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Question for Today

I “Game of Thrones: Who is the protagonist?” (Beveridge and
Shan 2016, Math Horizons)

I “Why are my friends more popular than me?” (application to
early detection of contagious outbreaks: Christakis and Fowler,
2010, PLoS One)



Outline

I Examples and Notations
I Why study networks?

I Network topology
I Observations sampled from networks

I What are the common quantitative methods? (not much
today)

I References



Examples

I One of many classifications:
I Social networks (e.g., Twitter, Facebook, WeChat; Friend

formation)
I Information networks (e.g., World Wide Web)
I Biological networks (e.g., gene-gene interaction network, human

brain functional connnection network, disease transmission in a
network)

I Trade network between companies/countries
I . . .



Examples of Networks



Part I: Network of Thrones (Beveridge and Shan, 2016)



Part I: Network of Thrones (Beveridge and Shan, 2016)



Game of Thrones Social Network

I The third book: A Storm of Swords
I 107 characters: ladies, lords, guards, mercenaries, concilmen,

consorts, villagers and savages
I Parsed the ebook, assign an edge if two characters appeared

within 15 words of one another
I 353 integer-weighted edges: higher weights for stronger

relationships (weight = # of co-appearence within 15 words)
I Edge does not necessarily mean friendship; Instead, interaction

or were mentioned together.



Questions

I Community detection: What are the communities?
(Lannisters and King’s Landing, Robb’s army, Bran and friends,
Arya and companions, Jon Snow and the far North, Stannis’s
forces, and Daerenys and the exotic people of Essos)

I Protagonist?



Network Examples

# Need library(igraph);
# library(igraphdata) An undirected graph
# with 3 edges:
g1 <- graph(edges = c(1, 2, 2, 3, 3, 1),

n = 3, directed = F)
plot(g1, vertex.size = 30)
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Network Examples
# now with 10 vertices, and directed by
# default
g2 <- graph(edges = c(1, 2, 2, 3, 3, 1),

n = 10)
plot(g2, vertex.size = 20, edge.arrow.size = 0.5)
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Network Examples (Star Graph)
# Star graph
st <- make_star(40)
plot(st, vertex.size = 10, vertex.label = NA,

edge.arrow.size = 0.3)



Network Examples (Erdos-Renyi Model)
# Erdos-Renyi Random Graph Model with
# G(n,p) specification
erg <- sample_gnp(n = 100, p = 0.03)
plot(erg, vertex.size = 6, vertex.label = NA)



General Themes:

I Formulate mathematical models for observed network patterns
and phenomena

I Reason about the model’s broader implications about networks,
e.g., behavior, population-level dynamics, etc.

I Develop common analytic tools for network data obtained from
a variety of settings



Basics

I Network is a graph
I Graphs

I Mathematical models of network structure
I Graph: Vertices/Nodes+Edges/Ties/Links
I A way of specifying relationships among a collection of items



I Graph: Ordered pair G = (V ,E )
I V (G): vertex set; E (G): edge set
I The vertex pairs may be ordered or unordered, corresponding

to directed and undirected graphs
I Some vertex pairs are connected by an edge, some are not
I Two connected vertices are said to be (nearest) neighbors



I Two graphs G1 = (V1,E1) and G2 = (V2,E2) are equal if they
have equal vertex sets and equal edge sets, i.e., if V1 = V2 and
E1 = E2 (Note: equality of graph is defined in terms of equality
of sets)

I Two graph diagrams (visualizations) are equal if they represent
equal vertex sets and equal edge sets



I Edges, depending on context, can signify a variety of things
I Common interpretations

I Structural connections
I Interactions
I Relationships
I Dependencies

I Often more than one interpretation may be appropriate



I The degree of a node in a graph is the number of edges
connected to it

I We use di to denote the degree of node i
I M edges, then there are 2M ends of edges; Also the sum of

degrees of all the nodes in the graph:
∑

i di = 2M
I Nodes in directed graph have in-degree and out-degree



Link Density

I Consider an undirected network with N nodes
I How many edges can the network have at most?

I The number of ways of choosing 2 vertices out of N:
N(N − 1)/2

I A graph is fully connected if every possible edge is present



I Let M be the number of edges
I Link density: the fraction of edges present, and is denoted by
ρ

ρ = 2M
N(N − 1)

I Link density lies in [0, 1]
I Most real networks have very low ρ
I Dense network: ρ→ constant as N →∞
I Sparse network: ρ→ 0 as N →∞





Network Examples: Adjacency Matrix

g_adj <- graph(edges = c(1, 2, 2, 4, 4, 1,
3, 2), n = 3, directed = FALSE) # now with 4 vertices.

plot(g_adj, vertex.size = 20)

1

2

3

4



Network Examples: Adjacency Matrix
A <- get.adjacency(g_adj, sparse = FALSE)
print(A)

## [,1] [,2] [,3] [,4]
## [1,] 0 1 0 1
## [2,] 1 0 1 1
## [3,] 0 1 0 0
## [4,] 1 1 0 0

print(A %*% A)

## [,1] [,2] [,3] [,4]
## [1,] 2 1 1 1
## [2,] 1 3 0 1
## [3,] 1 0 1 1
## [4,] 1 1 1 2



The walks of length r are given by Ar ;

(Note: walks are different from paths; the former may have multiple
identical edges.)

I The shortest between i and j is the geodesic path
I How to find its length? (The smallest r such that [Ar ]i ,j > 0)



Community Detection

I Community: roughly speaking, a group of nodes that are more
densely connected to each other than to the rest of the network

I One common algorithm: maximizing modularity



Community Detection (continued)

I Modularity: compare our given network to a network with the
same degrees, but in which all edges are rewired at random.

I Global measure
I di =

∑
j∈V Aij

I Suppose i and j belong to community C
I Expected number of randomly rewired edges between i and j :

di
dj

2M , where M is the total # of edges
I Sum over all vertices in community C :

∑
i ,j∈C (Aij − di dj

2M );
Non-negative for a true community



Community Detection (continued) - Modularity:

I For a partition C1, . . . ,CL of the entire vertex set V = ∪`C`:

Q = 1
2M

L∑
`=1

∑
i ,j∈C`

[
Aij −

didj
2M

]

I Maximize Q over all possible partitions {C1, . . . ,CL} (Louvain
method; L need not be prespecified)

I Result: The King’s Landing community accounts for 37% of
the network. [Return to the GoT Network]



Zachary’s Karate Club data
data(karate)
# summary(karate)
plot(karate)
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# Actual factions: 1 led by 'Mr Hi', 2
# led by 'John A':
vertex_attr(karate, "Faction")

## [1] 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

table(vertex_attr(karate, "Faction"))

##
## 1 2
## 16 18



Zachary’s Karate Club data (continued)
# ?communities # check methods. Fast
# greedy modularity-based clustering
cfg <- cluster_fast_greedy(karate)
# specifying the number of clusters:
plot(structure(list(membership = cutat(cfg,

2)), class = "communities"), karate)
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# compare the clustering result and te
# true factions:
table(cutat(cfg, 2), vertex_attr(karate,

"Faction"))

##
## 1 2
## 1 16 0
## 2 0 18



Who’s the protagonist?



Six Concepts of “Centrality"

I Centrality: measures how central or important the nodes are
in the network

I Proposing new centrality measures and developing algorithms
to calculate them is an active field of research



Degree Centrality

I The number of edges incident with the given vertex
I Measures the number of connections to other characters



Weighted Degree Centrality

I The sum of the weight of the incident edges
I Measures the number of interactions



Eigenvector Centrality

I Gives more centrality to nodes whose neighbors are themselves
more central

I “It’s more important to be connected to influential neighbors
than isolated ones”

I Defined as the weighted sum of its neighboring nodes:
ci =

∑
j∈V Aijcj

I Equivalent to solving: Ac = κc



PageRank

I

yi = α
∑
j∈V

Aji
dj

yj + β

I β: inherent importance for each vertex
I Importance from neighbors are divided among its neighbors

(How is it different from Eigen-Centrality?)
I α+ β = 1, α, β ≥ 0
I Set β = 0.15; balance the node’s inherent importance and

influence from its neighbors



Closeness Centrality

I More global
I Average distance from the vertex to all other vertices
I Lower means greater importance
I Ii = 1

N
∑

j dij
I Usually in a small range
I highly sensitive to small changes in the network
I Infinite whenever a network has multiple components



Betweenness Centrality

I More global
I How frequently a vertex lies on the geodesic paths between

other pairs of vertices
I Let g i

st = 1{vertex i lies on a geodesic path from s to t}
I nst the number of geodesic paths from s to t
I ci =

∑
s,t

g i
st

nst

I “Broker of information”
I Has potential to be highly influential by inserting themselves

into the dealings of other parties
I “Jon Snow is uniquely positioned in the network, with

connections to highborn lords, the Night’s Watch militia, and
the savage wildlings beyond the Wall.”



Part II. “Why are my friends more popular than me?”

I “Most people have fewer friends than their friends have, on
average.”

I Also known as Friendship Paradox
I First observed by sociologist Scott Feld in 1991
I Caused by sampling bias: a popular person has an increased

likelihood of being your friend.
I Application to Early Detection of Contagious Outbreaks

(Christakis and Fowler, 2010)



Why?

I V : the set of vertices - people in the social network
I E : the set of edges - friendship relations among pairs of people

I Symmetry assumption: if A is a friend of B, then B is a friend
of A

I d(v): the number of edges connected to Vertex v , i.e., Person
v has d(v) friends

I The average number of friends of a random person?

I µ =
∑

v
# of friends of Person v
Total # of people = 2|E |

|V |



Why? (continued)

I The average number of friends of a random person?

I µ =
∑

v
# of friends of Person v
Total # of people = 2|E |

|V |

I The average number of friends of a random person’s friend?
I For each ordered friendship (u, v)
I Person u says v is his/her friend
I Person v has d(v) friends
I There are d(v) such (u, v) pairs (fix v , vary u)
I The total number of ordered friendships: 2|E |
I We get:

∑
v

d(v)2

2|E | = µ+ σ2/µ, where σ2 is the variance of
degrees {d(v) : v ∈ V }

I µ+ σ2/µ > µ, if σ2 > 0!



Early Detection of Contagious Outbreaks (C and F 2010)

I Friends of randomly selected individuals are likely to have
higher than average centrality

I Individuals near the center of a social network are likely to be
infected sooner during the course of an outbreak, on average,
than those at the periphery.

I Challenge: Unfortunately, mapping a whole network to identify
central individuals who might be monitored for infection is
typically very difficult.

I Solution: simply monitoring the friends of randomly selected
individuals.



Early Detection of Contagious Outbreaks (continued)

I Flu outbreak at Harvard College in late 2009 (Sep 1 - Dec 31)
I 744 students: either members of a group of randomly chosen

individuals or a group of their friends
I 319 random individuals from 6,650 Harvard undergrads
I 425 “friends”: named as a friend at least once by a member of

the above random sample

I University Health Services Records (Diagnosis by medical staff):
Sep 1 to Dec 31



Results of Early Detection

I Progression of epidemic in the friend group occurred 13.9 days
(95% CI 9.9,16.6) in advance of the randomly chosen group

I The friend group showed a significant lead time (p<0.05) on
day 16 of the epidemic, a full 46 days before the peak in daily
incidence in the population

I Implication: could be used to provide additional time to react
to epidemics under surveillance





Main Points Once Again

I “Game of Thrones: Who is the protagonist?” (centrality)
I “Why are my friends more popular than me?” (network driven

sampling bias; could be beneficial)



Did not discuss today

I Generate a random network:
1. Erdos-Renyi (E-R) model, or E-R random graph named after

Hungarian mathematicians; Also known as Poisson random
graph (degree distribution of the model follows a Poisson)

2. Barabasi-Albert model (preferential attachment)
3. Small-world model/Watts-Strogatz model (high transitiity;

small-world property)
4. Exponential Random Graph Models (ERGM)
5. Stochastic block models (community structure)
6. Latent space models



I Network Fundamentals
1. Basics: Chapter 6; Descriptors: Chapter 7-8; Models: Chapter

12-15, Newman (2010). [Networks: An Introduction. Oxford
University Press.]

I Social Networks:
1. Chapter 3, Newman book.
2. Hoff, Raftery and Handcock (2002). Latent Space Approaches

to Social Network Analysis. JASA.
I Social Influence (Peer-Effects; Contagion):

1. Christakis and Fowler (2007). The Spread of Obesity in a Large
Social Network over 32 Years. NEJM.

2. Responses to CF2007: Cohen-Cole and Fletcher (2008); Lyons
(2011); Shalizi and Thomas (2011); and More

3. O’Malley et al. (2014). Estimating Peer Effects in Longitudinal
Dyadic Data Using Instrumental Variables. Biometrics.

I Infectious Disease Dynamics
1. Chapter 21, Easley and Kleinberg (2010). [Networks, Crowds,

and Markets: Reasoning About a Highly Connected World.
Cambridge University Press.]

https://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651
https://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/


I Notes partially sourced from Betsy Ogburn and JP Onella


