Approximate Inference by Stochastic Simulation/Sampling Methods

> Zhenke Wu Department of Biostatistics University of Michigan

> > October 20, 2016

Inference Techniques

- Central task of applying probabilistic models:
 - Evaluate the posterior: $p(Z | X^{obs})$
- Exact Inference Algorithms
 - Variable elimination
 - Message-passing (sum-product, max-product)
 - Junction-Tree algorithms
- Approximate Inference
 - To overcome the exponential (of graph treewidth) computational/space complexity for exact inference algorithms

Approximate Inference Techniques

- Stochastic approximation
 - Given infinite computational resources, they can generate exact results; the approximation arises from the use of a finite amount of processor time
 - Monte Carlo
 - Buffon's needle;
 - Direct sampling (Box-Muller for bivariate Gaussian; Inverse Transformation)
 - Popular ones: Rejection sampling; Slice sampling; Likelihood weighting
 - Markov Chain Monte Carlo:
 - Metroplis-Hastings sampling (Metropolis N, Rosenbluth AW, Rosenbluth, Teller AH, Teller E (1953), Equation of State Calculations by Fast Computing Machines, *The Journal of Chemical Physics*); Extended by Hastings WK (1970) *Biometrika*.
 - Gibbs sampling (Geman and Geman, 1984), etc.
 - Hamiltonian Monte Carlo
 - Scalable Bayesian algorithms: Parallel and distributed MCMC (research frontier; e.g., Scott SL et al. 2013, consensus Monte Carlo)
- Need to address:
 - How to draw samples?
 - How to make efficient use of the obtained samples?
 - When to stop?

Approximate Inference Techniques

- Deterministic approximation (later lectures)
 - Scale well to large applications, natural language processing (Blei et al. (2003) JMLR, latent Dirichlet allocation); image processing
 - Based on analytic approximations to the posterior distribution, for example, assume specific factorization, or parametric form such as Gaussian (work with a smaller class of distributions that are close to the target)
 - Loopy belief propagation
 - Mean field approximation
 - Expectation propagation

• ..

Monte Carlo

1. Get expectation that is difficult to calculate

In general:

$$\int f(x)P(x) \, \mathrm{d}x \; \approx \; \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \ x^{(s)} \sim P(x)$$

Example: making predictions

$$p(x|\mathcal{D}) = \int P(x|\theta, \mathcal{D}) P(\theta|\mathcal{D}) \, \mathrm{d}\theta$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} P(x|\theta^{(s)}, \mathcal{D}), \quad \theta^{(s)} \sim P(\theta|\mathcal{D})$$

Markov chain Monte Carlo

2. Construct correlated samples that explore target distribution.

Markov steps,
$$x^{(s)} \sim T \left(x^{(s)} \leftarrow x^{(s-1)} \right)$$

MCMC gives approximate, correlated samples

$$\mathbb{E}_P[f] \approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)})$$

Example transitions:

$$\textbf{Metropolis-Hastings:} \ T(x' \leftarrow x) = Q(x';x) \ \min \left(1, \ \frac{P(x') \ Q(x;x')}{P(x) \ Q(x';x)} \right)$$

Gibbs sampling: $T_i(\mathbf{x}' \leftarrow \mathbf{x}) = P(x'_i | \mathbf{x}_{j \neq i}) \, \delta(\mathbf{x}'_{j \neq i} - \mathbf{x}_{j \neq i})$

10/20/16

Example: Bivariate Gaussian

Bivariate Gaussian

rho=0 rho=0.5 rho=0.995

Gibbs Sampler

A method with no rejections:

- Initialize x to some value
- Pick each variable in turn or randomly and resample $P(x_i|\mathbf{x}_{j\neq i})$

Figure from PRML, Bishop (2006)

Simple Gibbs Sampler First 50 Samples; Rho=0.995

Slice Sampler First 50 samples; Rho=0.995

Gibbs Sampler on Rotated Coordinate Rho=0.995

Lessons Learned

- Re-parametrize the model or de-correlate posterior shape when possible
- The covariance structure of the posterior density guides improvement of MCMC algorithm
- In WinBUGS, first 5,000 samples should not be used for inference: they are used to explore posterior shape and to tune proposal parameters

Hamiltonian Monte Carlo (HMC) First 50 samples; Rho=0.995

13

Hamiltonian Monte Carlo (HMC)

- Computing core of Stan http://mc-stan.org/
- Advantage
 - Super fast
 - Cross-platform
 - Has algorithms to determine the number of leapfrog steps (No-U-Turn sampler)
- Limitation
 - Does not support sampling discrete parameters (no associated gradient required for sampling algorithm)
 - Can trick Stan to do the job in some parametric models

Comments

- A good posterior sampling algorithm is the one that
 - Use maximal information from the posterior terrain
 - Bold but wise explorations
- Play with the code: <u>https://github.com/zhenkewu/demo_code</u>
- Chapter 11, Bishop CM (2007) Pattern Recognition and Machine Learning.