# Lecture 8: F-Test for Nested Linear Models 

Zhenke Wu<br>Department of Biostatistics<br>Johns Hopkins Bloomberg School of Public Health<br>zhwu@jhu.edu<br>http://zhenkewu.com

11 February, 2016

## Lecture 7 Main Points Again

Constructing $F$-distribution:

- $Y_{i} \stackrel{\text { independently }}{\sim}$ distributed $\operatorname{Gaussian}\left(\mu_{i}, \sigma_{i}^{2}\right)$
- $Z_{i}=\frac{Y_{i}-\mu_{i}}{\sigma_{i}} ; Z_{i} \stackrel{i i d}{\sim} \operatorname{Gaussian}(0,1)$
- Define quadratic forms $Q_{1}=Z_{1}^{2}+\cdots+Z_{n_{1}}^{2}$ and $Q_{2}=Z_{n_{1}+1}^{2}+\cdots+Z_{n_{1}+n_{2}}^{2}$
- $Q_{1} \sim \chi_{n_{1}}^{2}$ with mean $n_{1}$ and variance $2 n_{1}$
- $Q_{2} \sim \chi_{n_{2}}^{2}$ with mean $n_{2}$ and variance $2 n_{2}$
- $Q_{1}$ is independent of $Q_{2}$
- $F_{n_{1}, n_{2}}=\frac{Q_{1} / n_{1}}{Q_{2} / n_{2}} \sim \mathcal{F}\left(n_{1}, n_{2}\right)$ ( $F$-distribution with $n_{1}$ and $n_{2}$ degrees of freedom; " $F$ " for Sir R.A. Fisher)


## Lecture 7 Main Points Again (continued)

- Data:
- $n$ observations; $p+s$ covariates
- continuous outcome $Y_{i}$, measured with error
- covariates: $\boldsymbol{X}_{i}=\left(X_{i 1}, \ldots, X_{i p}, X_{i, p+1}, \ldots, X_{i, p+s}\right)^{\top}$, for $i=1, \ldots, n$
- Question: In light of data, can we use a simpler linear model nested within a complex one?
- Hypothesis testing:
(a) Null model: $\mathbf{Y} \sim$ Gaussian $_{n}\left(\mathbf{X}_{N} \boldsymbol{\beta}_{N}, \sigma^{2} \mathbf{I}_{n}\right)$
- $\mathbf{X}_{N}$ : design matrix $n \times(p+1)$ obtained by stacking observations $X_{i}$
- First $p$ (transformed) covariates and 1 intercept
- Regression coefficients: $\boldsymbol{\beta}_{N}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\top}$
- Standard deviation of measurement errors: $\sigma$
(b) Extended model: $\mathbf{Y} \sim$ Gaussian $_{n}\left(\mathbf{X}_{E} \boldsymbol{\beta}_{E}, \sigma^{2} \mathbf{I}_{n}\right)$
- $\mathbf{X}_{E}$ : design matrix with intercept $+p+s$ covariates
- $\boldsymbol{\beta}_{E}=\left(\boldsymbol{\beta}_{N}^{\top}, \beta_{p+1}, \ldots, \beta_{p+s}\right)^{\top}$
- Null model: $H_{0}: \beta_{p+1}=\beta_{p+2}=\cdots=\beta_{p+s}=0$


## Lecture 7 Main Points Again (continued)

Null model: $H_{0}: \beta_{p+1}=\beta_{p+2}=\cdots=\beta_{p+s}=0$
Let $\boldsymbol{\beta}_{[p+]}=\left(\beta_{p+1}, \cdots, \beta_{p+s}\right)^{\top}$

- Rationale of the $F$-Test
- If $H_{0}$ is true, estimates $\widehat{\beta}_{p+1}, \cdots, \widehat{\beta}_{p+s}$ should all be close to 0
- Reject $H_{0}$ if these estimates are sufficiently different from 0s.
- However, not every $\widehat{\beta}_{p+j}, j=1, \ldots, s$, should be treated the same; they have different precisions
- Use a quadratic term to measure their joint differences from 0, taking account of different precisions:

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{[p+]}^{\top}\left(\operatorname{Var}_{E}\left[\widehat{\boldsymbol{\beta}}_{[p+]}\right]\right)^{-1} \widehat{\boldsymbol{\beta}}_{[p+]} \tag{1}
\end{equation*}
$$

- $\operatorname{Var}_{E}\left[\widehat{\boldsymbol{\beta}}_{[p+]}\right]=\sigma^{2} \mathbf{A}\left(\mathbf{X}_{E}^{\top} \mathbf{X}_{E}\right)^{-1} \mathbf{A}^{\top}$, where $\mathbf{A}=\left[\mathbf{0}_{s \times(p+1)}, \mathbf{l}_{s \times s}\right]$
- Estimate $\sigma^{2}$ by $\operatorname{RSS}_{E} /(n-p-s-1)$; RSS for "residual sum of squares"


## Lecture 7 Main Points Again (continued)

$$
\begin{equation*}
F=\frac{\left(R S S_{N}-R S S_{E}\right) / s}{R S S_{E} /(n-p-s-1)} \tag{2}
\end{equation*}
$$

- $F(s, n-p-s-1): F$-distribution with $s$ and $n-p-s-1$ degrees of freedom
- $\operatorname{RSS}_{N}=Y^{\prime}\left(I-H_{N}\right) Y ; H_{N}=X_{N}\left(X_{N}^{\prime} X_{N}\right)^{-1} X_{N} ;$ " $H^{\prime \prime}$ for hat matrix, or projector
- $R S S_{E}=Y^{\prime}\left(I-H_{E}\right) Y ; H_{E}=X_{E}\left(X_{E}^{\prime} X_{E}\right)^{-1} X_{E}$
- $\left(R S S_{N}-R S S_{E}\right) / \sigma^{2} \sim \chi_{s}^{2}$ and $R S S_{E} / \sigma^{2} \sim \chi_{n-p-s-1}^{2}$; they are independent
[Proof]:
- Algebraic: The former is a function of $\widehat{\boldsymbol{\beta}}_{E}$, which is independent of $R S S_{E}$ ]
- Geometric: Squared lengths of orthogonal vectors


## Geometric Interpretation: Projection

 of PUBLIC HEALTH- $\widehat{Y}_{N}=H_{N} Y$ : fitted means under the null model
- $\widehat{Y}_{E}=H_{E} Y$ : fitted means under the extended model



## Analysis of Variance (ANOVA) for Regression

Table: ANOVA for Regression

| Model | df | Resudial <br> df | Residual Sum <br> of Squares (RSS) | Residual <br> Mean Square |
| :--- | :--- | :--- | :--- | :--- |
| Null | $p+1$ | $n-p-1$ | $R S S_{N}=R_{N}^{\prime} R_{N}$ | $\frac{R_{N}^{\prime} R_{N}}{n-p-1}=S_{N}^{2}$ |
| Extended | $p+s+1$ | $n-p-s-1$ | $R S S_{E}=R_{E}^{\prime} R_{E}$ | $\frac{R_{E}^{\prime} R_{E}}{n-p-s-1}=S_{E}^{2}$ |
| Change | $s$ | $-s$ | $\left(R_{N}^{\prime} R_{N}-R_{E}^{\prime} R_{E}\right)$ | $\frac{R_{N}^{\prime} R_{N}-R_{E}^{\prime} R_{E}}{s}$ |
| $=R_{N}^{\prime} R_{N}-R_{E}^{\prime} R_{E}$ |  |  |  |  |

- $F_{s, n-p-s-1}=\frac{\left(R_{N}^{\prime} R_{N}-R_{E}^{\prime} R_{E}\right) / s}{R_{E}^{R_{E}} R_{E} /(n-p-s-1)}$
- Reject $H_{0}$ if $F>\underbrace{\mathcal{F}_{1-\alpha}(s, n-p-s-1)}_{(1-\alpha \%) \text { percentile of the } \mathcal{F} \text { distribution }}$, e.g., $\alpha=0.05$


## Some Quick Facts about F-distribution

Special cases of $\mathcal{F}\left(n_{1}, n_{2}\right)$
$-n_{2} \rightarrow \infty$ :

- $Q_{2} / n_{2} \xrightarrow{\text { in probability }}$ constant
- For a fixed $n_{1}, F_{n_{1}, n_{2}} \xrightarrow{\text { in distribution }} Q_{1} / n_{1} \sim \chi_{n_{1}}^{2} / n_{1}$ as $n_{2}$ approaches infinity
- Or equivalently $n_{1} F_{n_{1}, \infty} \sim \chi_{n_{1}}^{2}$
- If $s=1$ :
- The $F$-statistic equals $\left(\widehat{\beta_{p+1}} / s e_{\widehat{\beta}_{p+1}}\right)^{2}$ for testing the null model $H_{0}: \beta_{p+1}=0$
- Under $H_{0}$, it is distributed as $\mathcal{F}(1, n-p-2)$
- Approximately distributed as $\chi_{1}^{2} / 1$ when $n \gg p$ (therefore 3.84 is the critical value at the 0.05 level)


## $F$-Table

For $F$ distribution with denominator $d f_{2}=1,2$, the 0.95 percentile increases with $d f_{1}$; for $d f_{2}>2$, the percentile decreases with $d f_{1}$.

| $d f_{2} \backslash d f_{1}$ | 1 | 2 | 3 | 10 | 100 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 161.45 | 199.50 | 215.71 | 241.88 | 253.04 |
| 2 | 18.51 | 19.00 | 19.16 | 19.40 | 19.49 |
| 3 | 10.13 | 9.55 | 9.28 | 8.79 | 8.55 |
| 100 | 3.94 | 3.09 | 2.70 | 1.93 | 1.39 |
| 1000 | 3.85 | 3.00 | 2.61 | 1.84 | 1.26 |
| $\infty$ | 3.84 | 3.00 | 2.60 | 1.83 | 1.24 |

Table: $95 \%$ quantiles for F -distribution with degrees of freedom $d f_{1}$ and $d f_{2}$.

## $F$-Table



Figure: Density functions for F distributions; Red lines for $95 \%$ quantiles

## Example

- Data: National Medical Expenditure Survey (NMES)
- Objective: To understand the relationship between medical expenditures and presence of a major smoking-caused disease among persons who are similar with respect to age, sex and SES
- $Y_{i}=\log _{e}\left(\right.$ total medical expenditure $\left.{ }_{i}+1\right)$
- $X_{i 1}=$ age $_{i}-65$ years
- $X_{i 2}=0^{7}$
- \# of subjects : $n=4078$


## Example

Table: NMES Fitted Models

| Model | Design | df | Residual MS | Resid. df |
| :--- | :--- | :--- | :--- | :--- |
| A | $X_{1}, X_{2}$ | 3 | 1.521 | 4075 |
| B | $X_{1},\left(X_{1}-(-20)^{+},\left(X_{1}-0\right)^{+}\right), X_{2}$ | 5 | 1.518 | 4073 |
| C | $\underbrace{\left[X_{1},\left(X_{1}-(-20)^{+},\left(X_{1}-0\right)^{+}\right)\right] * X_{2}}_{\text {all interactions and main effects }}$ | 8 | 1.514 | 4070 |
|  |  |  |  |  |

## NMES Example: Question 1

Is average log medical expenditures roughly a linear function of age?

- Compare which two models?
- Calculate Residual Sum of Squares and Residual Mean Squares.
- Calculate $F$-statistic; What are the degrees of freedom for its distribution under the null?
- Compare it to the critical value at the 0.05 level


## NMES Example: Question 1

- $H_{0}$ : Within a larger model B , model A is true (or state the scientific meaning, i.e., linearity in age).

$$
\begin{align*}
F & =\underbrace{\underbrace{R S S_{E}}_{\text {residual sum of squares }} \underbrace{(n-p-s-1)}_{\text {residual df }}}_{\underbrace{}_{\text {residual mean squares }}}  \tag{3}\\
& =\frac{(1.521 \times 4075-1.518 \times 4073) / 2}{1.518}=5.03 \tag{4}
\end{align*}
$$

- This statistic, under repeated sampling, has a $\mathcal{F}(2,4073)$ distribution, which is approximately $\chi_{2}^{2} / 2$ distributed.
- p-value: $\operatorname{Pr}\left(\chi^{2} / 2>5.03\right)=0.0065$ by approximation or $\operatorname{Pr}(\mathcal{F}(2,4073)>5.03)=0.0066$ without approximation. The approximation is good.
- Reject linearity in age.


## NMES Example: Question 2 (In-Class Exercise)

- Is the non-linear relationship of average log expenditure on age the same for $o^{7}$ and $p$ ? (Are there curves parallel?)
- Or equivalently, is the difference between average log medical expenditure for $0^{7}$-vs- $-q$ the same at all ages?


## NMES Example: Question 2 (In-Class Exercise)

- $H_{0}$ : Within a larger model C , model B is true (or equivalently state the scientific meaning, i.e., no interaction).

$$
\begin{equation*}
F=\frac{(1.518 \times 4073-1.514 \times 4070) / 3}{1.514}=4.59 \tag{5}
\end{equation*}
$$

- Under repeated sampling, it is $\mathcal{F}(3,4070)$ distributed.
- p-value $\operatorname{Pr}\left(\chi_{3}^{2} / 3>4.59\right)=0.0032$ by approximation, or $\operatorname{Pr}(\mathcal{F}(3,4070)>4.59)=0.0033$ without approximation.
- Reject no-interaction assumption


## Questions?

## Notes:

- Ingo's Notes: http://biostat.jhsph.edu/ iruczins/teaching/140.751/
- $F=\frac{n-p-s-1}{s}\left(\frac{R S S_{N}}{R S S_{E}}-1\right)=\frac{n-p-s-1}{s}\left(\left\{\left[\frac{R S S_{E} / n}{R S S_{N} / n}\right]^{n / 2}\right\}^{-2 / n}-1\right)$,
where $\Lambda=\left[\frac{R S S_{E} / n}{R S S_{N} / n}\right]^{n / 2}$ is the likelihood ratio test (LRT) statistic comparing the null versus the extended model. Because $F$ and $\Lambda$ are one-to-one, monotonically related, in this case the LRT and F-test are equivalent tests (e.g., the same p-values). However, $F$-statistic is preferred in practice for its nice approximations by Chi-square (e.g., when $d f_{2} \rightarrow \infty$ ) and connections to other distributions (e.g., $\left.\mathcal{F}\left(1, d f_{2}\right) \stackrel{d}{=} t_{d f_{2}}^{2}\right)$.


## Next by Professor Scott Zeger:

- Delta method to calculate the variance of a function of estimates. For example, if we know the variance of log odds ratio (LOR) comparing two proportions, how do we obtain the variance of odds ratio (exponential of the LOR)?

