Bayesian Nested Partially-Latent Models for Dependent Binary Data Estimating Disease Etiology

Zhenke Wu

Postdoctoral Fellow Department of Biostatistics

09 November 2015

R Package: https://github.com/zhenkewu/baker

Zhenke Wu(zhwu@jhu.edu)

Question: What's Causing Her Lung Infection?

Measurements From a Random Case

Measurements using different specimens

		_	BCX	PFCX	LACX	NPCX	ISCX2	PFPCR	LAPCR	NPPCR	ISPCR
<u>Bacterium</u>	- [HINF	0				0			1	1
		MCAT	0				1			1	1
		PNEU	0			1	1			1	1
		SASP	0				0			0	0
	1	SAUR	0				0			0	0
		BORD								0	0
		C_PNEU								0	0
		M_PNEU								0	1
	L	- PCP								0	0
	Г	ADENOVIRUS								0	0
		CMV								0	0
		COR_229								0	0
		COR_43								0	0
		COR_63								0	0
		COR_HKU								0	0
		FLU_C								0	0
		HBOV								0	1
16		HMPV_A_B								0	0
virus	1	INFLUENZA_A								0	0
		INFLUENZA_B								0	0
		PARA1								0	0
		PARA2								0	0
		PARA3								0	0
		PARA4								0	0
		PV_EV								0	0
		RHINO								0	0
	L	RSV_A_B								0	0

Zhenke Wu(zhwu@jhu.edu)

Results

Results

Discussion

Motivating Application

Pneumonia Etiology Research for Child Health (PERCH)

Background:

- > 1 million deaths per year among children under 5
- \bullet > 30 possible pathogen causes

Goal:

• To determine the etiology and risk factors for pneumonia

Design:

- 7-country, case-control study
- Multiple modern diagnostic tools
- ${\sim}5{,}000$ cases and ${\sim}5{,}000$ controls

Common Questions on Individual and Population Health

1.

- a. What is the person's health state given health measurements?
 - b. What is the population distribution of health states?

(Wu et al., 2015a,b,c)

2. How to make robust inference?

Picture source: http://www.diabetesdaily.com/voices/2014/07/why-one-size-fits-all-doesnt-work-in-diabetes

Problem and Data Features

Latent health state:

• Estimating population distribution + individual diagnosis

Data Features:

Problem

- $1. \ \ \text{Gold-standard measure: few or none}$
- 2. Latent state: many categories
- 3. Measurements: many, with distinct error rates, missingness
- 4. Blessing: control data

No effective and principled methods to estimate the etiologic distribution ("pie") using such data.

Zhenke Wu(zhwu@jhu.edu)

Models

Results

Results

Discussion

Our Approach: Direct Modeling

Connect Latent States and Measurements for Individual i

Zhenke Wu(*zhwu@jhu.edu*)

Biostat Grand Rounds, JHSPH

09 November 2015 5 / 18

- IDEA: marginal correlations are caused by confounding of unobserved cluster indicators (*I_i*)
- Assumption 1: Within-Class Homogeneity

$$P[M_{ij} = 1 \mid I_i = k] = \psi_k^{(j)}, k = 1, ..., K$$

• Assumption 2: Local Independence (LI) $P[M_{i1} = m_1, ..., M_{iJ} = m_J | I_i = k] = \prod_{j=1}^{J} Pr[M_{ij} = m_j | I_i = k], \ \forall (m_1, ..., m_J)' = m$

Zhenke Wu(zhwu@jhu.edu)

Problem Models Results Results Discussion

Partially-Latent Class Models (pLCM; Wu et al. 2015a)

Model Structure

- Partially-observed class: Controls have no lung infection;
- Non-interference:

$$P(M_{[-j]} | Y = 0) = P(M_{[-j]} | I^{L} = j, Y = 1);$$

 Local independence (L1): independence among measurements given class (I^L_i).

Next: relax both non-interference and LI assumptions.

Models

Results

Modeling Local Dependence (LD)

- Direct evidence from control data; symmetry (see Figure); pathogen interactions
- Impact on inference (Pepe and Janes, 2007; Albert et al., 2001)
- Modeling cross-classified probability contingency tables

$$P(M_{i1} = m_1, ..., M_{iJ} = m_J)$$

- Log-linear parametrization
- Generalized linear mixed-effect models (GLMM)
- Mixed-membership models
- Other non-negative decompositions

Results

Results

Discussion

Nested pLCM

Example: 5 Pathogens, 2 Subclasses

Zhenke Wu(zhwu@jhu.edu)

Results

Example: Dependence Structure; 2 Subclasses

Left: weak LD

Right: strong LD

Zhenke Wu(zhwu@jhu.edu)

Results

Discussion

Simulation: Relative Asymptotic Bias Bias if Estimated by Working LI Model (pLCM) Left: weak LD Right: strong LD

Estimation in Finite Samples: How Many Subclasses?

Example: 3 Subclasses

A model selection problem:

- Extra subclasses: rich correlation structure;
- Few subclasses: parsimonious approximation in finite samples.

Proposed solution:

Model averaging by stick-breaking prior: to encourage few but allow more if data have rich dependence

Zhenke Wu(*zhwu@jhu.edu*)

Finite-Sample Simulations: Smaller MSE by npLCM Scenario II: Strong LD; $N_{case} = N_{control} = 500$

	Truth: Cases' First Subclass Weight (η_o)													
	0	0.25	0.5	0.75	1									
Class	100×Ratio of MSE(Standard Error)													
Α	82(4)	25(1)	47(2)	115(6)	221(12)									
В	516(11)	177(5)	80(3)	62(4)	140(8)									
С	2379(77)	711(26)	131(7)	268(13)	357(8)									
D	397(14)	152(6)	94(5)	79(4)	60(4)									
Е	357(13)	151(6)	102(5)	95(6)	82(5)									

Table: ratio of mean squared errors (MSE) for pLCM vs npLCM. All numbers are averaged across 1,000 replications.

Zhenke Wu(zhwu@jhu.edu)

Biostat Grand Rounds, JHSPH

09 November 2015 13 / 18

Analysis of PERCH Data

Zhenke Wu(zhwu@jhu.edu)

Results

Results

Discussion

Model Checking: Frequent Binary Patterns Left: pLCM; Right: npLCM

Zhenke Wu(*zhwu@jhu.edu*)

Biostat Grand Rounds, JHSPH

09 November 2015 15 / 18

Results

Discussion

Main Points Once Again

- Input: multivariate binary data in case-control studies
- Output: two histograms: 1) the fraction of cases caused by each pathogen; 2) the probability of a particular case caused by each pathogen; both given measurements.
- Proposed a larger model family (nested pLCM) to
 - 1) Borrow covariation and measurement precision from controls;
 - Account for residual measurement correlations, or local dependence (LD);
 - 3) Parsimoniously approximate LD by sparse Bayesian fitting
- Compared to pLCM, the extended model family can
 - 1) Reduce bias
 - 2) Retain efficiency
 - 3) Have near-nominal coverage

Zhenke Wu(zhwu@jhu.edu)

Problem	em Models						Results							Re	sults			Discu	ssior	
Left:	pLC		R M	Regression Analysis Middle: npLCM (improved fit)									<i>Right</i> : Seasonality							
HINF:(1)	(obs-mean)/sd	Pitot	NO OTHER	4.4.8 (a)PA	e, O'bhu	40 (e).FS4		(obs-mean)/se	a _{Ol} ac	EPO OTHE	entre and	o on	ND BIRGH	HMPV_A_B	· · · ·	·····	r. 1	 Ĵ	J	16.5%
ADENO:(2)		· · · · · · · · · · · · · · · · · · ·	-3						· · · · · ·											
HMPV_A_B:(3)		-5.2	· · · · · · · · · · · · · · · · · · ·	4.4		-10			-2.1	· · · · · · · · · · · · · · · · · · ·			-3.6	PARA		Â			J	4.7%
PARA_1:(4)			2.9	· · · · · ·		-3.3	cases				· · · · · · · · · · · · · · · · · · ·		-2.8	cases			-			1
RHINO:(5)			3		*****	-6.1						1. N.		HSV BSV	Į.		$\hat{\cap}$	<u></u>		• 19.3%
RSV:(6)						· · · · · · · · · · · ·							and the second s	0.		10-00-0115 10-00-0115 10-00-0115	201-0-0	- 2-10-110	- 57-07-618	▲ = = =
			controls				controls													

Models

Results

Results

Discussion

Thanks!

Collaborators

Scott Zeger Maria Deloria-Knoll Laura Hammitt Katherine O'Brien

Funding Patient-Centered Outcome Research Institute [PCORI ME-1408-20318] Bill & Melinda Gates Foundation [48968] Hopkins Individualized Health (*in*Health) Initiative

Related Papers (More at: zhenkewu.com)

- Wu Z, Deloria-Knoll M, Hammitt LL, and Zeger SL, for the PERCH Core Team (2015a). Partially Latent Class Models (pLCM) for Case-Control Studies of Childhood Pneumonia Etiology. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*. doi: 10.1111/rssc.12101.
- Wu Z, Zeger SL (2015b). Nested Partially-Latent Class Models for Estimating Disease Etiology from Case-Control Data. Johns Hopkins Biostatistics Working Papers No. 276.
- 3. Wu Z, Zeger SL (2015c). Regression Analysis for Estimating Disease Etiology from Case-Control Data. *Johns Hopkins Biostatistics Working Papers.*

Zhenke Wu(*zhwu@jhu.edu*)

Biostat Grand Rounds, JHSPH

09 November 2015 18 / 18