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Lecture 3 Main Points Again

Representation of Directed Acyclic Graphs (DAG)

I Motivation: Need a system that can
I Clearly represent human knowledge about informational relevance
I Afford qualitative and robust reasoning

I Representation:
I Connect d-separation (graphical concept) to conditional

independence (probability concept)
I Directed edges (arrows) encode local dependencies

I Not every joint probability distribution has a DAG with exactly the
same set of conditional independencies (represented by the
d-separation triplets from the DAG).

I Reading (optional): Pearl and Verma (1987). The logic of
representing dependencies by directed acyclic graphs.
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Undirected Graphical Models

I DAGs using directed edges to guide the specification of components
in the joint probability distributions: [X1, . . . ,Xp] =

∏
j [Xj | PaGXj

]

(local Markov condition)

I Undirected graphical (UG) models also provide another system for
qualitatively representing vertex-dependencies, esp. when the
directionality of interactions are unclear; Gives correlations

I Also known as: Markov Random Field (MRF), or Markov network

I Rich applications in spatial statistics (spatial interactions), natural
language processing (word dependencies), network discoveries (e.g.,
neuron activation patterns, protein interaction networks),...
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UG Examples (Protein Networks and Game of Go)

Stern et al. (2004), Proceedings of

23rd ICML
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Undirected Graphical Models

I Pairwise non-causal
relationships

I Can readily write down the
model, but not obvious how to
generate samples from it
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Markov Properties on UG

A probability distribution P for a random vector X = (X1, . . . ,Xd) could
satisfy a range of different Markov properties with respect to a graph
G = (V ,E ), where V is the set of vertices, each corresponding to one of
{X1, . . . ,Xd}, and E is the set of edges.

I Global Markov Property: P satisfies the global Markov property
with respect to a graph G if for any disjoint vertex subsets A, B, and
C, such that C separates A and B, the random variables XA are
conditionally independent of XB given XC .

I Here, we say C separates A and B if every path from a node in A to
a node in B passes through a node in C .

I Local Markov Property: P satisfies the local Markov property with
respect to G if the conditional distribution of a variable given its
neighbors is independent of the remaining nodes.

I Pairwise Markov Property: P satisfies the pairwise markov
property with respect to G if for any pair of non-adjacent nodes,
s, t ∈ V , we have Xs ⊥ Xt | XV\{s,t}
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Separation
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Relationships of Different Markov Properties

A distribution that satisfies the global Markov property is said to be a
Markov random field or Markov network with respect to the graph.

I Proposition 1: For any undirected graph G and any distribution P,
we have:

global Markov property =⇒ local Markov Property =⇒ pairwise Markov property

I Proposition 2: If the joint density p(x) of the distribution P is
positive and continuous with respect to a product measure, then
pairwise Markov property implies global Markov property.

Therefore, for distributions with positive continuous densities, the global,
local, and pairwise Markov properties are equivalent.
We usually say a distribution P is Markov to G , if P satisfies the global
Markov property with respect to a graph G .
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Clique Decomposition

I Unlike a DAG that encodes factorization by conditional probability
distributions, UG does this in terms of clique potentials, where
clique in a graph is a fully connected subset of vertices.

I A clique is a maximal clique if it is not contained in any larger clique.
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Factorization by Clique Decompositions

I Let C be a set of all maximal cliques in a graph. A probability
distribution factorizes with respect to this graph G if it can be
written as a product of factors, one for each of the maximal cliques
in the graph:

p(x1, . . . , xd) =
∏
c∈C

ψC (xC ).

I Similarly, a set of clique potentials {ψC (xC ) ≥ 0}C∈C determines a
probability distribution that factors with respect to the graph G by
normalizing:

p(x1, . . . , xd) =
1

Z

∏
c∈C

ψC (xC ).

I The normalizing constant, or partition function Z sums or integrates
over all settings of the random variables. Note that Z may contain
parameters from the potential functions.
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Factorization and Markov Property

I Theorem 1: For any undirected graph G = (V ,E ), a distribution P
that factors with respect to the graph also satisfies the global
Markov property on the graph.

I Next question: under what conditions the Markov properties
imply factorization with respect to a graph?

I Theorem (Hammersley-Clifford-Besag; Discrete Version).
Suppose that G = (V ,E ) is a graph and Xi , i ∈ V are random
variables that take on a finite number of values. If P(x) > 0 is
strictly positive and satisfies the local Markov property with respect
to G , then it factorizes with respect to G .
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Factorization and Markov Property (continued)

I For positive distributions,
Global Markov ⇔ Local Markov ⇔ Factorization
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Comment

I Next lecture: learn the relationships between DAGs and UGs; when
can we convert a DAG to an UG; how can we do it? (Hint:
moralization; important for posterior inference)

I Reading: Section 4.5, Koller and Friedman (2009)
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