In current medical research settings, for instance increasingly used electronic health records

(EHR) data, covariates are often high dimensional and highly correlated. A method that can

handle both highly correlated data and recurrent events would be of interest to modelers

and practitioners.

The majority of literature in recurrent event analysis has been parametric or semi-parametric

in nature, with specific modeled relationships between predictors and recurrent event out-

comes. Models have been designed for the analysis of recurrent events, gap times, and times-

to-first-event across different follow-up windows, each with different assumptions imposed by

the modeling paradigms (e.g., Andersen and Gill, 1982; Miloslavsky et al., 2004; Ang et al.,

2009; Mao and Lin, 2016; Hengelbrock et al., 2016; Kong et al., 2016; Chan and Wang,

2017a; Liang et al., 2017; Xu et al., 2017; Choi et al., 2017; Chan and Wang, 2017b; Xia

et al., 2020; Safari et al., 2023). Such models have interpretable parameter estimates that

can inform medical literature, generate hypotheses, and to some degree, predict outcomes.

Disadvantages include limits to estimating these same parameters when there are many

predictors or co-linearity between important predictors. A few of these papers use pseudo-

observation approaches to model recurrent event data (Yokota and Matsuyama, 2019; Xia

et al., 2020), an attractive approach that we also consider.

Machine learning methods, and in particular random forest algorithms, have gained widespread

acceptance as a method of building predictions based on complex relationships of biomarkers

(first proposed by Breiman et al. (1984), applied more recently in statistical literature such

as Ishwaran et al. (2004), Wager and Athey (2018), Zhao et al. (2020), Gerber et al. (2021a),
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Gerber et al. (2021b), and reviewed in Hu and Szymczak (2023)). These algorithms naturally

accommodate non-canonical relationships between covariates and outcomes, an attractive

feature in an age of increasingly high-dimensional data where a traditional modeler cannot

realistically find all the interactions, higher-order covariates and non-linear patterns that may

be predictive of an outcome. By using information across different sets of covariates within

each of the generated trees of a random forest, a modeler can side-step several traditional

pitfalls of parametric and semi-parametric models: (1) multicolinearity of predictors and (2)

limited ability to include a large number of covariates. In particular, Zhao et al. (2020) showed

that for a single event time, imposing a censored longitudinal data structure introduced

by Tayob and Murray (2015) and incorporating ideas from pseudo-observation literature,

random forest regression can address complex relationships between covariates and outcomes

for dynamic prediction of event-free periods.

In our manuscript we incorporate ideas from pseudo-observation literature in the recurrent

events setting (Yokota and Matsuyama, 2019; Xia et al., 2020), and literature using censored

longitudinal data structures for recurrent event data (Xia et al., 2020; Xia and Murray, 2019).

Drawing from the strengths of these approaches, this manuscript develops a novel random

forest dynamic prediction model for potentially censored recurrent event data. We believe

that a random forest prediction algorithm will be particularly well-suited to the large amount

of patient-specific data that is now being collected in routine medical practice. To date, we

are not aware of any papers that combine recurrent events, dynamic predictions and random

forest regression using pseudo-observations.

The rest of this paper is organized as follows. In Section 2, we describe how to trans-

form recurrent event data to a censored longitudinal data framework for analysis using

our proposed methods. In Section 3, we review a random forest algorithm applicable to

uncensored longitudinal data. In Section 4, we describe how to construct pseudo-observations
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based on the censored longitudinal data structure, described in Section 2, that can be

used with the random forest algorithm developed in Section 3. In Section 5, we present

evidence from simulation that demonstrates the ability of our method to successfully capture

information inherent in complex relationships between potentially correlated covariates and

recurrent event outcomes. We apply our recurrent event random forest algorithm to data

from Azithromycin for the Prevention of Exacerbation of COPD (Albert et al., 2011) in

Section 6. We conclude with a discussion in Section 7.

2. Notation and Censored Longitudinal Data Structure

For individual i, denote recurrent event times Ti,1 < Ti,2 < . . ., that are potentially censored

by the random variable Ci, where Ci is independent of Ti,j , i = 1, ..., n, and j > 1. Observed

data for each individual is X∗
i,j = min(Ti,j , Ci), i = 1, . . . , n, and j > 1. These event times

are sometimes converted to gap times between recurrent events Gi,j = Ti,j+1 − Ti,j , i =

1, 2, ..n, j > 1. A well-known challenge in the analysis of correlated censored gap times is the

dependence between gap time random variables, Gi,j , and corresponding censoring times,

Ci −Gi,j−1 (Lin et al., 2000).

One approach to avoiding dependent censoring in analyses of recurrent events was proposed

by Tayob and Murray (2015), who transformed correlated recurrent event times into a

censored longitudinal data structure. First a series of regularly spaced follow-up window

start times are spaced every a units apart, so that follow-up window start times are T =

{t0, t1, t2, . . .}, with tj− tj−1 = a, j = 1, 2, . . .. Briefly, T can include window start times that

are as close as a = 1 day apart, if desired. Computational speed of the analysis is usually the

limiting factor in choosing a. Xia and Murray (2019) found that a equal to one-third of the

mean gap time in the control group resulted in capturing 90% of the recurrent events from

the original data set in at least one follow-up window. In practice, more frequent follow-up
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window start times have the potential for more precise estimation, but with diminishing

returns once all recurrent events have been captured in at least one follow up window.

In this paper, at each of the pre-specified “check-in time points” in T , we will focus

on estimating the probability of remaining recurrent-event-free over a subsequent follow-up

window of length τ , where τ is user-specified and ideally informed by clinical expertise.

Although the check-in time points are shared across subjects by design, potential censoring

may result in different numbers of effective check-ins; we therefore denote the subject-specific

sets of check-in time points by {Ti}ni=1, where Ti = {t0, t1, ...tmi
}, tmi

< min{Ci, D− τ}, and

D is the time of administrative censoring, e.g., indicating the end of study.

We follow Tayob and Murray (2015) and construct the censored longitudinal data that is

essential for creating pseudo-observations in Section 4. We repeat the following two steps at

all the check-in time points t ∈ Ti, i = 1, . . . , n:

i) Identify the first recurrent event occurred after t and let ηi(t) = min{j : X∗
i,j > t, j =

1, . . . , ni} be its index among all the observed recurrent events for subject i; also define the

residual recurrent-event-free time by Ti(t) = Ti,ηi(t) − t with the corresponding censoring

random variable Ci(t) = Ci − t, which remains independent of Ti(t);

ii) Construct the observed censored longitudinal data set at time t by {Xi(t) = X∗
i,ηi(t)

−

t, δi(t) = I(Xi(t) 6 Ci(t)) : i = 1, 2, ...n}.

Our prediction target can now be formally expressed as P (Ti(t) > τ |Zi(t)), i.e., at a pre-

specified time point t, the probability of remaining recurrent-event-free over a subsequent

follow-up period of length τ given covariates Zi(t). In the following, we will occasionally

suppress the subscript i and write P (T (t) > τ |Z(t)) for ease of presentation.

Figure 1 uses three hypothetical subjects to illustrate the above three steps of convert-

ing traditional recurrent event data {X∗
i,j , δi,j} into the censored longitudinal data format

{Xi(t), δi(t) : t ∈ Ti}. In Section 4, we will use the constructed censored longitudinal data
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to create longitudinal pseudo-observations that will be inputs of a random forest algorithm,

which we now review.

[Figure 1 about here.]

3. Random Forest for Uncensored Longitudinal Outcomes: A Review

Regression trees are a popular approach to incorporating multi-way interactions among

predictors by finding groups of observations that are similar. A tree is grown in a few steps

where at each step a new branch sorts the data leftover from the preceding step into bins

based on one of the predictors. The sequential branching slices the space of predictors into

rectangular partitions and approximates the true outcome-predictor relationship with the

average outcome within each partition. Therefore, to grow a tree is to find bins that best

discriminate among the outcomes. The specific predictor and the value split at each branching

are chosen to minimize prediction error.

The number of possible trees is combinatorically large and precludes efficient global opti-

mization (the number of binary trees with K leaves is (2K − 3)!!). Greedy algorithms have

been developed to approximate the optimal global tree by myopically optimizing prediction

error at the start of each branch. We will focus on binary trees in this paper for their

popularity and effectiveness. The loss associated with the prediction error for a branch is often

termed “impurity” which measures how similarly the observations behave on either side of the

binary split. The branching procedure halts, for example, when the number of observations in

a terminal node or the number of terminal nodes reaches respective thresholds. Advantages

of a regression tree include invariance to monotonic transformation of predictors, flexible

approximation to potentially severe nonlinearities, and the capacity to approximate L − 1

way interactions for a tree with depth L.

To overcome potential overfitting, ensemble methods can be used to combine predictions
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from many trees into a single prediction. Random forest is such a ensemble regularizer

based on Breiman’s bootstrap aggregation (Breiman, 2001), or “bagging,” which averages

over multiple predictions obtained from trees grown from multiple bootstrap samples hence

stabilizing the overall prediction. Random forest is a variation of bagging designed to further

reduce the correlation among trees grown using different bootstrap samples by “dropout”

which considers only a randomly drawn subset of predictors for splitting at each potential

branch. Such a strategy ensures that early branches for some trees will not always split

on predictors that offer the most gain in prediction accuracy. This reduces the correlation

among predictions by multiple trees to further improve the variance reduction relative to the

standard bagging along with reduced computational cost.

Among the many variants of random forest, we are particularly interested in random forests

for longitudinal data, as recurrent event analysis uses data obtained from subjects over time.

Adler et al. (2011) proposed an algorithm for tree-based ensemble methods that takes into

consideration the dependence structure inherent in longitudinal data analysis. We provide a

primer on this specific variation of random forest.

Let (Yi(t), Zi(t)) be a pair of a continuous outcome and a set of p-dimensional covariates,

measured at time t ∈ Ti for i = 1, 2, ..., n; here we use Ti’s introduced in Section 2 with shared

measurement timings to align more closely with our construction in Section 4, although

the algorithm presented herein is applicable to scenarios with subject-specific measurement

timings. In Section 4, we will substitute Yi(t) here with a longitudinal outcome (Ŝτ
i (t)) that

is constructed based on pseudo-observation technique to overcome censoring. Also note that

the Zi(t) may include time t. The following algorithm assumes Yi(t) = g{Zi(t)} + ǫi(t)

with E[ǫi(t)] = 0 and is designed to estimate g(·) which describes a potentially complex

relationship between the outcome and the predictors.

For b = 1, . . . , B, we repeat Step 1 and 2 below (B = 500 is used in this manuscript):
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Step 1 (Bootstrap): Generate a bootstrap sample {(Yi(t),Zi(t)), (i, t) ∈ Bootstrap(b)} from the

original data set, where Bootstrap(b) is the b-th bootstrap sample; Bootstrap(b) is obtained

by first sampling n subjects with replacement, followed by drawing a random check-in time

point t ∈ {t0, t1, ..., tmi
} for each bootstrapped subject i (Adler et al., 2011). This data

from follow-up times selected from individuals in Bootstrap(b) is called “bagged”, and

data not in the sample is called “out-of-bag.”

Step 2 (Grow a tree): Initialize the tree stump by grouping all observations together.

2a. (Form split variables) At a potential branching, randomly select m predictors from the

p predictors with m ≪ p; in this paper we use the default choice of m =
√
p which

works well in our simulation and data analysis. Let the randomly selected predictors

be {Zi,s1(t), . . . , Zi,sm(t)} at a particular potential branching for bagged observation

(i, t) where (s1, . . . , sm) are the indices for the subset of m predictors. For ease of

presentation, we denote it by W = (W1, . . . ,Wm). For a continuous or categorical

observed covariate Wk, construct a grid of all observed values of the covariate, W̃k =

{wkl, l = 1, . . . , Lk}. Consider all possible thresholds in W̃k and their corresponding

indicators, {I(Zi,sk(t) < wkl), (i, t) ∈ Bootstrap(b), wkl ∈ W̃k} for the a subject i at

check-in time t in the bootstrap sample Boostrap(b). These derived indicator functions

for continuous and categorical covariates, along with covariates in W that were already

binary, are “potential split variables”.

2b. (Choose branching): Choosing a covariate among W and the split value wkl will result

in two daughter nodes, {Nwkl,1, Nwkl,0}. Criteria for selecting the best variable and split

vary by outcome type and metric of prediction accuracy. For continuous outcomes,

the split with minimal sum of squared errors (SSE), is selected, though for other re-

sponses types, loss functions such as the Gini Index may be selected. For any particular

node split under consideration using covariate w, that partitions individuals into two



8

groups ({Nw,0, Nw,1}) of sizes nw,0 and nw,1, we minimize the criterion SSE(w) =

∑
c=0,1

∑nw,c

q=1 (Yq − Yc)
2, where Yc =

1
nw,c

∑nw,c

q=1 Yq,c = 0, 1.

2c. (Stopping criteria and prediction from the grown tree) Repeat Step 2a and 2b until one

of the following hyperparameters has been met: minimum node size (min{nw,c, c = 0, 1})

is set to 40 in this paper) is reached, or SSE(w) does not decrease any further with more

branches. This results in a single binary decision tree. For each terminal node (“leaf”)

of the tree C, predict Yi(t) by the average of the outcome for observations in leaf C. Let

the prediction be Ŷb(Zi(t); θ̂b), where θ̂b is the collection of terminal node predictions

in the b-th tree.

Step 3 (Ensemble prediction by random forest): The final prediction for an individual i′ with

covariates Zi′(t) is given by the average of all the outputs from B binary decision trees

above: Ŷi′(t) =
1
B

∑B

b=1 Ŷb(Zi′(t); θ̂b).

Remark 1: The two-stage bootstrapping scheme has a few statistical and computational

advantages compared to a scheme that uses all observations within a bootstrapped subject:

1) it samples one observation per subject which makes it likely that different trees are trained

by different measures within a subject, although the same subject might be selected; this

further reduced the similarity between the fitted trees (Hu and Szymczak, 2023); 2) it makes

the algorithm applicable to subjects with different numbers of measures while ensuring that

covariates measured on individuals with longer follow-up time do not overpower those who

have shorter follow-up periods (Adler et al., 2011).

Permutation tests are applied to the out-of-bag sample to generate p-values assessing sta-

tistical significance for predictors used within the random forest algorithm while controlling

for the remaining predictors. Each variable, W , is selected and the values of W in the

out-of-bag sample are permuted d times, to obtain Ws, s = 1, 2, ...d. This breaks their

association with Y (t). The out-of-bag samples corresponding to both Ws and W are then
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passed through the forest to obtain new predictions, PW ,s and PW respectively. Exploiting the

fact that
1
d

∑d

s=1(PW − PW ,s)

σW ,W

has an asymptotically standard normal distribution, one can

then obtain aWald-type test of variable significance (σW ,W is estimated from the permutation

distribution of prediction errors).

Random forests for survival data can be evaluated using Harrell’s C-statistic (also called

“C-index”), a non-parametric measure of concordance (Harrell et al., 1982). Briefly, the C-

statistic compares the predicted risk scores or fit values for any two observations with the

actual time-to-event for those two observations. The proportion of observations that are

correctly ordered is reported as the C-index. Any model which perfectly orders patients

based on some risk score has a C-index of 1, while a model with no predictive power has

C-index equal to 0.50.

In the next section we review pseudo-observation methodology that can convert the cen-

sored longitudinal data developed in Section 2 into a version that can be used with the above

algorithm.

4. Construction of Pseudo-Observations

Pseudo-observations are a variation of jack-knife methodology applicable to censored time-

to-event outcomes (Andersen et al., 2003). This technical device has been used successfully

for a single time-to-event and recurrent events in manuscripts such as: Andrei and Murray

(2007); Hengelbrock et al. (2016); Xia et al. (2020); Zhao et al. (2020). Essentially a pseudo-

observation of a censored outcome, once created, can be used in regression contexts as if it was

an uncensored outcome. In this section, we will first describe the mechanics of how to create

a pseudo-observation for each potentially censored time-to-first event in a follow-up window

of length τ starting at t. We will then briefly describe properties of pseudo-observations in

the context of the random forest described in Section 3.

In this manuscript, our parameter of interest is survival probability, but we recognize that
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pseudo-observation is a technique that can be applied to other targets, including τ -restricted

mean survival time and hazard estimation. To construct pseudo-observations to be used with

our random forest algorithm, we return to the censored longitudinal data structure described

in Section 2. We calculate two estimates of the probability of recurrent-event-free in a follow-

up window of length τ beginning at check-in time t: P̂ (Xi(t) > τ) and P̂ (−i)(Xi(t) > τ)

via the Kaplan-Meier estimator without conditioning on any covariate information for an

individual i = 1, 2, ..., n(t) at risk at time t, where P̂ (−i)(Xi(t) > τ) is estimated excluding

individual i. The pseudo-observation for individual i at time t is defined by:

Ŝτ
i (t) = n(t)P̂ (Xi(t) > τ)− (n(t)− 1)P̂ (−i)(Xi(t) > τ).

To gain intuition behind the use of pseudo-observations, consider the simplest case where

there is no censoring. Then, algebraically, P̂ (Ti(t) > τ) =
∑n(t)

j=1 I(Tj(t)>τ)

n(t)
and P̂ (−i)(Ti(t) >

τ) =
∑n(t)

j 6=i,j=1 I(Tj(t)>τ)

n(t)−1
. Here Ŝτ

i (t) reduces to I(Ti(t) > τ), so that E[Ŝτ
i (t) | Zi(t)] =

E[I(Ti(t) > τ)|Zi(t)] = P (Ti(t) > τ |Zi(t)). This property is approximately held when we

use Kaplan-Meier estimates for P̂ (Ti(t) > τ) and P̂ (−i)(Ti(t) > τ) in the independent right-

censored case. Andersen et al. (2003) argued that this property enables consistent estimation

by directly regressing the pseudo-observations upon covariates. When pseudo-observations

of probability of time-to-first-recurrent-events are applied to random forests in Section 3 for

prediction, we call the algorithm “RFRE.PO” (short for “Random Forest for Recurrent Events

based on Pseudo-Observations”).

5. Simulation Study

In this section, we demonstrate the ability of RFRE.PO to predict P (Ti(t) > τ | Zi(t)) in

a scenario where the true relationship between Zi(t) and I(Ti(t) > τ) is many times more

complicated than a modeler who tends to depend on main effect terms would anticipate. In

this section we first describe Model A, the ad hoc nonlinear Xia, Murray and Tayob (XMT)
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model (Xia et al., 2020) that perfectly reflects the relationship between Zi(t) and Ti(t); and

the XMT model that only uses main effect terms for the Zi(t) in its regression model (Model

B). We will then describe details of how data were simulated for our study.

An interesting question arises when considering the covariates used in modeling. We

intended to incorporate subject-specific event-history in some form as a covariate and initially

worked under the assumption that this covariate would be available even for the first follow-

up window. In settings with correlated outcomes, one would expect this to be an important

term in a model, and yet many studies do not have such a history variable available as a

covariate in the first follow-up window. Hence for each modeling strategy (RFRE.PO, Model

A, Model B), we consider availability of three derived historical variable types: (1) none,

where there is no history covariate available (2) full, where the history covariate is available

for each individual i in each follow-up window starting at t ∈ Ti or (3) partial, where the

history covariate is only recorded for windows beginning at t > t0.

The true relationship between recurrent events (Ti,1 < Ti,2 < . . .) and patient characteris-

tics (continuous covariates Z1, Z2, Z4, and categorical covariates Z3, Z5, Z6, Z7) is designed to

be intentionally complex. We generate the recurrent events by simulating and transforming

possibly dependent gap-times by Gaussian copula. The recurrent event gap-times marginally

follow an exponential distribution with hazard:

λi = exp{Zi2 sin(Zi1/Zi6)− Zi3I(Zi2 > 2) + Zi3I(Zi2 6 2) + Zi1Zi6 + Z2
i2Zi4}.

We simulate Z1 ∼ N(0, 5), Z2 ∼ N(2, 0.8), Z3 + 2 ∼ Poisson(4), Z4 − 0.1 ∼ Beta(7, 1),

Z5 ∈ {0, 1, 2} with probability
(
2
3
, 1
6
, 1
6

)
, Z6 ∈ {−5,−2, 2, 3} with probability

(
1
10
, 1
3
, 11
30
, 1
5

)
,

and Z7 ∈ {0, 1, 2, 3} with equal probability. Individuals with simulated hazards outside of the

range of 8
15

and 15 years are removed from the sample and replaced. We induce correlation

among exponentially distributed gap times for each subject i by utilizing the Gaussian copula

method as described by Xia et al. (2020), for ρ = 0, 0.3, 0.6 or 0.9. The resultant recurrent
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event times are converted to a censored longitudinal data format as described in Section

2. Censoring is independently generated from an exponential distribution so that 0%, 23%,

45%, or 63% of observations are censored before the end of the study.

The censored longitudinal data structure assumes T = {0, 1
12
, 1
6
, ...2 years}, and τ = 1

6
year.

The XMT model estimates logit{E(Sτ
i (t))} assuming the relationship logit{E(Sτ

i (t))} =

β⊤
Z

∗
i (t). For Model A, the ad hoc nonlinear model,Z∗

i (t) = {Zi2 sin(Zi1/Zi6), (−1)I(Zi2>2)Zi3,

Zi1Zi6, Z
2
i2Zi4}⊤. Note that in Xia et al. (2020), the XMT model was for modeling the

restricted mean rather than Ŝτ
i (t); however, their methods extend easily to our case so we

keep the same name of “XMT”. Model B (the main effects XMT model) has covariate

vector Z
∗
i (t) = {Zi1, Zi2, Zi3, Zi4, Zi5, Zi6, Zi7}⊤. A derived historical covariate, not

already included in Model A will be added to augmented Zi(t) in the full and partial

scenarios, Hf,i(t) and Hp,i(t) respectively. At a particular window start time tk, Hf,i(tk) =
∑

t∈T +
i,t<tk

min{Xi(t),
1
12

years}
∑

t∈T
+
i

I(t<tk)
, and Hp,i(tk) =

∑
t∈Ti,t0<t<tk

min{Xi(t),
1
12

years}+Ĥp,i(t0)∑
t∈T

+
i

I(t<tk)
, where T +

i =

{t0 − 1
12

years} ∪ Ti, Ĥp,i(t0) = min (X̃i(t0),
1
12

years). X̃i(t0) is multiply imputed from an

approximate Exponential(7.5) distribution, consistent with clinician knowledge of recurrent

event rates in the population. Hence results from partial scenarios will be combined across

10 imputed data sets in the partial history setting.

For each of the models described above, as well as RFRE.PO, Table 1 lists the mean and

empirical standard deviation of the index of concordance of the algorithms discussed and

Figure 2 shows the distribution of the index of concordance of the algorithms discussed.

Increasing levels of correlation between recurrent event times are listed from left to right. As

one moves down the table and figure, censoring levels increase.

For all levels of censoring, correlation and historical covariate use, excluding the highest

correlation level with historical covariate use, Model A (the ad hoc nonlinear XMT model)

has the best C-index with varying degrees of superiority to Model B (the main effects XMT
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model) and RFRE.PO method. The RFRE.PO approach outperforms Model B in all settings,

except high correlation with use of covariate history, in which Model B competes with both

RFRE.PO and Model A. This suggests that in highly correlated settings, patient history is

more important than baseline covariate information.

In the absence of correlation, use of Hp(t) in Model B weakens predictive performance,

whereas predictive performance is similar for the Model B with Hf (t) versus without use of

Hf (t). The RFRE.PO procedure is able to make large gains in predictive ability from use of

Hp(t) and Hf (t) in the same case with no correlation. Generally, use of Hf (t) gives superior

predictive performance to use of Hp(t) in settings with correlation between recurrent event

times. Our summary of the RFRE.PO results is that any use of covariate history in settings

with and without correlated recurrent event outcomes is quite important and assists in

recovering information from the data as censoring increases.

[Table 1 about here.]

[Figure 2 about here.]

6. Prediction of COPD Exacerbations

Chronic obstructive pulmonary disease (COPD) is most often attributed to a smoking

history, although cases may also be caused by breathing polluted air such as biomass fuel

or industrial chemicals (Safiri et al., 2022). COPD is characterized by periods of relative

stability punctuated with episodic exacerbations of coughing, struggling for breath, and/or

wheezing. Exacerbations may or may not result in hospitalization, in which case they are

called “severe.” Such exacerbations increase overall disease progression, eventually leading

to lung transplantation or death (Seemungal et al., 1998; Donaldson et al., 2002). Therefore,

it is of clinical interest to dynamically predict the chances of being exacerbation-free over

time.
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We apply RFRE.PO to predict the probability of remaining exacerbation-free over a sub-

sequent τ = 180 day follow-up period, using data from Azithromycin for the Prevention of

COPD (Albert et al., 2011). Azithromycin for the Prevention of COPD was a multi-center

clinical trial, aiming to estimate the treatment effect 250mg of oral azithromycin had on

reducing exacerbations in COPD patients. Our example is applied to study participants

(n = 1035) who have complete baseline data, as well as longitudinal sleep study variables.

Recurrent exacerbations were monitored over the following year. There are 962 covariates

measured, including demographic variables, social well-being surveys, sleep quality metrics

and clinical characteristics such as FVC, and medication use. There is strong correlation

between variables as some are derived from each other, making RFRE.PO an attractive

alternative to model-based predictions (see Supplemental Figure S1). Censored longitudinal

data is constructed with T = {0, 30, 60, ..., 180} and used for all analyses shown in this

section.

Baseline information on the time since the most recent exacerbation was not available.

Hence in this study we are in a scenario similar to the partial history scenario in Section

5. In this example, we create two partial history variables, Hp1(t) and Hp2(t). Hp1(t) was

assumed to take a categorical form based on whether the participant had an exacerbation

in the past zero to 30 days, 31-92 days, 93-182 days, 183 days to 365 days, or finally, if that

time was more than 365 days or never. Hp2(t) is 100 times the estimated 30-day event rate

using all follow-up prior to time t (so as to provide point estimates on a reasonable scale).

For the first Hp1(0) and Hp2(0), multiple imputation was based on event rates in the placebo

group for all participants, and Rubin’s rule (Rubin, 1987) was used to combine inference

across multiply imputed datasets as appropriate.

For comparison purposes, we present RFRE.PO results alongside results from two XMT

models, where XMT models are fit via the geese command from the geepack library in R.
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The first XMT model (Model 1) uses the same predictors identified in Xia et al. (2020) for

this cohort, where these predictors were based on clinical judgement for estimating treatment

effect, adjusted for known confounders. The second XMT model (Model 2) is based on Wald

forward selection applied to the first multiply imputed data set with p < 0.05 required

for entry; covariates that introduce model instability are discarded from consideration.

Prediction algorithms for RFRE.PO and Model 2 were applied to a training cohort (70% of

original cohort) and all algorithms were evaluated via the C-statistic in a validation cohort

(remaining 30% of original cohort). For any particular multiply imputed validation dataset,

standard errors of the C-statistic are calculated via the bootstrap with b = 100 bootstrap

samples. C-statistics for models involving multiply imputed history variables are combined

across multiply imputed datasets using Rubin’s rule. Parameter estimates and standard

errors for Model 2, which involves the imputed partial history covariates, are combined across

multiply imputed validation datasets via Rubin’s Rule. Permutation tests associated with

the RFRE.PO algorithm predictors are calculated within the training dataset, using out-of-bag

samples as described in Section 3.

For Model 1, where estimation of treatment effect, and not necessarily prediction was the

goal, predictors that were identified as important in Xia et al. (2020) were baseline forced

expiratory volume in liters (FEV), age in decades (Age10), gender (0 for female, 1 for male),

and smoking status at baseline (Smoker):

logit{E(Sτ
i (t))} =β0 + β1I(Treatment)i + β2(Baseline FEV)i+

β3(Age10)i + β4I(Male)i + β5I(Smoker)i,

where parameter estimates are displayed in Supplemental Table S1.
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Model 2, the Wald forward selection model, is:

logit{E(Sτ
i (t))} = β0 + β1I(Hp1 = Exacerbation in 0 -30 days prior to time t)i+

β2I(Bronchiectasis diagnosis before time t)i + β3I(Male gender)i+

β4I(Azithromycin group)i + β5I(Non-selective beta-blocker use at time t)i+

β6I(Mixed beta-blocker use at time t)i + β7(FEV1/FVC % predicted at time t)i+

β8(SGRQ symptoms at time t)i + β9I(Supplemental oxygen use at time t)i+

β10I(Hospitalization one year before study start)i + β11Hp2(t)i+

β12I(Inhaled corticosteroid and long-acting muscarinic antagonist use at time t)i+

β13I(Inhaled corticosteroid and long-acting beta-agonist use at time t)i,

with parameter estimates displayed in Supplemental Table S2.

For the RFRE.PO algorithm, Supplemental Table S3 displays the corresponding p-values

of the permutation tests, combined across multiply imputed datasets via Rubin’s rule.

Predictors in Supplemental Table S3 had a statistically significant permutation test z-score

for at least one of the multiply imputed training datasets. Additional predictors that did

not achieve statistical significance via the permutation test, but were used in the RFRE.PO

algorithm in some form, are not shown.

Figure 3 displays the Z-scores for predictors included in Models 1 and 2 (validation

dataset) or Table S3 (out-of-bag samples from training dataset). As seen in Section 5,

history variables were among the most important variables in the RFRE.PO approaches as

well as the XMT model selected through Wald Z-score forward selection. While there is

overlap between predictors included in the various algorithms, in terms of the C-statistic

evaluated in the validation cohort, the RFRE.PO algorithm outperformed both the algorithm

based on clinical input (Model 1) and the Wald forward selection model (Model 2) (C-

statistic 0.616 compared to 0.565 and 0.550, respectively, see Table 2). A large number of
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variables that were included in the random forest algorithm had statistical significance at

the level of 0.05 via the permutation test in at least one of the multiply imputed datasets

(see Figure 3 for the z-statistic and p-values in Supplemental Table S3 for the predictors

deemed important). Statistically significant variables from Model 1 are similarly listed as

important RFRE.PO predictors. Variables identified via Wald forward selection in Model 2

are for the most part identified as important variables in the RFRE.PO algorithm. The version

of the predictors may vary between these two approaches. For example, variables related to

the long-acting muscarinic or bronchodilator, and/or steroid treatment are incorporated in

different forms into these models. Similarly, different heart medications are featured in Model

2 (beta-blockers) versus the RFRE.PO algorithm (anti-coagulants). The RFRE.PO algorithm

highlights a few variables that were not used in Model 2, including pain level at time t and

leukocytosis present at time t. The RFRE.PO algorithm has no problem including information

from correlated predictors; for instance two included variables measure pain (pain level at

time t, standardized pain level at time t) and two included variables measure general health

(general health score at time t standardized general health score at time t).

The C-statistic corresponding to Model 1, which benefits from prior clinical knowledge of

the causal pathway, validated well. The RFRE.PO random forest algorithm includes predictors,

with corresponding split decisions, that minimize squared error of the predictions relative

to the observed data. This results in predictor information that is included without rigorous

checks for statistical significance, so validation in an independent data set is quite important

when using this type of algorithm. Because Model 2 requires statistical significance of all

included predictors, its individual predictors already have some theoretical validity built into

the selection mechanism. However, with variable power to detect statistical significance of

useful predictors, the comparisons with methods that do not require statistical significance

will leave Model 2-style strategies at a disadvantage.
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The RFRE.PO algorithm is completely agnostic to statistical significance and scientific

experience, so long as the squared error within nodes along cut-points decreases. And

although it may occasionally include a predictor that is not useful in the validation set (Type

I Error analog), it has a much better chance of including predictors that are useful but would

not have met statistical significance (akin to a Type II error) in traditional statistical model

building environments. If the scientific goal of analysis is prediction, the RFRE.PO approach

seems remarkably simple, effective, and reproducible.

[Table 2 about here.]

[Figure 3 about here.]

7. Discussion

In this paper we presented a novel method for dynamically estimating probability of event-

free survival during different follow-up windows. Using RFRE.PO, we showed the utility of our

method in simulation, comparing its performance to traditional longitudinal model fits with

an XMTmodel. In all instances, except for the most highly correlated, RFRE.PO outperformed

the main effects XMT model that a traditional modeler might first attempt to fit. In instances

of high correlation, RFRE.PO and the main effects model competed with the ad hoc nonlinear

XMT model- that is, the perfect model that exactly reflected how the data were simulated.

An attractive feature of random forest applied to longitudinal follow-up windows is that a

split based on the follow-up window times can occur and predictors that are more helpful in

later follow up times can emerge naturally in importance. We explored recent history prior

to the beginning of each follow-up window as a covariate in the algorithm, and found that

it was one of the most useful predictors in settings with high correlation between recurrent

events.

It is always important when introducing a new piece of methodology to clearly identify
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research questions that it can and cannot address. Random forest technology in general is

aimed towards prediction, and for RFRE.PO, predicting the probability of remaining event-

free during subsequent follow-up windows after patient check-ins. In this case, all available

predictors that the treating clinician can access are valid and important to use. There is

no goal, per sé, of establishing which predictors are statistically significant or have causal

relationships with the outcomes. It is likely that some, if not most, of the predictors with high

variable importance scores have these features, but metrics assessing statistical significance

and causality are not necessarily valid for these algorithms.

In contrast, models such as the XMT model for recurrent event outcomes often have the

goal of measuring the impact of a particular predictor or set of predictors on the outcome

via an effect size, confidence interval and p-value. In the Azithromycin for Prevention of

COPD cohort, the azithromycin effect was the key research question, requiring a measure

of statistical significance as part of the drug approval process. Some predictors that would

be very helpful in prediction are not allowed in these models assessing treatment effect. For

instance, it is well-known that one should not include updates to patient characteristics after

treatment has been initiated if these characteristics could have been improved by treatment;

doing so would adjust away part of the treatment effect under study. Similarly, clinical

trial analyses often require careful adjustment for confounders. If the goal is prediction and

not assessment of treatment effect, these same confounders might not be included in the

algorithm and in fact may not be helpful relative to other available predictors.

The ability of flexible algorithms like RFRE.PO to sift through large numbers of correlated

predictors with complicated relationships to outcomes is an argument for their use over

traditional reliance on models such as the XMT model. The growing popularity of machine

learning tools is likely to dominate analyses of high-dimensional data, and the RFRE.PO
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algorithm contributes to this literature as one of the first machine learning methods to be

able to make dynamic predictions from recurrent event data.
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Figure 1. Visualization of recurrent events in both traditional format (black) and censored
longitudinal format (blue). Start times of follow-up windows (T = {0, 60, 120, 180 days},
with a = 60) are highlighted by vertical dashed lines. Traditional observed recurrent
event data for individuals i = 1, 2, 3 are

{
{X∗

1,1 = 80, δ1,1 = 1}, {X∗
2,1 = 125, δ2,1 =

0}, {X∗
3,1 = 48, δ1,1 = 1}, {X∗

3,2 = 62, δ1,2 = 1}, {X∗
3,3 = 75, δ1,3 = 1}, {X∗

3,4 = 147, δ1,4 =

1}, {X∗
3,5 = 240, δ1,5 = 0}

}
. For these same individuals, the observed censored longitudinal

data visualized here is
{
{X1(0) = 80, δ1(0) = 1}, {X1(60) = 20, δ1(60) = 1}, {X1(120) =

83, δ1(120) = 1}, {X1(180) = 23, δ1(180) = 1},
{
{X2(0) = 125, δ2(0) = 0}, {X2(60) =

65, δ2(60) = 0}, {X2(120) = 5, δ2(120) = 0},
{
{X3(0) = 48, δ3(0) = 1}, {X3(60) = 2, δ3(60) =

1}, {X3(120) = 27, δ3(120) = 1}, {X3(180) = 60, δ3(180) = 0}
}
. All participants were

administratively censored after 8 months (240 days). Participant 2 has no recorded events
before C2. Additionally, while X∗

33 is technically observed, it is not included in the censored
longitudinal data set because it is the second observation in the window, and there is no t
such that Xi(t) = X∗

33. Besides potential correlation between separate event times seen in the
same individual, this data structure induces correlation due to the same event contributing to
the final censored longitudinal values in more than one follow-up window. For example, X∗

12

produces two measures in the longitudinal data structure, X1(120) = 83 and X1(180) = 23.
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Figure 2. A violin plot of the distributions of the C-statistic of the models under consid-
eration in simulation. Measures of center and spread can be found in Table 1. Within a box,
historical covariate information increases from left to right. For partial history information,
the distribution for the average C-statistic from m = 10 imputed data sets is displayed.
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Figure 3. Wald Statistic Z-scores derived from the validation set for predictors that were
included in Models 1 (XMT Xia, Murray, Tayob 2020 Model) and 2 (XMT Wald Forward
Selection) after adjusting for multiple imputation using Rubin’s Rule, where appropriate, and
permutation test Z-scores derived from out-of-bag samples as part of the RFRE.PO algorithm,
adjusting for multiple imputation using Rubin’s Rule where appropriate. For the RFRE.PO

method, 100 permutations were used in calculating the permutation Z-scores. Note that some
Wald forward selection variables lost significance as additional terms were added.
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Table 1

Simulated C-statistics listed as Mean (ESD) for varying prediction algorithms, censoring percentages (none is 0%,
light is 23%, moderate is 45%, and heavy is 63%), and gap-time correlations (ρ = 0, 0.3, 0.6, 0.9). 300 replicates

were performed with n = 500 for each replicate.

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
No Censoring

Model A 0.677 (0.006) 0.672 (0.007) 0.664 (0.008) 0.651 (0.010)
RFRE.PO 0.598 (0.014) 0.589 (0.015) 0.576 (0.016) 0.558 (0.016)
Model B 0.530 (0.007) 0.531 (0.009) 0.531 (0.010) 0.529 (0.011)
Model A with Hp(t) 0.675 (0.006) 0.674 (0.007) 0.684 (0.007) 0.710 (0.007)
RFRE.PO with Hp(t) 0.629 (0.007) 0.651 (0.007) 0.683 (0.008) 0.710 (0.008)
Model B with Hp(t) 0.489 (0.023) 0.582 (0.019) 0.666 (0.011) 0.724 (0.009)
Model A with Hf (t) 0.676 (0.006) 0.677 (0.006) 0.691 (0.011) 0.712 (0.010)
RFRE.PO with Hf (t) 0.634 (0.008) 0.658 (0.007) 0.686 (0.009) 0.710 (0.007)
Model B with Hf (t) 0.519 (0.035) 0.645 (0.035) 0.685 (0.017) 0.731 (0.010)

Light Censoring
Model A 0.676 (0.006) 0.672 (0.008) 0.665 (0.009) 0.650 (0.011)
RFRE.PO 0.594 (0.014) 0.585 (0.014) 0.574 (0.016) 0.557 (0.016)
Model B 0.530 (0.009) 0.531 (0.009) 0.532 (0.010) 0.530 (0.011)
Model A with Hp(t) 0.676 (0.007) 0.673 (0.008) 0.681 (0.007) 0.704 (0.008)
RFRE.PO with Hp(t) 0.628 (0.008) 0.649 (0.008) 0.680 (0.006) 0.707 (0.007)
Model B with Hp(t) 0.491 (0.025) 0.574 (0.019) 0.659 (0.013) 0.717 (0.011)
Model A with Hf (t) 0.675 (0.006) 0.677 (0.007) 0.689 (0.010) 0.705 (0.010)
RFRE.PO with Hf (t) 0.631 (0.008) 0.655 (0.008) 0.684 (0.008) 0.707 (0.008)
Model B with Hf (t) 0.523 (0.037) 0.642 (0.017) 0.680 (0.019) 0.724 (0.011)

Moderate Censoring
Model A 0.676 (0.007) 0.672 (0.007) 0.664 (0.009) 0.649 (0.012)
RFRE.PO 0.591 (0.014) 0.584 (0.015) 0.570 (0.015) 0.555 (0.017)
Model B 0.531 (0.009) 0.532 (0.010) 0.531 (0.010) 0.530 (0.012)
Model A with Hp(t) 0.675 (0.007) 0.672 (0.008) 0.679 (0.008) 0.701 (0.008)
RFRE.PO with Hp(t) 0.623 (0.009) 0.644 (0.008) 0.676 (0.007) 0.705 (0.007)
Model B with Hp(t) 0.492 (0.023) 0.565 (0.021) 0.649 (0.015) 0.712 (0.012)
Model A with Hf (t) 0.675 (0.007) 0.676 (0.007) 0.686 (0.011) 0.700 (0.011)
RFRE.PO with Hf (t) 0.629 (0.009) 0.653 (0.008) 0.680 (0.009) 0.704 (0.008)
Model B with Hf (t) 0.528 (0.034) 0.639 (0.016) 0.674 (0.021) 0.718 (0.012)

Heavy Censoring
Model A 0.676 (0.007) 0.672 (0.009) 0.664 (0.010) 0.649 (0.011)
RFRE.PO 0.586 (0.017) 0.577 (0.016) 0.568 (0.018) 0.551 (0.017)
Model B 0.532 (0.009) 0.532 (0.009) 0.533 (0.012) 0.530 (0.012)
Model A with Hp(t) 0.674 (0.007) 0.672 (0.009) 0.676 (0.009) 0.695 (0.009)
RFRE.PO with Hp(t) 0.618 (0.010) 0.640 (0.009) 0.671 (0.008) 0.700 (0.007)
Model B with Hp(t) 0.492 (0.025) 0.554 (0.022) 0.640 (0.016) 0.703 (0.013)
Model A with Hf (t) 0.675 (0.007) 0.675 (0.008) 0.684 (0.011) 0.695 (0.012)
RFRE.PO with Hf (t) 0.625 (0.010) 0.650 (0.009) 0.676 (0.009) 0.700 (0.009)
Model B with Hf (t) 0.531 (0.032) 0.636 (0.016) 0.668 (0.024) 0.711 (0.014)
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Table 2

Comparison of the C-statistics of models fit to the validation set of the Azithromycin in the Prevention of COPD
cohort. Models 1 and 2 are fit using the XMT approach. Model 1 is the model selected using clinician input from Xia
et al. (2020). Model 2 includes predictors through automated forward selection requiring p < 0.05 for entry into the
model. Missing values in Model 2 and RFRE.PO for time since most recent exacerbation are multiply imputed using
the coding scheme described in Section 6. RFRE.PO processes our random forest approach using the same predictors
considered in Model 2. C-statistic estimates and standard errors for all methods and models are averaged across
results from multiply imputed data with Rubin’s rule applied to bootstrapped (b = 100) C-statistic standard errors.

Model Name
C-Statistic

Mean Standard Error

RFRE.PO 0.616 0.009
Model 1 0.565 0.009
Model 2 0.550 0.010


