Lecture 2: Directed Acyclic Graphical Models

Statistical and Computational Methods for Learning through Graphical Models (aka Probabilistic Graphical Models)

> BIOSTAT 830 September 8th, 2016

> > Zhenke Wu

Learning Goals

- Understand and describe how can a directed graph represent probability distributions
- Understand and describe the (semi-)graphoid axioms that govern conditional independence
- Understand and identify d-separation
- Understand and describe Markov condition and faithfulness assumption; Understand why they are relevant

Representation by d-separation

Representation and Inference

Structure Learning

Faithfulness Assumption (about the Population)

Self-Evaluation Problem I

Let X, Y and Z have the following joint distribution:

	Y = 0	Y = 1	I IO BOHS MOR	Y = 0	Y = 1
X = 0	.405	.045	X = 0	.125	.125
X = 1	.045	.005	X = 1	.125	.125
Z = 0				Z = 1	

(a) Find the conditional distribution of X and Y given Z = 0 and the conditional distribution of X and Y given Z = 1.

(b) Show that $X \perp Y \mid Z$.

(c) Find the marginal distribution of X and Y.

(d) Show that X and Y are not marginally independent.

Self-Evaluation Problem II

- Write down the factorization of the probability distributions this DAG can represent.
- 2. Prove X and Z_i are independent

Reading

• Chapter 1.2, Pearl's causality book