Estimating Treatment Effects in Cluster Randomized Trials by Calibrating Covariate Imbalances between Clusters

Zhenke Wu, Constantine Frangakis, Thomas Louis, Daniel Scharfstein

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health

27 August 2014

MPCR

Individualizing Health

Source: http://www.diabetesdaily.com/voices/2014/07/why-one-size-fits-all-doesnt-work-in-diabetes

Evaluation of individualized intervention

- **Scientific question:** To what extent has the individualized rule improved health outcomes for the entire population? (Policy makers may care more than clinicians)
- 2 **Statistical question:** How to estimate the overall effect *consistently* and *efficiently*?

Wu, Frangakis, Louis, Scharfstein (2014). Estimating Treatment Effects in Cluster Randomized Trials by Calibrating Covariate Imbalances between Clusters. *Biometrics*. doi: 10.1111/biom.12214.

R package: http://github.com/zhenkewu/mpcr

Example: Guided Care study

Background: specially trained nurses to help deliver patient-centered care

Study website: http://www.guidedcare.org/ Nurse training courses: https://www.ijhn-education.org/content/guided-care-nursing Matched-pair cluster randomized (MPCR) design-rationale

Sometimes, investigators are only able to intervene on clusters of individuals, e.g., a nurse for each clinical practice

- 1. Cornfield J (1978)
- 2. Gail et al. (1992)
- 3. Moulton L (2004)
- 4. Imai K, King G, and Nall C (2009)

Matched-pair cluster randomized (MPCR) design-rationale

- Sometimes, investigators are only able to intervene on clusters of individuals, e.g., a nurse for each clinical practice
- 2 To recoup the resulting efficiency loss¹, some studies pair similar clusters and randomize treatments within pairs^{2,3}

- 1. Cornfield J (1978)
- 2. Gail et al. (1992)
- 3. Moulton L (2004)
- 4. Imai K, King G, and Nall C (2009)

Matched-pair cluster randomized (MPCR) design-rationale

- Sometimes, investigators are only able to intervene on clusters of individuals, e.g., a nurse for each clinical practice
- 2 To recoup the resulting efficiency loss¹, some studies pair similar clusters and randomize treatments within pairs^{2,3}
- 3 The use of pre-treatment variables that affect the outcome can improve estimation efficiency⁴
- 1. Cornfield J (1978)
- 2. Gail et al. (1992)
- 3. Moulton L (2004)
- 4. Imai K, King G, and Nall C (2009)

Matched-pair cluster randomized (MPCR) design One pair

Matched-pair cluster randomized (MPCR) design One pair

Matched-pair cluster randomized (MPCR) design One pair

MPCR design Example: Guided Care study⁵

5. Boult C. et al. (2013)

MPCR design Example: Guided Care study⁵

5. Boult C. et al. (2013)

- Intervention: assignment of specially trained nurses to coordinate patient-centered care
- 14 teams of clinical practices matched into 7 pairs
- Covariates: hierarchical condition category (hcc), age, race, gender, education, livesalone, etc.
- Primary outcome: physical component summary in Short-Form 36 (SF-36) Version 2

MPCR design

if all are assigned intervention

MPCR design

Goal: To estimate the average outcome if all clusters in all pairs are assigned control (1) versus if all clusters in all pairs are assigned to intervention (2):

$$\delta^{\mathsf{effect}} = \mu(1) - \mu(2)$$

Understanding the observed data from MPCR design $_{\mbox{\scriptsize Type 1}}$

Understanding the observed data from MPCR design Type 1 and Type 2

Understanding the observed data from MPCR design

Two types share the same characteristics

Understanding the observed data from MPCR design

Each type is sampled with probability $\frac{1}{2}$ (design-based)

The right target

If all patients are assigned with intervention t,

$$\mu_{p}(t) = \mu_{p,1}(t)\pi_{p,1} + \mu_{p,2}(t)\pi_{p,2},$$

where $\pi_{\rho,1}$ is the fraction of patients served by the first clinic; $\pi_{\rho,2} = 1 - \pi_{\rho,1}$.

The right target

If all patients are assigned with intervention t,

$$\mu_{\rho}(t) = \mu_{\rho,1}(t)\pi_{\rho,1} + \mu_{\rho,2}(t)\pi_{\rho,2},$$

where $\pi_{p,1}$ is the fraction of patients served by the first clinic; $\pi_{p,2} = 1 - \pi_{p,1}$. • Averaging over a population of pairs, $\mu(1) = \mathbb{E} \{\mu_p(1)\},$ $\mu(2) = \mathbb{E} \{\mu_p(2)\}, \quad \delta^{\text{effect}} = \mu(1) - \mu(2)$.

Directly estimable contrasts

Direct difference between observed means

$$\hat{\delta}_{p}^{\text{crude}} = \hat{\mu}_{p,1}(1) - \hat{\mu}_{p,2}(2),$$

Directly estimable contrasts

Direct difference between observed means

$$\hat{\delta}_{p}^{\text{crude}} = \hat{\mu}_{p,1}(1) - \hat{\mu}_{p,2}(2),$$

with $[\hat{\delta}_p^{crude} \mid \delta_p^{crude}, v_p^{2,crude}]$ approximately normal

Methods for effect estimation under MPCR design First-level only

Only based on the following equality

$$\mathbb{E}\left(\delta_{p}^{\mathsf{crude}}
ight)=\delta^{\mathsf{effect}},$$

without assumptions on $[\delta_p^{crude}, v_p^{2, crude}]$.

Methods for effect estimation under MPCR design First-level only

Only based on the following equality

$$\mathbb{E}\left(\delta_{p}^{\mathsf{crude}}
ight)=\delta^{\mathsf{effect}},$$

without assumptions on $[\delta_p^{\text{crude}}, v_p^{2, \text{crude}}]$.

Example: Average of $\hat{\delta}_{p}^{\text{crude}}$ or other weighted extensions⁴

Directly models observed outcomes, using two-level model⁶

$$\hat{\delta}_{p}^{\mathsf{crude}} \mid \delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}} \quad \sim \quad \mathsf{Normal}\left(\delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}}
ight),$$

Directly models observed outcomes, using two-level model⁶

$$\begin{split} \hat{\delta}_{p}^{\mathsf{crude}} \mid \delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}} & \sim \quad \mathsf{Normal}\left(\delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}}\right), \\ \delta_{p}^{\mathsf{crude}} \mid \tau^{2} & \sim \quad \mathsf{Normal}\left(\delta^{\mathsf{effect}}, \tau^{2}\right) \end{split}$$

Directly models observed outcomes, using two-level model⁶

$$\begin{split} \hat{\delta}_{p}^{\mathsf{crude}} \mid \delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}} & \sim \quad \mathsf{Normal}\left(\delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}}\right), \\ \delta_{p}^{\mathsf{crude}} \mid \tau^{2} & \sim \quad \mathsf{Normal}\left(\delta^{\mathsf{effect}}, \tau^{2}\right) \end{split}$$

• Question: an implicit assumption in the second level ?

Directly models observed outcomes, using two-level model⁶

$$\begin{split} \hat{\delta}_{p}^{\mathsf{crude}} \mid \delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}} & \sim \quad \mathsf{Normal}\left(\delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}}\right), \\ \delta_{p}^{\mathsf{crude}} \mid \tau^{2} & \sim \quad \mathsf{Normal}\left(\delta^{\mathsf{effect}}, \tau^{2}\right) \end{split}$$

Question: an implicit assumption in the second level ?

$$\delta_p^{\text{crude}} \perp v_p^{2,\text{crude}} \mid \tau^2$$

MPCR

Directly models observed outcomes, using two-level model⁶

$$\begin{split} \hat{\delta}_{p}^{\mathsf{crude}} \mid \delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}} & \sim \quad \mathsf{Normal}\left(\delta_{p}^{\mathsf{crude}}, v_{p}^{2,\mathsf{crude}}\right), \\ \delta_{p}^{\mathsf{crude}} \mid \tau^{2} & \sim \quad \mathsf{Normal}\left(\delta^{\mathsf{effect}}, \tau^{2}\right) \end{split}$$

Question: an implicit assumption in the second level ?

$$\delta_p^{\mathsf{crude}} \perp \mathbf{v}_p^{2,\mathsf{crude}} \mid \tau^2$$

Can lead to inconsistent effect estimator if not true!

• Example of inconsistent estimation

6. Thompson et al., (1997)

Another practical problem: covariate imbalance despite matching

Data from the Guided Care study

	pair						
	1	2	3	4	5	6	7
age at interview $^{(a)}$	0.3	-0.3	0.1	0.6	0.0	0.1	-0.1
Chronic Illness Burden $^{(a)}$	0.5	-0.6	0.0	0.0		0.1	0.6
SF36 $Mental^{(a)}$	-0.3	0.1	0.3	0.2	0.3	-0.6	-0.5
SF36 Physical $^{(a)}$	-0.1	-0.4	0.1	0.5	0.4	-0.6) -0.3

Standardized differences of several continuous covariates between two clusters within each of 7 pairs.

Bias consideration: If a hierarchical second level is used, to make the following more plausible:

$$\delta_p^{\mathsf{crude}} \perp \mathbf{v}_p^{2,\mathsf{crude}} \mid \mathbf{X}, \tau^2$$

Bias consideration: If a hierarchical second level is used, to make the following more plausible:

$$\delta_p^{\mathsf{crude}} \perp \mathbf{v}_p^{2,\mathsf{crude}} \mid \mathbf{X}, \tau^2$$

 Efficiency consideration: To decrease residual variance by conditional on important covariates that affect outcomes

- 1 Interpretation of treatment effect conditional on covariates⁶
- Normal assumption on individual level: does not necessarily hold; interpretation of treatment effect conditional on cluster-specific random effects, thus treatment effect require a model to be estimable^{7,8}

7. Feng et al. (2001)

8. Hill J. and Scott M. (2009)

Covariate-calibrated estimation

1 Combine covariate distribution, and 2 re-weight outcome regression

1 Stratify the average outcome by covariate

75% Female, n=100 85% Female, n=200

Combined covariate distribution P(x=F)

$$75\%\frac{1}{3} + 85\%\frac{2}{3} = 82\%$$

Covariate-calibrated estimation

1 Combine covariate distribution, and 2 re-weight outcome regression

1 Stratify the average outcome by covariate

2 Re-calibrating the stratified means with respect to the covariate distribution of the two clusters combined, for example, for the control arm t = 1,

$$\begin{split} \mu_{p,c=1}^{\text{calibr}} &= \int_{x} \mu_{p,c=1}(x;t=1) \mathrm{d}G_{p}(x), \\ &= 82\% \cdot \mu_{p,c=1}(x=F;t=1) \\ &+ 18\% \cdot \mu_{p,c=1}(x=M;t=1). \end{split}$$

Uncalibrated vs calibrated analysis

Reduced variances

		pair <i>p</i>							
	1	2	3	4	5	6	7		
sample size									
$n_{p,c=1}$	17	16	42	23	52	23	28		
$n_{p,c=2}$	38	44	43	33	42	31	43		
outcome									
		uncalibrated on covariates							
$\hat{\mu}_{P,1}(1)$	36.4	36.5	39.6	39.1	39.7	33.8	39.6		
$\hat{\mu}_{P,2}(2)$	37.3	36.6	39.3	35.3	35.2	36.4	40.9		
$\hat{\delta}_{p}^{\text{crude}}$	-0.8	-0.1	0.3	3.8	4.5	-2.6	-1.3		
$\left(v_p^{\text{crude}}\right)^{1/2}$	2.7	2.6	2.0	2.7	2.1	2.6	2.2		
(, ,									
	calibrated on covariates								
${}^*\hat{\mu}_{P,1}^{ ext{calibr}}$	37.6	38.8	39.5	38.0	38.7	35.5	40.9		
${}^*\hat{\mu}_{p,2}^{calibr}$	36.7	35.8	39.4	36.0	36.4	35.1	40.0		
$\hat{\delta}_{p}^{\text{calibr}}$	0.9	3.0	0.1	1.9	2.3	0.5	0.8		
$\left(v_{\rho}^{\text{calibr}} \right)^{1/2}$	2.1	2.4	1.5	2.0	1.7	2.2	1.7	-	

Analysis of Guided Care data

Table: Results from MLE, profile MLE, Bayes estimates and permutation test in the Guided Care study. The outcome is the physical component summary of the Short Form 36 (SF36).

		$\hat{\delta}^{effect}$	95% C.I.	s.e.($\hat{\delta}^{effect}$)	$\widehat{\mathrm{var}}(\delta_p^*)$	<i>p</i> -value (two-sided)
uncalibrated	1st level					
on covariates	MLE	0.5	(-1.4, 2.5)	1.0	_	0.59
	permutation	_	_	_	_	0.61
	$1st+2nd \ level$					
	MLE	0.6	(-1.2, 2.5)	0.9	0.7	0.50
	pMLE	0.6	(-1.5, 2.7)	_	0.7	_
	Bayes	0.6	(-1.7, 3.0)	1.2	4.3	0.60
	permutation	-	_	-	-	0.60
calibrated	1st level					
on covariates	MLE	1.4	(0.5, 2.2)	0.4	_	<0.01
	permutation	_	_	_	_	0.02
	1st+2nd level					
	MLE	1.2	(-0.2, 2.6)	0.7	0.0	0.08
	pMLE	1.2	(-0.2, 2.6)	_	0.0	_
	Bayes	1.3	(-0.4, 2.9)	0.9	1.5	0.13
	permutation	-	_	-	-	0.02

*: represents δ_p^{crude} for the uncalibrated approach and δ_p^{calibr} for the calibrated approach.

Goal: to evaluate individualized interventions for a population

Goal: to evaluate individualized interventions for a population **Data:** from matched-pair cluster randomized (MPCR) design.

Goal: to evaluate individualized interventions for a population **Data:** from matched-pair cluster randomized (MPCR) design. **Statistical contributions:**

 Existing approaches only model the observed data (e.g., meta-analysis). We connect them with potential outcome framework and reveal implicit assumptions **Goal:** to evaluate individualized interventions for a population **Data:** from matched-pair cluster randomized (MPCR) design. **Statistical contributions:**

- Existing approaches only model the observed data (e.g., meta-analysis). We connect them with potential outcome framework and reveal implicit assumptions
- Covariate-calibration is necessary if 2nd-level checking reveals substantial dependence

Goal: to evaluate individualized interventions for a population **Data:** from matched-pair cluster randomized (MPCR) design. **Statistical contributions:**

- Existing approaches only model the observed data (e.g., meta-analysis). We connect them with potential outcome framework and reveal implicit assumptions
- Covariate-calibration is necessary if 2nd-level checking reveals substantial dependence
- Covariate-calibration improves estimation efficiency

Thank you!

An example of inconsistency of meta-analytic "MLE"

Meta-analytic approach

Matched-pair cluster randomized design

Matched-pair cluster randomized design

level 1':

Matched-pair cluster randomized design

$$\begin{bmatrix} \hat{\delta}_{1}^{\text{calibr}} \\ \vdots \\ \hat{\delta}_{N}^{\text{calibr}} \end{bmatrix} \mid \begin{bmatrix} \delta_{1}^{\text{calibr}} \\ \vdots \\ \delta_{N}^{\text{calibr}} \end{bmatrix}, \theta, \Sigma_{\hat{\delta}^{\text{calibr}}} \\ \sim \textit{Normal} \left\{ \begin{bmatrix} \delta_{1}^{\text{calibr}} \\ \vdots \\ \delta_{N}^{\text{calibr}} \end{bmatrix}, \Sigma_{\hat{\delta}^{\text{calibr}}} \right\}$$

$$\begin{array}{l} \underline{\mathsf{level 2':}} \ \delta_p^{\mathsf{calibr}} \mid \delta^{\mathsf{effect}}, \tau^2 \sim \mathit{Normal}(\delta^{\mathsf{effect}}, \tau^2), \\ p = 1, \dots, N. \end{array}$$

MPCR

Checking second-level dependence

