
A	Survey	of	Automatic	Bayesian	
Software	and	

Why	You	Should	Care
Zhenke Wu

zhwu@jhu.edu

zhenkewu.com

December	15th,	2015

Hopkins	Biostatistics	Computing	 Club

Bayes	Formula
Model	likelihood	for	observed	data	𝑥

Prior	on	model	
parameter	𝜃

• Marginal	distribution	 of	data	given	the	model;	
• “Evidence”	that	this	data	𝑥	are	generated	by	this	

model	 (Box	1980,	JRSS-A)
• Hard	to	compute

Thomas	Bayes	(1701-1761)

Gibbs	Sampling

Use	simulated	samples	to	approximate	the	entire joint	posterior	
distribution

Look	from	top

Why	Automatic	Software	for	Bayesian	
Inference?
• Self-coded	simulation	algorithms	usually	require	extra	tunning and	
cost	much	time	(share	your	experience!)
• General	formula/recipes	exist	for	sampling	from	common	
distributions
• Modelers	generally	want	reasonable and	fast model	outputs	to	speed	
up	model	building,	testing	and	interpretation

Analytic	Pipeline Automatic	Bayesian	Software

Bayesian	Software	and	Google	Trends

• WinBUGS/OpenBUGS
• JAGS
• Stan
• PyMC3
• Others,	e.g,	R-INLA,	
NIMBLE,	MCMCpack…

https://goo.gl/YNQbCP

If	Adding	the	Trend	for	R?

https://goo.gl/orflly

We	will	Connect	These	Software	to	R…

Abstract: If you are using R and you think you’re in hell, this is a map for you.

WinBUGS http://www.mrc-bsu.cam.ac.uk/software/bugs/

• Bayesian	inference	Using	Gibbs	Sampling
• Latest	Version:	1.4.3;	Add-on	modules,	e.g.,	GeoBUGS
• Call	from	R	by	“R2WinBUGS”
• Since	1989	in	Medical	Research	Council	(MRC)	Biostatistics	Unit,	Cambridge	---
David	Spiegelhalterwith	chief	programmer	Andrew	Thomas;	Motivated	by	
Artificial	Intelligence	research
• 1996	to	Imperial	College,	London	--- Nicky	Best,	Jon	Wakefield	and	Dave	Lunn
• No	change	since	2007
• In	2004	OpenBUGS is	branched	from	WinBUGS by	Andrew	Thomas	
(http://www.openbugs.net/w/FrontPage);	still	under	development
• More	at:	Lunn,	D.,	Spiegelhalter,	D.,	Thomas,	A.	and	Best,	N.	(2009)	The	BUGS	
project:	Evolution,	critique	and	future	directions	(with	discussion), Statistics	in	
Medicine 28:	3049--3082.

Good	Experience	- WinBUGS

• GUI,	easy	for	visual	inspection	of	chains	without	too	much	posterior	
sample	processing
• Good	teaching	tool	with	a	companion	book:	 The	BUGS	Book	- A	
Practical	Introduction	to	Bayesian	Analysis	
• Coded	in	many	common	distributions	suitable	for	different	types	of	
data	(see	Manual)

• Relative	easy	for	debugging	because	it	points	to	specific	errors

Bad	Experiences	- WinBUGS

• “Why	you	should	not	use	WinBUGS or	OpenBUGS”	– Barry	Rowlingson
http://geospaced.blogspot.com/2013/04/why-you-should-not-use-
winbugs-or.html
• Odd	errors,	e.g.,	“trap”	messages	for	memory	errors
• Written	in	Component	Pascal;	can	only	be	read	with	BlackBox Component	
Builder	from	Oberon	Microsystems,	which	only	runs	on	Windows.	Also	
BlackBox was	abandoned	by	its	own	developers	in	2012.
• Not	very	open-source,	althroughwith	tools	to	extend	WinBUGS
• Essentially	sample	nodes	univariately;	block	sampling	only	available	for	
multivariate	nodes,	or	fixed-effect	parameters	in	GLMs	by	Metroplis-
Hastings	algorithm	proposed	by	Iteratively	Reweighted	Least	Squares.

Example:	Penalized-Spline	Regression
WinBUGS (500	data	points;	10,000	iterations;	5.87	
secs)
for	(i in	1:N){

M[i]~dnorm(mu[i],prec)

#mu[i]	<- inprod2(ZB[i,],beta[])

mu[i]	<- ZB[i,1]*beta[1]+ZB[i,2]*beta[2]+ZB[i,3]*beta[3]+ZB[i,4]*beta[4]+

ZB[i,5]*beta[5]+ZB[i,6]*beta[6]+ZB[i,7]*beta[7]+ZB[i,8]*beta[8]+

ZB[i,9]*beta[9]+ZB[i,10]*beta[10]	#	scalar	calculations.

}

sigma		<- pow(prec,-0.5)

#	prior	for	B-spline	coefficients:	first-order	penalty	matrix:

beta[1]			~	dnorm(0,prec_beta1)

for	(c	in	2:C){

beta[c]	~	dnorm(beta[c-1],taubeta)

}

taubeta ~	dgamma(3,2)

prec_beta1			<- 1/4*prec

prec ~	dgamma(1.0E-2,1.0E-2)

}

Example:	Penalized-Spline	Regression
WinBUGS (10,000	iterations;	4.15	secs)

Data	points

Posterior	
samples	of	
mean	
curves

B-spline	basis	multiplied	
by	estimated	coefficients

True	mean	
curve

JAGS	(Just	Another	Gibbs	Sampler)

• http://mcmc-jags.sourceforge.net/
• Latest	version	4.0.0;	Author:	Martyn	Plummer;	first	release:	2007
• “not	wholly	unlike	BUGS”	with	three	aims:
- cross-platform	engine	(written	in	C++),	e.g.,	Mac	OS	X,	Linux,	Windows	
- extensibility
- a	platform	for	experimentation
• Experience:
- great	speed	(load	the	“glm”	module!);	built-in	vectorization
- responsive	online	community	(mostly	responded	in	a	day	by	Martyn	
himself)
- generic	error	messages	hard	to	know	exactly	what	went	wrong
- no	GUI

Example:	Penalized-Spline	Regression
JAGS	(10,000	iterations;	4.15	secs)
model{

for	(i in	1:N){

M[i]~dnorm(mu[i],prec)

}

sigma		<- pow(prec,-0.5)

mu						<- ZB%*%beta	#	vectorized.

#	prior	for	B-spline	coefficients:	 first-order	penalty	
matrix:

beta[1]			~	dnorm(0,prec_beta1)

for	(c	in	2:C){

beta[c]	~	dnorm(beta[c-1],taubeta)

}

taubeta ~	dgamma(3,2)

prec_beta1			<- 1/4*prec

prec ~	dgamma(1.0E-2,1.0E-2)

}

Stan																					http://mc-stan.org/interfaces/

• named	in	honor	of	Stanislaw	Ulam,	pioneer	of	the	Monte	Carlo	method
(Metropolis,	Nicholas,	and	Stanislaw	Ulam.	"The	Monte	Carlo	method.	”	(1949)	
JASA)

• Inferential	Engine:
• MCMC	sampling	(No	U-Turn	Sampler;	Hamiltonian	Monte	Carlo)
• Approximate	Bayesian	inference	(variational inference)
• Penalized	maximum	likelihood	estimation	(Optimization)

• Latest	version	2.9.0;	Developed	by	at	Columbia;	initial	release	August	2012
• Cross-platform;	Written	in	C++;	Open-source

• Call	from	R	by	“rstan”;	can	also	be	called	from	Python	by	“PyStan”;	Julia…

• Very	sweet	part:	“shinyStan”	package;	see	demo.

Example:	Penalized-Spline	Regression
Stan(10,000	iterations;	9.44	secs)
data	{
int<lower=0>	N;													//	number	of	observations	 	
int<lower=0>	C;												//	number	 of	B-spline	 bases						
matrix[N,C]	ZB;																//	predictor	for	observation	n		
vector[N]	M;																//	outcome	for	observation	 n
}
parameters	{		
real<lower=0>	sigma;								//	noise	 variance		
real<lower=0>	sigma_beta;								//	smoothing	 parameter.		
vector[C]	beta;											//	regression		
}
transformed	parameters{				
vector[N]	mu;				
mu	<- ZB	*	beta;
}
model	{
sigma	~	cauchy(0,5);		
sigma_beta ~	cauchy(0,5);	 	
beta[1]	~	normal(0,2*sigma);	 	
for	(l	in	2:C)			beta[l]	~	normal(beta[l-1],sigma_beta);	
M	~	normal(mu,	 sigma);
}

Posterior	Intervals

shinyStan

RStan Experience
• Vectorized functions	--- fast!	(built	upon	Eigen,	a	C++	template	library	for	linear	
algebra)
• Good	when	the	data	are	big	but	the	model	is	small

• C	type	variable	declaration;	provides	extensive	warning/error	messages
• Not	reliant	upon	conjugate	priors	(compare	to	BUGS)
• Convenient	to	install	by	install.packages(“rstan”)
• Hosted	by	GitHub

• Currently	cannot	sample	discrete	unknown	parameters
• Not	always	faster	than	BUGS/JAGS:	“Slower	per	iteration	but	much	better	at	
mixing	and	converging”	Bob	Carpenter;	The	hope	is	to	trade-off	wall	time	for	
shorter	chains.

PyMC3 (Danger	Zone:	
The	Speaker	has	no	Experience)
• Based	on	Hamiltonian	Monte	Carlo
• Require	gradient	information,	calculated	by	Theano (fast;	tightly	integrated	with	NumPy)
• Model	specification	directly	in	Python	code:

“There	should	be	one—and	preferably	only	one—obvious	way	to	do	it”
— Zen	of	Python

• Readings:	
- https://pymc-devs.github.io/pymc3/getting_started/
- http://andrewgelman.com/2015/10/15/whats-the-one-thing-you-have-to-know-about-pystan-

and-pymc-click-here-to-find-out/

INLA

• Integrated	nested	Laplace	approximation	(Rue,	Martino	and	Chopin	
(2009)	JRSS-B)
• Suitable	for	latent	Gaussian	Markov	random	field	models,	e.g.,	
Generalized	additive	models,	Time	series	models,	Geoadditive
models…	(recommend	to	your	friends	who	do	spatial	statistics!)
• Fast	for	marginal	posterior	densities,	hence	summary	statistics	of	
interest,	posterior	means,	variances	or	quantiles

• More	at:	http://www.math.ntnu.no/~hrue/r-
inla.org/doc/Intro/Intro.pdf

R	Package	“baker”:	https://github.com/zhenkewu/baker

• Bayesian	Analytic	Kit	for	Etiology	Research
• Call	JAGS	or	WinBUGS from	R
• Automatically	write	the	full	model	file	using	an	R	wrapper	function
• “Plug-and-Play”	to	add	extra	likelihood	components	and	priors
• Built-in	visualizations	for	interpreting	results

Summary
• Modeler’s	time:	
- model	design/interpretation	(iterative	nature	of	modelling)
- write	one’s	own	code	for	posterior	computing
• Surveyed	software	that	does	automatic	posterior	inference
• Choice	of	software	depends	on
- Stage	of	model	development	(debugging	or	mass	production)
- Scale	of	analysis
- Documentation	and	online	community
- R	or	Python	as	the	primary	data	processing	language
• P-spline	regression	done	by	different	software;	comparison
• Introduced	an	R	package	“baker”	for	disease	etiology	research;	used	
JAGS	or	WinBUGS;	potential	improvements

Thanks!

• Questions

• Share	your	experience

