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BIOSTAT	830	GRAPHICAL	MODELS	
Problem	Set	4	–	Case	Study:	Latent	Class	Models	

Note:		 	
1. Due	11:59PM,	December	21,	2016.		
2. Electronic	submission	to	your	instructor’s	email.		
3. You	are	VERY	MUCH	encouraged	to	form	teams	to	discuss	proofs	and	program	

algorithms.	If	so,	please	acknowledge	your	teammate(s)’	contributions	at	the	beginning	
of	your	submitted	homework.	You	must	independently	write	your	homework	based	on	
your	own	understanding.	

4. Choose	any	programming	language	you	like,	R,	Python,	Matlab,	C/C++,	Julia,	etc.	
	

	
Examples	and	Implementations	

	
[Bayesian	approach	to	Latent	Class	Models:	Definition,	Simulation,	Estimation	and	The	Choice	of	
Number	of	Classes]	This	Problem	is	a	simulation	study	of	latent	class	models,	which	is	a	widely	
useful	and	effective	class	of	models	for	studying	multivariate	discrete	data.	The	latent	class	
models	have	a	long	history	and	wide	applications	in	disease	diagnosis,	psychology,	psychiatrics,	
pattern	recognition,	data	compression,	etc.	You	will	be	asked	to	simulate	data	from	latent	class	
models	given	parameters,	and	then	hide	the	true	parameters	and	fit	the	latent	class	models.		
	
To	specify	a	latent	class	model	with	𝑀"	classes,	we	define	𝒚$,	to	be	a	vector	of	length	𝐾	
indicating	individual	𝑖’s	binary	response	to	𝐾	items,	𝜂$ ∈ {1, … ,𝑀"}	to	be	individual	𝑖’s	
unobserved	latent	class,	and	𝜋0 = 𝑃(𝜂$ = 𝑗)	to	be	the	probability	that	individual	𝑖	is	in	class	𝑗	
for	𝑗 = 1,… ,𝑀".	Here	we	assume	there	are	𝑁	subjects.	
	
For	example,	in	the	studies	investigating	major	depressive	disorder,	investigators	obtain	
information	on	the	symptoms	through	NIMH	Diagnostic	Interview	Schedule.	The	data	𝒚$ 	is	a	
vector	representing	the	presence	or	absence	of	𝐾	symptoms	of	depression	for	individual	𝑖,	𝜂$ 	is	
individual	𝑖′𝑠	true	but	unknown	depression	class,	and	𝜋0 	is	the	proportion	of	individuals	in	the	
population	of	which	our	sample	is	representative	in	depression	class	𝑗.	
	
Given	𝜂$,	elements	𝑦$:	of	𝒚$ 	are	assumed	to	be	mutually	independent	so	that	the	distribution	of	
𝒚$ 	is		

𝑓 𝒚$; 𝝅, 𝒑 = 𝜋0

?@
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𝑝0:
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1 − 𝑝0:
BIDEF,	

where	𝑝0: = 𝑃(𝑦$: = 1 ∣ 𝜂$ = 𝑗)	is	the	probability	that	individual	𝑖,	who	is	in	class	𝑗,	will	have	a	
positive	response	to	item	𝑘.		
	

1) Draw	the	directed	acyclic	graph	(DAG),	𝐺,	with	nodes	 𝑦$: , 𝑝0: , 𝜋0 , {𝜂$},	so	that	the	
joint	distribution	with	density	𝑓(𝒚$; 𝝅, 𝒑, 𝜂$)	is	Markov	to	𝐺.	(Note:	if	we	condition	on	an	
individual’s	latent	class	𝜂$,	her	binary	response	vector	𝒚$ 	is	independent	of	𝝅.	Also,	use	
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minimal	number	of	edges.)	
	

2) In	the	DAG	you	drew,	for	a	directed	arrow	from	𝜂$ 	to	𝑦$:,	write	the	mathematical	
condition	on	𝑓(𝒚$; 𝝅, 𝒑, 𝜂$)	that	will	make	it	disappear.	State	its	interpretation.	
	

3) Simulate	a	dataset,	𝐷∗,	with	𝑁 = 300	subjects,	𝑀" = 3	classes,	𝐾 = 5	symptoms,	with		

𝑝0: =
0.1 0.9 0.1
0.4 0.4 0.45

0.15 0.1
0.5 0.4

0.95 0.1 0.9 0.9 0.9
,	

and	𝝅 = (0.5,0.3,0.2)′.	Calculate	and	tabulate	the	frequency	of	each	K-dimension	binary	
patterns	(2G 	in	total)	and	the	observed	pairwise	log	odds	ratios	𝜓:,:W

XYZ,[ =

log
_`(DEFAB,DEFaAB)_`(DEFA",DEFaA")

_`(DEFA",DEFaAB)_`(DEFAB,DEFaA")
	for	all	pairs	of	(𝑘, 𝑘′)	if	0/0	does	not	occur.	(Note:	fix	a	

seed	if	you’ll	need	me	to	reproduce	your	results.)	
	

4) For	ease	of	estimation,	we	reparametrize	the	model	with	{𝑔0: = log cdF
BIcdF

}
0AB,:AB

?eEf,G
,	

and	{𝑎0 = log(𝜋0/𝜋?eEf)}0AB?eEfIB,	where	𝑀i$j	is	the	number	of	classes	you	specify	when	
fitting	the	model	that	could	be	𝑀"	or	not.	Show	the	likelihood	𝑓(𝒀 ∣ 𝒂, 𝒈),	where	𝒀 =
𝒚$ B[, 𝒂 = 𝑎0 , 𝒈 = {𝑔0:}.	
	

5) Assuming	a	Bayesian	model,	we	need	to	specify	prior	distributions	for	the	parameters	in	
our	latent	class	model.	For	a	model	with	𝑀i$j	classes,	let	priors	𝑔0: ∼ 𝑁(0, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
9/4),	and	𝑎0 ∼ 𝑁(0,9/4).	Write	out	the	full-conditional	distributions	(densities	if	
continuous)	for:	𝑓(𝑔0: ∣ 𝑔I0,I: , 𝜼, 𝒀),	𝑓(𝑎0 ∣ {𝑎I0}, 𝜼),	and	𝑓(𝜂$ ∣ 𝒂, 𝒈, 𝒀)	up	to	
proportionality	constants.	

	
6) Fit	a	Bayesian	latent	class	model	with	three	classes	(𝑀i$j = 𝑀" = 3),	using	your	

simulated	data,	and	the	priors	specified	in	5).	Obtain	the	sequence	of	values	for	each	

parameter	that	are	drawn	from	the	posterior,	 𝑝0:
j

jAj@

ju
	,	 𝜋0

j

jAj@

ju
,	 𝜂$

j

jAj@

ju
	,𝑗 =

1,…𝑀i$j	, 𝑘 = 1,… , 𝐾,	𝑖 = 1,… ,𝑁,	where	𝑡"	and	𝑡B	are	the	indices	of	the	start	and	end	
of	your	sampling	chain,	respectively.	(Note:	you	may	use	JAGS,	WinBUGS	and	call	them	
from	R.	You	must	submit	your	code	as	well.)	
	

7) Visualize/Plot	your	estimated	posterior	distributions:	𝑓(𝑝0: ∣ 𝒀,𝑀i$j = 3),	𝑓(𝜋0 ∣
𝒀,𝑀i$j = 3),	𝑃 𝜂$ = 𝑗 𝒀,𝑀i$j = 3 , 𝑗 = 1,… ,𝑀i$j, 𝑘 = 1,… , 𝐾, 𝑖 = 1,… ,𝑁.	(Hint:	
compare	the	estimated	posteriors	with	the	true	parameter	values	that	were	used	to	
simulate	the	data	𝐷∗.	For	the	posteriors	of	the	individual	class	indicators	{𝜂$},	just	
randomly	choose	4	individuals.)	
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8) At	each	iteration	from	the	kept	sampling	chain,	𝑡 = 𝑡", … , 𝑡B,	simulate	one	data	sets	𝐷(j)	

with	300	subjects	following	the	latent	class	model	with	parameters,	 𝑝0:
j

0AB,:AB

?eEf,G
, 𝝅 j ;	

Compute	the	all	the	finite-sample-based	pairwise	log	odds	ratios	from	𝐷(j)	and	denote	it	
by	{𝜓:,:a

j ,[}.	Compare	the	set	of	values	{𝜓:,:W
j ,[}	to	𝜓:,:W

XYZ,[	,	for	each	pair	(𝑘, 𝑘′).	What	do	
you	see?	(Note:	you	may	choose	a	few	interesting	pairs	(𝑘, 𝑘′)	to	demonstrate	what	you	
find.)	

	
9) Repeat	5)	to	8)	for	𝑀i$j = 2, 4.	Summarize	your	results.	(Note:	you	may	choose	a	few	

interesting	pairs	(𝑘, 𝑘′)	you	used	in	8)	to	demonstrate	what	you	find.)	
	

10) Summarize	your	experience	with	this	simulation	study	of	latent	class	model,	e.g.,	what’s	
the	statistical	mechanism	that	gives	rise	to	the	dependence	among	symptoms	(can	refer	
to	the	DAG),	or	do	we	have	evidence	in	the	data	about	the	true	number	of	classes,	etc.	
	


