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BIOSTAT	830	GRAPHICAL	MODELS	
Problem	Set	2	–	Computing	for	Graphical	Models	

Note:		 	
1. Due	11:59PM,	November	21,	2016.		
2. Electronic	submission	to	your	instructor’s	email.		
3. You	are	VERY	MUCH	encouraged	to	form	teams	to	discuss	proofs	and	program	

algorithms.	If	so,	please	acknowledge	your	teammate(s)’	contributions	at	the	beginning	
of	your	submitted	homework.	You	must	independently	write	your	homework	based	on	
your	own	understanding.	

4. Choose	any	programming	language	you	like,	R,	Python,	Matlab,	C/C++,	Julia,	etc.	
	
	

Examples	and	Implementations	
	

[50	points;	Problem	Credit	Peter	Bartlett]	Kalman	Filter:		
The	data	in	file	kalman_filter.data	on	the	course	web	site	contains	noisy	measurements	of	the	
location	of	a	particle	moving	in	the	plane,	subject	to	gravity,	random	forces,	and	drag.	Each	line	
of	the	file	consists	of	the	measurements	𝑦" ∈ 𝑅%	of	the	location	at	time	t	=	1,	.	.	.	,	T.	The	true	
location	of	the	particle	at	time	t	is	𝑥" ∈ 𝑅%,	and	its	velocity	is	𝑥" ∈ 𝑅%.	The	equations	of	motion	
are		

𝑥"'( = 𝑥" + 𝑥",	
𝑥"'( = 0.98𝑥" − 0.02𝑥" + 𝑤",	

	
where	𝑤" ∼ 𝑁(0, 0.05𝐼%).	The	observations	𝑦" ∈ 𝑅%	have	the	form		
	

𝑦" = 𝑥" + 𝑣",	
	
where	𝑣" ∼ 𝑁(0, 100𝐼%).	Suppose	also	that		
	

;<
;<

∼ 𝑁(0, 5𝐼=).	
	

(a)	Plot	the	particle’s	true	location		𝑥"	(from	the	file	kalman_filter.true	on	the	web	site).		
(b)	Plot	the	observations	𝑦"	of	the	particle’s	position,	on	top	of	a	plot	of	the	true	location.		
(c)	Explain	how	to	estimate	the	particle’s	initial	state	(that	is,	its	position	𝑥(	and	velocity	𝑥(	at	
the	initial	time	t	=	1)	from	the	noisy	measurements	𝑦(, … , 𝑦@.		
(d)	Calculate	the	maximum	a	posteriori	probability	initial	state	given	the	data	in	
kalman_filter.data.		
(e)	For	each	t,	plot	the	vector	𝑥"	of	locations	that	maximize	the	probability	𝑝(𝑥" ∣ 𝑦(, … , 𝑦@)	(we	
call	this	Maximum	A	Posteriori,	or	MAP	estimate),	on	top	of	a	plot	of	the	true	location.	Include	
in	the	plot	an	arrow	from	𝑥	in	the	direction	of	the	MAP	initial	velocity.	
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[Extra	Credit;	Theory	Question;	25points]	Suppose	that	we	have	a	linear	state	space	model	
with	Gaussian	disturbances,	and	we	wish	to	estimate	the	initial	state	𝑥(	from	the	noisy	
observations	𝑦(, … , 𝑦@,	as	in	the	previous	question.	It	seems	reasonable	that	as	T	increases,	
later	observations	provide	less	information	about	the	initial	state.	In	this	question,	we	
investigate	this	property.		
	
Suppose	that		
	

𝑥" ∈ 𝑅C, 𝑦" ∈ 𝑅C,		
𝑥"'( = 𝐴𝑥" + 𝑤", 𝑤" ∼ 𝑁 0, 𝑄 ,	
𝑦" = 𝐶𝑥" + 𝑣",															𝑣" ∼ 𝑁(0, 𝜎%)	

	
(Notice	that	𝐶 ∈ 𝑅(×C	is	a	row	vector.)		
	
(a)	What	is	the	conditional	distribution	of	𝑦@	given	𝑥(?		
(b)	Suppose	that	the	C	vector	has	unit	length	and	the	matrix	A	is	such	that	for	all	𝑣 ∈ 𝑅C,	
𝐴"𝑣 ≤ 𝛼" 𝑣 ,	where	α	<	1.	Define	the	T	×	p	matrix	 

 

𝑂@ =

𝐶
𝐶𝐴
𝐶𝐴%
⋮

𝐶𝐴@M(

 

 
(Matrices	like	𝑂@	are	called	observability	matrices:	in	a	deterministic	system,	the	rank	of	𝑂@ 	
characterizes	whether	the	initial	state	can	be	inferred	from	subsequent	observations.)	Consider	
what	happens	when	we	start	the	system	in	two	different	initial	states,	𝑥(	and		𝑥(.	Give	an	upper	
bound	on	the	KL-divergence	between	𝑝(𝑦@ ∣ 𝑥()	and	𝑝 𝑦@ 𝑥( 	as	a	function	of	 𝑥( − 𝑥( ,	α,	
T,	𝜎%,	and	𝑡𝑟(𝑂@𝑄𝑂@′).	
	
	
[50	points;	Problem	Credit	Ciprian	Crainiceanu]	Download	the	Framingham	data	from	the	
course	website.	Implement	your	own	code	in	R	for	Bayesian	inference	based	on	MCMC	
simulations	for	the	following	Bernoulli	model	with	covariate	measurement	error		

𝑌R ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝R)
𝑙𝑜𝑔𝑖𝑡	 𝑝R = 	𝛽\ + 𝛽(𝑋R + 𝛽%𝑍R

𝑊R` ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑋R, 𝜎c%)
	

where	Yi	is	the	CHD	status,	Xi	is	the	true	log	SBP,	Wij	are	the	two	log	SBP	measurements,	and	Zi	
is	the	smoking	status	for	subject	i.		
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a. Write	the	full	conditionals	and	discuss	the	various	options	available	for	simulation.	 	

b. Provide	posterior	means,	standard	deviations	and	credible	intervals	for	model	parameters.		

c. Provide	histories	of	the	chains	and	discuss	their	quality	with	respect	to	length	of	burn-in	
periods	and	mixing	properties.	 	

d. Provide	documented	R	code.	 	

e. Compare	your	results	with	a	naïve	analysis	that	would	simply	replace	Xi	 by	(Wi1+	Wi2)/2.	

f. Summarize	your	experience.		


