Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets

Zhenke Wu

Assistant Professor Department of Biostatistics, University of Michigan

27 July 2017

The 62nd Annual International Biometric Society Meeting of the Brazilian Region (RBras 2017) R package: spotgear https://github.com/zhenkewu/spotgear

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 1 / 30

ndividualized Health	Background	Method	Application	Summary

Common Questions on Individual and Population Health

- 1. a. What is the person's health state given health measurements?
 - b. What is the population distribution of health states? (Wu et al., 2015, JRSS-C; Wu and Zeger, 2016a,b)
- 2 a. What is the person's health trajectory?
 - b. What is the population's characteristics of health trajectory?
- 3. Does a particular intervention improve health - on average/for a particular person? (Wu et al., 2014, Biometrics; Frangakis, Qian, Wu, Diaz, 2015, Biometrics)
- 4. Are interventions being used optimally?

RBras62, UFLA, Lavras, MG, Brazil

Zhenke Wu(zhenkewu@umich.edu)

Example I

Pneumonia Etiology Research for Child Health (PERCH)

Background:

- > 30 possible infectious causes
- Difficult to directly observe

Goal:

- Population disease etiology estimation
- Individual diagnosis

Study details:

- \$40-mil, Gates-funded 7-country study; Sites at Sub-Saharan Africa and South Asia
- Diverse measures; variable precisions
- \sim 5,000 cases and \sim 5,000 controls

Measurements of Different Quality

*NP: nasopharyngeal; PCR: polymerase chain reaction; LA: lung aspirate

Zhenke Wu(zhenkewu@umich.edu)

Nested Partially-Latent Class Models for Population and Individual Estimations

Zhenke Wu(zhenkewu@umich.edu)

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 6 / 30

Summary

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Zhenke Wu(zhenkewu@umich.edu)

Summary

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Summary

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Background

Method

Application

Hand-picked Bands "|"

Summary

Example II: Raw Data

Gel Electrophoresis Autoradiography; 20 Samples

Raw Image

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 7 / 30

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 7 / 30

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 7 / 30

• Etiology of Autoimmue Diseases:

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;
 - The body produces specific autoantibodies that target these autoantigens but also cause tissue damage

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;
 - The body produces specific autoantibodies that target these autoantigens but also cause tissue damage
- Heterogeneity: The autoantibody composition is strikingly different among patients

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;
 - The body produces specific autoantibodies that target these autoantigens but also cause tissue damage
- Heterogeneity: The autoantibody composition is strikingly different among patients
- Long-term clinical objective: find autoantibody signature that subsets autoimmune disease patients into groups with more homogeneous phenotypes and trajectories

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;
 - The body produces specific autoantibodies that target these autoantigens but also cause tissue damage
- Heterogeneity: The autoantibody composition is strikingly different among patients
- Long-term clinical objective: find autoantibody signature that subsets autoimmune disease patients into groups with more homogeneous phenotypes and trajectories
- Measurements:

- Etiology of Autoimmue Diseases:
 - Human immune system's responses to autoantigens;
 - The body produces specific autoantibodies that target these autoantigens but also cause tissue damage
- Heterogeneity: The autoantibody composition is strikingly different among patients
- Long-term clinical objective: find autoantibody signature that subsets autoimmune disease patients into groups with more homogeneous phenotypes and trajectories
- Measurements: Gel Electrophoresis Autoradiography (GEA)

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 8 / 30

A technique to visualize the abundance of molecules or fragments of molecules that have been radioactively labeled.

• Can generate 100s of possibilities of band patterns

A technique to visualize the abundance of molecules or fragments of molecules that have been radioactively labeled.

- Can generate 100s of possibilities of band patterns
- Can be tested and validated using commercially available line immunoblot assay (EuroImmun; Systemic Sclerosis (Nucleoli) profile)

A technique to visualize the abundance of molecules or fragments of molecules that have been radioactively labeled.

- Can generate 100s of possibilities of band patterns
- Can be tested and validated using commercially available line immunoblot assay (EuroImmun; Systemic Sclerosis (Nucleoli) profile)
- Gap: Onerous and expensive to validate; Need a method to greatly simplify autoantibody profile discovery

Zhenke Wu(zhenkewu@umich.edu)

A technique to visualize the abundance of molecules or fragments of molecules that have been radioactively labeled.

- Can generate 100s of possibilities of band patterns
- Can be tested and validated using commercially available line immunoblot assay (EuroImmun; Systemic Sclerosis (Nucleoli) profile)
- Gap: Onerous and expensive to validate; Need a method to greatly simplify autoantibody profile discovery
- Solution: Pre-filtering to define subgroups with similar specificities based on the bands observed by GEA

Zhenke Wu(zhenkewu@umich.edu)

Automated Pipeline for Autoimmune Disease Subsetting

Individualized Health Background Method Application Summary
Step I-A: Automated Peak Detection

Zhenke Wu(*zhenkewu@umich.edu*)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 11 / 30

• u_{gi} : lane number for lane $i = 1, \ldots, N_g$, gel $g = 1, \ldots, G$

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 12 / 30

- u_{gi} : lane number for lane $i = 1, \ldots, N_g$, gel $g = 1, \ldots, G$
- T_{gij} : location for the *j*-th peak ("*"), $j = 1, \ldots, J_{gi}$, for lane *i*, gel *g*

Step I-B: Batch Effect Correction

Zhenke Wu(zhenkewu@umich.edu)

Individualized Health

Background

Method

Application

Summary

Warping Examples

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 14 / 30

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 15 / 30

serum sample lane

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 16 / 30

Method

Application

Summary

Step I-C: Two-Dimensional De-Warping

- The physical process of autoradiography could cause image deformation
- Challenges
 - In general, few light-weight proteins on the right side of the image; If we don't see bands, how to align? Solution: align to a grid of protein landmarks and assume smoothness of warping
Step I-C: Two-Dimensional De-Warping

- The physical process of autoradiography could cause image deformation
- Challenges
 - In general, few light-weight proteins on the right side of the image; If we don't see bands, how to align? Solution: align to a grid of protein landmarks and assume smoothness of warping
 - Ubiquitous proteins (e.g., actin) on multiple gels must be aligned. Solution: Discretized non-homogeneous Poisson process with shared intensity across gels

Step I-C: Two-Dimensional De-Warping

- The physical process of autoradiography could cause image deformation
- Challenges
 - In general, few light-weight proteins on the right side of the image; If we don't see bands, how to align? Solution: align to a grid of protein landmarks and assume smoothness of warping
 - Ubiquitous proteins (e.g., actin) on multiple gels must be aligned. Solution: Discretized non-homogeneous Poisson process with shared intensity across gels
 - The observed peak locations are noisy. Solution: Gaussian noise around the true location

Prior on the peak-to-landmark indicators

• Peak-to-landmark Indicators:

Zhenke Wu(zhenkewu@umich.edu)

ndividualized Health	Background	Method	Application	Summary

Step I-C: Model for 2-Dimensional Image Dewarping Prior on the peak-to-landmark indicators

• Peak-to-landmark Indicators:

1. $Z_{gij} \in \{1, \dots, L\}$, $j = 1, \dots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3

ndividualized Health	Background	Method	Application	Summary

Step I-C: Model for 2-Dimensional Image Dewarping Prior on the peak-to-landmark indicators

• Peak-to-landmark Indicators:

- 1. $Z_{gij} \in \{1, \dots, L\}$, $j = 1, \dots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
- 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching

dividualized Health	Background	Method	Application	Summary

Step I-C: Model for 2-Dimensional Image Dewarping Prior on the peak-to-landmark indicators

• Peak-to-landmark Indicators:

- 1. $Z_{gij} \in \{1, \dots, L\}$, $j = 1, \dots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
- 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks

lividualized Health	Background	Method	Application	Summary

Prior on the peak-to-landmark indicators

- Peak-to-landmark Indicators:
 - 1. $Z_{gij} \in \{1, \dots, L\}$, $j = 1, \dots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
 - 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks
 - Number of observed peaks in lane *i*, gel *g*:

 $J_{gi} \stackrel{d}{\sim} \mathsf{Poisson}(\Lambda)$

ividualized Health	Background	Method	Application	Summary

Prior on the peak-to-landmark indicators

- Peak-to-landmark Indicators:
 - 1. $Z_{gij} \in \{1, \ldots, L\}$, $j = 1, \ldots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
 - 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks
 - Number of observed peaks in lane *i*, gel *g*:

 $J_{gi} \stackrel{d}{\sim} \mathsf{Poisson}(\Lambda)$

 $\Lambda:$ Cumulative intensity; Controls the total number of peaks

ividualized Health	Background	Method	Application	Summary

Prior on the peak-to-landmark indicators

- Peak-to-landmark Indicators:
 - 1. $Z_{gij} \in \{1, \ldots, L\}$, $j = 1, \ldots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
 - 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks
 - Number of observed peaks in lane *i*, gel g:
 J_{gi} ^d → Poisson(Λ)
 Λ: Cumulative intensity; Controls the total number of peaks
 - Peak-to-landmark indicators:
 - $(Z_{gi1}, \ldots, Z_{giJ_{gi}}) =$ increasing sort $\{Z_{gi1}^*, \ldots, Z_{giJ_{gi}}^*\}$

Zhenke Wu(zhenkewu@umich.edu)

Prior on the peak-to-landmark indicators

- Peak-to-landmark Indicators:
 - 1. $Z_{gij} \in \{1, \ldots, L\}$, $j = 1, \ldots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
 - 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks
 - Number of observed peaks in lane *i*, gel g:
 J_{gi} ^d → Poisson(Λ)
 Λ: Cumulative intensity; Controls the total number of peaks
 - Peak-to-landmark indicators: $(Z_{gi1}, \ldots, Z_{giJ_{gi}}) =$ increasing sort $\{Z_{gi1}^*, \ldots, Z_{giJ_{gi}}^*\}$

•
$$Z_{gij}^* \stackrel{''d}{\sim} \text{Categorical}\left(\{\lambda_{\ell}^*\}_{\ell=1}^L\right)$$

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 18 / 30

Prior on the peak-to-landmark indicators

- Peak-to-landmark Indicators:
 - 1. $Z_{gij} \in \{1, \dots, L\}$, $j = 1, \dots, J_{gi}$ (match a "*" to a "+"), e.g., $Z_{gij} = 3$ means the peak is matched to Landmark 3
 - 2. Constrain $Z_{gi,j-1} \leq Z_{gij}$ to prevent reverse matching
- Bayesian Model for Aligning Peaks to Landmarks

 - Peak-to-landmark indicators:
 - $(Z_{gi1},\ldots,Z_{giJ_{gi}}) =$ increasing sort $\{Z_{gi1}^*,\ldots,Z_{giJ_{gi}}^*\}$
 - $Z_{gij}^* \stackrel{iid}{\sim} \text{Categorical}\left(\{\lambda_\ell^*\}_{\ell=1}^L\right)$ λ_ℓ^* : Landmark-specific intensity; Independent of g; Hence, when possible, encourages nearby peaks to be aligned to an identical landmark

Zhenke Wu(zhenkewu@umich.edu)

Gaussian Mixture Model for Noisy Peak Locations "*"

• Model the observed peaks T_{gij} as observations from a L-component Gaussian mixture, for each candidate landmark ℓ

Zhenke Wu(zhenkewu@umich.edu)

Gaussian Mixture Model for Noisy Peak Locations "*"

- Model the observed peaks T_{gij} as observations from a L-component Gaussian mixture, for each candidate landmark ℓ
- We assume

$$p\left\{\underbrace{(\mathcal{T}_{gij} = t, u_{gi})}_{\text{peak}} \mid \underbrace{Z_{gij} = \ell}_{\text{lane}}, \underbrace{\mathcal{T}_{gi,j-1}}_{\text{peak location number}}, \underbrace{\mathcal{S}_{g}}_{\text{level}}, \underbrace{\sigma_{\epsilon}}_{\text{level}}\right\}$$
$$= \begin{cases} \phi(t; \mathcal{S}_{g}(\nu_{\ell}, u_{gi}), \sigma_{\epsilon}), & t \in \mathcal{I}_{gij}(\nu_{\ell}, A_{0}); \\ 0, & \text{otherwise,} \end{cases}$$

 $\ell = 1, \ldots, L$, peak $j = 1, \ldots, J_{gi}$, lane $i = 1, \ldots, N_g$, gel $g = 1, \ldots, G$.

Zhenke Wu(zhenkewu@umich.edu)

Gaussian Mixture Model for Noisy Peak Locations "*"

- Model the observed peaks T_{gij} as observations from a L-component Gaussian mixture, for each candidate landmark ℓ
- We assume

$$p \left\{ \underbrace{\left(\underbrace{T_{gij} = t}_{\text{peak}}, \underbrace{u_{gi}}_{\text{lane}} \right) \mid \underbrace{Z_{gij} = \ell}_{\text{lander humber}}, \underbrace{T_{gi,j-1}}_{\text{peak location function}}, \underbrace{S_g}_{\text{location location function}}, \underbrace{\sigma_{\epsilon}}_{\text{level}} \right\}}_{= \begin{cases} \phi(t; S_g(\nu_{\ell}, u_{gi}), \sigma_{\epsilon}), & t \in I_{gij}(\nu_{\ell}, A_0); \\ 0, & \text{otherwise,} \end{cases}} \end{cases}$$

 $\ell = 1, ..., L$, peak $j = 1, ..., J_{gi}$, lane $i = 1, ..., N_g$, gel g = 1, ..., G. • $\phi(\cdot; a, b)$: Gaussian density with mean a and standard deviation b.

Gaussian Mixture Model for Noisy Peak Locations "*"

- Model the observed peaks T_{gij} as observations from a L-component Gaussian mixture, for each candidate landmark ℓ
- We assume

$$p \left\{ \underbrace{\left(\underbrace{T_{gij} = t}_{\text{peak}}, \underbrace{u_{gi}}_{\text{number}} \right) \mid \underbrace{Z_{gij} = \ell}_{\text{lane}, \text{matched to nearest left warping noise}}_{\text{location number landmark } \ell \text{ peak location function}}^{\text{noise}}, \underbrace{\sigma_{\epsilon}}_{\text{level}} \right\} \\ = \begin{cases} \phi(t; \mathcal{S}_{g}(\nu_{\ell}, u_{gi}), \sigma_{\epsilon}), & t \in \mathcal{I}_{gij}(\nu_{\ell}, A_{0}); \\ 0, & \text{otherwise}, \end{cases}$$

 $\ell = 1, \ldots, L$, peak $j = 1, \ldots, J_{gi}$, lane $i = 1, \ldots, N_g$, gel $g = 1, \ldots, G$. • S_g : $(\nu_\ell, u_{gi}) \mapsto S_g(\nu_\ell, u_i)$, unknown, smooth bivariate function for the spatial deformation

Zhenke Wu(zhenkewu@umich.edu)

Gaussian Mixture Model for Noisy Peak Locations "*"

- Model the observed peaks T_{gij} as observations from a *L*-component Gaussian mixture, for each candidate landmark ℓ
- We assume

$$p \left\{ \underbrace{(\underbrace{T_{gij} = t}_{\text{peak}}, \underbrace{u_{gi}}_{\text{number}}) \mid \underbrace{Z_{gij} = \ell}_{\text{matched to nearest left}}, \underbrace{T_{gi,j-1}}_{\text{peak location function}}, \underbrace{S_{g}}_{\text{level}}, \underbrace{\sigma_{\epsilon}}_{\text{level}} \right\}}_{= \begin{cases} \phi(t; S_{g}(\nu_{\ell}, u_{gi}), \sigma_{\epsilon}), & t \in I_{gij}(\nu_{\ell}, A_{0}); \\ 0, & \text{otherwise,} \end{cases}} \end{cases}$$

 $\ell=1,\ldots,L$, peak $j=1,\ldots,J_{gi}$, lane $i=1,\ldots,N_g$, gel $g=1,\ldots,G$.

• The set $\mathcal{I}_{gij}(\nu_{\ell}, A_0) \triangleq \{t : |t - \nu_{\ell}| < A_0 \text{ and } t > T_{gi,j-1}\}$ assumes a peak appears within distance A_0 from its true landmark

Zhenke Wu(zhenkewu@umich.edu)

Gaussian Mixture Model for Noisy Peak Locations "*"

- Model the observed peaks T_{gij} as observations from a L-component Gaussian mixture, for each candidate landmark ℓ
- We assume

$$p\left\{\underbrace{\left(\underbrace{T_{gij}=t}_{\text{peak}}, \underbrace{u_{gi}}_{\text{number}}\right) \mid \underbrace{Z_{gij}=\ell}_{\text{matched to nearest left}}, \underbrace{T_{gi,j-1}}_{\text{peak location}}, \underbrace{S_{g}}_{\text{function}}, \underbrace{\sigma_{\epsilon}}_{\text{level}}\right\}}_{=\begin{cases}\phi(t; S_{g}(\nu_{\ell}, u_{gi}), \sigma_{\epsilon}), & t \in \mathcal{I}_{gij}(\nu_{\ell}, A_{0});\\0, & \text{otherwise},\end{cases}}$$

 $\ell = 1, \dots, L$, peak $j = 1, \dots, J_{gi}$, lane $i = 1, \dots, N_g$, gel $g = 1, \dots, G$.

• Let \mathcal{P}_g be the peaks for gel g; let \mathcal{P} collect all the peaks

Zhenke Wu(zhenkewu@umich.edu)

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

• $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively

Zhenke Wu(zhenkewu@umich.edu)

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated

Zhenke Wu(zhenkewu@umich.edu)

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors
 - Boundary constraint: $S_g(\nu_0, u) = \nu_0, S_g(\nu_{L+1}, u) = \nu_{L+1}$

Zhenke Wu(zhenkewu@umich.edu)

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors
 - Boundary constraint: $S_g(\nu_0, u) = \nu_0, S_g(\nu_{L+1}, u) = \nu_{L+1}$
 - Monotonic constraint:

 $\nu_0 \leq \mathcal{S}_g(\nu, u) < \mathcal{S}_g(\nu', u \leq \nu_{L+1}, \forall \nu < \nu', \forall u$

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 20 / 30

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors
 - Boundary constraint: $S_g(\nu_0, u) = \nu_0, S_g(\nu_{L+1}, u) = \nu_{L+1}$
 - Monotonic constraint:
 - $\nu_0 \leq \mathcal{S}_g(\nu, u) < \mathcal{S}_g(\nu', u \leq \nu_{L+1}, \forall \nu < \nu', \forall u$
 - Both constraints above can be implemented via constraints on $\{\beta_{\textit{gst}}\}$

Zhenke Wu(zhenkewu@umich.edu)

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors
 - Boundary constraint: $S_g(\nu_0, u) = \nu_0, S_g(\nu_{L+1}, u) = \nu_{L+1}$
 - Monotonic constraint:

 $u_0 \leq \mathcal{S}_g(\nu, u) < \mathcal{S}_g(\nu', u \leq \nu_{L+1}, \forall \nu < \nu', \forall u)$

- Both constraints above can be implemented via constraints on $\{\beta_{gst}\}$
- Smoothness: Bayesian penalized-splines to make adjacent $\{\beta_{gst}\}$ similar

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 20 / 30

Warping Function by Tensor Product Basis Expansion

• We assume the warping function

$$\mathcal{S}_g(\nu, u) = \sum_{s=1}^{T_\nu} \sum_{t=1}^{T_u} \beta_{gst} B_{g1s}(\nu) B_{g2t}(u),$$

- $B_{g1s}(\cdot)$ and $B_{g2t}(\cdot)$: the *s*-th and *t*-th cubic B-spline basis along the two coordinate directions, respectively
- {β_{gst}}: the set of coefficients to be estimated
- Implementing Warping Function Constraints and Priors
 - Boundary constraint: $S_g(\nu_0, u) = \nu_0, S_g(\nu_{L+1}, u) = \nu_{L+1}$
 - Monotonic constraint:

 $\nu_0 \leq \mathcal{S}_g(\nu, u) < \mathcal{S}_g(\nu', u \leq \nu_{L+1}, \forall \nu < \nu', \forall u$

- Both constraints above can be implemented via constraints on $\{\beta_{gst}\}$
- Smoothness: Bayesian penalized-splines to make adjacent $\{\beta_{\textit{gst}}\}$ similar
- Vary by gel: $\mathcal{S}_{g}(\nu_{\ell}, u)$

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 20 / 30

Individualized Health

Method

Step I-C: A Mathematical Model for Warping

Estimate the warping, then reverse

electric field

Individualized Health	Background	Method	Application	Summary
Step I-C: (Goal of 2-Di	mensional I	mage De-war	oing

The posterior distribution $[\mathbf{Z} \mid \mathcal{P}]$ Recall:

• Z: the collection of peak-to-landmark indicators

Zhenke Wu(zhenkewu@umich.edu)

Individualized Health	Background	Method	Application	Summary
Step I-C:	Goal of 2-Di	mensional li	mage De-war	ping

The posterior distribution $[\mathbf{Z} \mid \mathcal{P}]$

Recall:

- Z: the collection of peak-to-landmark indicators
- \mathcal{P} : the collection of all the observed peaks

 Goal: Joint distribution [P, Z](data+unknowns) → Posterior distribution [Z | P] (unknown given data)

Zhenke Wu(zhenkewu@umich.edu)

$$\begin{split} & \prod_{g=1}^{G} \left\{ \underbrace{\prod_{i=1}^{N_g} \left[\prod_{j=1}^{J_{gi}} N\left(T_{gij}; \boldsymbol{B}_{g1}(\boldsymbol{\nu}_{Z_{gij}})' \beta_g \boldsymbol{B}_{g2}(u_{gi}), \sigma_{\epsilon}^{-2}\right) \mathbf{1} \{T_{gij} \in \mathcal{I}_{gij}(\boldsymbol{\nu}_{Z_{gij}}, A_0)\} \right] \right. \\ & \times \underbrace{J_{gi}!}_{j=1}^{M_g} \underbrace{\operatorname{Categorical}(Z_{gij}; \boldsymbol{\lambda}) \mathbf{1} \{Z_{gij} \leq Z_{gi,j+1}, j = 1, \dots, J_{gi} - 1\} \right]}_{\text{prior of } \mathbf{Z}} \\ & \times \underbrace{N_{T_u-1} \left(\{\beta_{gs1}\}_{s=1}^{T_u-1}; \beta_{j=1}^{\text{id}}, \sigma_{g1}^{-2} \Delta_1' \Delta_1 \right) \mathbf{1} \{\nu_0 = \beta_{g11} < \dots < \beta_{gs1} < \dots < \beta_{g,T_u-1,1} < \nu_{L+1} \} \cdot p(\sigma_{g1}^2) \right)}_{\text{prior } (2.6) \text{ and hyperprior of the smoothing parameter}} \\ & \times \underbrace{\prod_{s=2}^{T_u-1} \left[N_{T_u} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right]}_{\text{prior } (2.7) \text{ and hyperpriors of the smoothing parameter}} \right\} \\ & \times \underbrace{M_{t_u-1} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right]}_{\text{hyperprior for } \mathbf{Z}} \right\} \\ & \times \underbrace{M_{t_u-1} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right]}_{\text{hyperprior for } \mathbf{Z}} \right\} \\ & \times \underbrace{M_{t_u-1} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right]}_{\text{hyperprior for } \mathbf{Z}} \right\} \\ & \times \underbrace{M_{t_u-1} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right]}_{\text{hyperprior for } \mathbf{Z}} \right\} \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u-1} \left[N_{t_u} \left(\{\beta_{gs1}\}_{t=1}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right) \cdot p(\sigma_{g2}^2, \beta_g) \right\} \right\} \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u-1} \left[N_{t_u} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} \right\} \right\} \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} \right\} \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} \right\} \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T_u}; 0, \sigma_{g2}^{-2} \Delta_2' \Delta_2 \right\} } \\ \\ & \times \underbrace{M_{t_u-1} \left\{ \sum_{s=2}^{T$$

- Goal: Joint distribution [P, Z](data+unknowns) → Posterior distribution [Z | P] (unknown given data)
- Tool: Markov chain Monte Carlo (MCMC)

Zhenke Wu(zhenkewu@umich.edu)

$$\begin{split} & \prod_{g=1}^{G} \left\{ \underbrace{\prod_{i=1}^{N_g} \left[\prod_{j=1}^{J_{gi}} N\left(T_{gij}; \boldsymbol{B}_{g1}(\boldsymbol{\nu}_{Z_{gij}})' \beta_g \boldsymbol{B}_{g2}(u_{gi}), \sigma_{\epsilon}^{-2}\right) \mathbf{1} \{T_{gij} \in \mathcal{I}_{gij}(\boldsymbol{\nu}_{Z_{gij}}, A_0)\} \right] }_{\text{likelihood } (2.2)} \\ & \times \underbrace{J_{gi}!}_{j=1}^{J_{gi}} \operatorname{Categorical}(Z_{gij}; \boldsymbol{\lambda}) \mathbf{1} \{Z_{gij} \leq Z_{gi,j+1}, j = 1, \dots, J_{gi} - 1\} \right]}_{\text{prior of } \mathbf{Z}} \\ \times \underbrace{N_{T_{\nu}-1} \left(\{\beta_{gs1}\}_{s=1}^{T_{\nu}-1}; \beta_{j=1}^{ld}, \sigma_{g1}^{-2} \Delta_{1}' \Delta_{1} \right) \mathbf{1} \{\nu_{0} = \beta_{g11} < \dots < \beta_{gs1} < \dots < \beta_{g,T_{\nu}-1,1} < \nu_{L+1} \} \cdot p(\sigma_{g1}^{2}) }_{\text{prior } (2.6) \text{ and hyperprior of the smoothing parameter}} \\ \times \underbrace{\prod_{s=2}^{T_{\nu}-1} \left[N_{T_{u}} \left\{ \{\beta_{gs1}\}_{t=1}^{T_{u}}; 0, \sigma_{g2}^{-2} \Delta_{2}' \Delta_{2} \right\} \cdot p(\sigma_{g2}^{-2}, \rho_{g}) \right] }_{\text{hyperprior for } \mathbf{Z}} \underbrace{p(\boldsymbol{\lambda})}_{\text{hyperprior for } \mathbf{Z}}, (2.9)$$

- Goal: Joint distribution [P, Z](data+unknowns) → Posterior distribution [Z | P] (unknown given data)
- Tool: Markov chain Monte Carlo (MCMC)
- Idea: Simulate samples from the joint posterior distribution of the unknowns given the data;

Zhenke Wu(zhenkewu@umich.edu)

$$\begin{split} & \prod_{g=1}^{G} \left\{ \underbrace{\prod_{i=1}^{N_g} \left[\prod_{j=1}^{J_{gi}} N\left(T_{gij}; \boldsymbol{B}_{g1}(\boldsymbol{\nu}_{Z_{gij}})' \beta_g \boldsymbol{B}_{g2}(u_{gi}), \sigma_{\epsilon}^{-2}\right) \mathbf{1} \{T_{gij} \in \mathcal{I}_{gij}(\boldsymbol{\nu}_{Z_{gij}}, A_0)\}}_{\text{intellihood } (2.2)} \right. \\ & \times \underbrace{J_{gi}!}_{j=1}^{J_{gi}} \operatorname{Categorical}(Z_{gij}; \boldsymbol{\lambda}) \mathbf{1} \{Z_{gij} \leq Z_{gi,j+1}, j = 1, \dots, J_{gi} - 1\} \right]_{prior \ of \ Z} \\ & \times \underbrace{N_{T_{\nu}-1} \left(\{\beta_{gs1}\}_{s=1}^{T_{\nu}-1}; \beta_{j=1}^{\text{id}} \dots, \beta_{g1}^{-2} \Delta_{1}^{\prime} \Delta_{1} \right) \mathbf{1} \{\boldsymbol{\nu}_{0} = \beta_{g11} < \dots < \beta_{gs1} < \dots < \beta_{g,T_{\nu}-1,1} < \boldsymbol{\nu}_{L+1} \} \cdot p(\sigma_{g1}^{2}) \\ & \qquad prior \ (2.6) \ \text{and hyperprior of the smoothing parameter} \\ & \times \underbrace{\prod_{s=2}^{T_{\nu}-1} \left[N_{T_{u}} \left(\{\beta_{gs1}\}_{t=1}^{T_{u}}; 0, \sigma_{g2}^{-2} \Delta_{2}^{\prime} \Delta_{2} \right) \cdot p(\sigma_{g2}^{-2}, \rho_{g}) \right] \right\} \times \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}^{N_{\mu}} \left(\{\beta_{gs1}\}_{t=1}^{T_{u}}; 0, \sigma_{g2}^{-2} \Delta_{2}^{\prime} \Delta_{2} \right) \cdot p(\sigma_{g2}^{-2}, \rho_{g}) \right]}_{\text{hyperprior for \ Z}} \right\} \times \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}^{N_{\mu}} \left(\{\beta_{gs1}\}_{t=1}^{T_{u}}; 0, \sigma_{g2}^{-2} \Delta_{2}^{\prime} \Delta_{2} \right) \cdot p(\sigma_{g2}^{-2}, \rho_{g}) \right]}_{\text{hyperprior for \ Z}} \right\} \times \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace{p_{(2,1)}}_{\text{hyperprior for \ Z}} \underbrace$$

- Goal: Joint distribution [P, Z](data+unknowns) → Posterior distribution [Z | P] (unknown given data)
- Tool: Markov chain Monte Carlo (MCMC)
- Idea: Simulate samples from the joint posterior distribution of the unknowns given the data; Then use the samples to do posterior inference for any functions of the unknowns

Zhenke Wu(zhenkewu@umich.edu)

Step I-C: Align the peaks – Result

Animation; " Δ " for signature; " \bullet " for the observed peaks (Please Click the Image for Animation)

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 24 / 30

Method

Applicatio

Summary

Step I-C: Aligned High-Frequency Intensity Data

Before

Zhenke Wu(zhenkewu@umich.edu)

Method

Applicatio

Summary

Step I-C: Aligned High-Frequency Intensity Data

Before

Zhenke Wu(zhenkewu@umich.edu)
Step I-C: Aligned High-Frequency Intensity Data

Before

25 / 30

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 25 / 30

Data

Scleroderma

- Long-term clinical objective: find autoantibody signature that subsets autoimmune disease patients into groups with more homogeneous phenotypes and trajectories
- Sera from well-characterized patients with scleroderma and an associated cancer from Johns Hopkins Scleroderma Center database
- Data
 - 1. Known clustering: two replicate GEA experiments on 20 samples
 - 2. Unknown clustering: non-replicate GEA experiment on 80 samples
- Steps:
 - 1. Pre-processing
 - 2. Clustering (into 2, 3, ...,N groups) based on the pre-processed high-frequency intensity data (hierarchical clustering here)
 - 3. Evaluate the separation of the obtained clusters and compare them to the truth (known in the replicate experiment)

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 26 / 30

Pre-processing Improves the Accuracy of Cluster Estimation

Data with technical replicates; 20 samples, long- and short- exposures

Number of clusters

* Adjusted Rand index: assess the similarity of two ways of clustering the same set of observations; the higher the better

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 27 / 30

28 / 30

Pre-processing Improves the Separation of Clusters

Data without Replicates; Hierarchical Clustering; Pre-processed vs Non-Pre-processed

- Distance: Correlation-based distance; complete linkage
- Interpretation: adjacent terminal nodes in the tree \rightarrow similar in AutoAntibody signatures
- Uncertainty: confidence levels by multiscale boostrapping (red numbers; ones > 95 are shown in red boxes; a numbering of the subtrees is shown in blue)

Pre-processing Improves the Separation of Clusters

Data without Replicates; Hierarchical Clustering; Pre-processed vs Non-Pre-processed

- Distance: Correlation-based distance; complete linkage
- Interpretation: adjacent terminal nodes in the tree \rightarrow similar in AutoAntibody signatures
- Uncertainty: confidence levels by multiscale boostrapping (red numbers; ones > 95 are shown in red boxes; a numbering of the subtrees is shown in blue)

Summary

- Problem: Human recognition of autoantibody patterns and hence clustering becomes more difficult when patterns are composite and on multiple gels
- Method: Novel automated algorithms that
 - 1. Estimate autoantibody signatures
 - 2. The pre-processed data (Step I) can be the input of many subgroup discovery methods (Step II) including hierarchical clustering, latent class models and factor analyses
 - 3. Improves the accuracy of subgroup discovery
- Free publicly available open-source software: https://github.com/zhenkewu/spotgear
- Manuscript: Wu, Casciola-Rosen, Shah, Rosen, Zeger (2017). http://biorxiv.org/content/early/2017/04/21/128199
- Ongoing work: novel Bayesian clustering model to find disease subsets; Based on the biology that autoantibodies recognize protein complexes.

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 29 / 30

Thank You!

Funding

Patient-Centered Outcome Research Institute [PCORI ME-1408-20318] Hopkins Individualized Health Initiative

Some References (More at: zhenkewu.com)

 Wu Z, Casciola-Rosen L, Shah AA, Rosen A, Zeger SL (2017+). Estimating AutoAntibody Signatures to Detect Autoimmune Disease Patient Subsets. Minor Revision for *Biostatistics*. http://biorxiv.org/content/early/2017/04/18/128199.

- Wu Z, Deloria-Knoll M, Hammitt LL, and Zeger SL, for the PERCH Core Team (2015). Partially Latent Class Models (pLCM) for Case-Control Studies of Childhood Pneumonia Etiology. Journal of the Royal Statistical Society: Series C (Applied Statistics). 65:97-114.
- Wu Z, Deloria-Knoll M and Zeger SL (2016a).
 Nested Partially-Latent Class Models for Estimating Disease Etiology from Case-Control Data. Biostatistics, 18 (2): 200-213. doi:10.1093/biostatistics/kxw037.

Zhenke Wu(zhenkewu@umich.edu)

RBras62, UFLA, Lavras, MG, Brazil

27 July 2017 30 / 30