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Summary

The supplementary materials contain referenced remarks, figures and a table in Main Paper,

and further technical details, e.g., on identifiability and sampling algorithms, as well as

additional simulations and extended data analysis results. In particular, Section A1 contains

remarks, Section A2 details the posterior algorithms for pre-specified M (Section A2.1) and

infinite M (Section A2.3), respectively. Section A3 presents posterior summaries that we use

in simulation and data analysis. Section A4 illustrates through simulations the benefit of

removing irrelevant features. Section A5 contains additional data analysis results. Finally,

Section A6 collects a table for variants of LCMs as well as figures for model results on the

data analysis in Main Paper.
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A1 Remarks

A1.1 Other Examples in Psychology and Epidemiology that Re-

quire Scientifically-Structured Clustering

We refer to the motivating example of estimating subsets of autoimmune disease patients

in Main Paper as “Example 1”. Example 2 is related to cognitive diagnosis in psycho-

logical and educational assessment. The binary outcomes indicate a subject’s responses

to many diagnostic questions (“items”). The measurements reflect the person’s long-term

“true” responses to these items, indicating a student’s knowledge for correctly answering

a test question absent guessing or other errors. These “true” or “ideal” responses are fur-

ther assumed to define a smaller number of binary latent skills that indicate the presence

or absence of the particular knowledge (called “states” in the psychology literature). For

example, teachers assess whether the student possesses basic arithmetic skills (e.g., addition,

multiplication); and psychiatrists diagnose whether patients have certain mental disorders

based on a subject’s survey responses (e.g., Junker and Sijtsma, 2001). Each question or

item is designed to measure a particular subset of latent states, where such item-latent-state

correspondence may be known, partially known or unknown.

Example 3 is to estimate the causes of childhood pneumonia from a list of more than 30

different species of pathogens including viruses, bacteria and fungi (e.g., O’Brien et al., 2017).

The imperfect binary outcomes indicate whether or not each pathogen was detected by the

polymerase chain reaction (PCR) or cell culture from two compartments: the nasopharyngeal

(NP) cavity and blood. The binary latent states of scientific interest are the true presence

or absence of the pathogens in a child’s lung, the site of infection that can seldom be directly

observed in practice. This example differs from Example 1 in that the correspondence be-

tween each of the compartment-technology-pathogen diagnostic measurements (“features”)

and the latent lung infection (“state”) is known because each measurement is designed to

detect one specific pathogen and hence is expected to have higher positive rates in classes

infected by that pathogen. In addition, the two measurements (NP with PCR and blood

with cell culture) are known to have different error rates (e.g., Hammitt et al., 2012; Wu

et al., 2016).
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A1.2 General Technical Formulation of RLCMs: Imposing Re-

strictions for Scientifically-Structured Classes

RLCMs impose equality among a subset of response probabilities across classes. The specifi-

cation of the RLCM likelihood involves two aspects, restriction of the order of between-class

response probabilities and the parameterizations.

Order restriction by design matrix. The response probabilities in RLCMs must satisfy certain

order constraints specified by a binary design matrix Γ = {Γα,`} ∈ {0, 1}K̃×L with latent

classes and measurements in the rows and columns, respectively. Let A` = {α ∈ A : Γα,` =

1} denote the latent classes with the highest response probability for dimension ` according

to Γ (Gu and Xu, 2018). That is, if A` 6= ∅, we restrict the response probabilities at feature

` by

max
α∈A`

λα,` = min
α∈A`

λα,` > λα′,`, ` = 1, . . . , L,α′ ∈ Ac`, (S1)

where Ac` = A−A` = {α ∈ A : Γα,` = 0}. Further, there can exist a class α ∈ A that gives

rise to an all-zero row Γα? = 01×L. Restrictions (S1) only specify the relative magnitudes but

not the actual values of the response probabilities. Besides, subjects in classes Ac may have

multiple levels of response probabilities. Supplementary Material A1.2.1 below presents

an equivalent formulation based on parameters that represent distinct levels of response

probabilities.

Q-based design matrix . In this paper, we focus on the special and useful case where design

matrix Γ further depends on latent state vectors α and a possibly unknown binary matrix

Q of dimension M by L as follows:

Γα,` = Γ(α, Q?`), for all α ∈ A, ` = 1, . . . , L, (S2)

where the scientific context motivates specific mathematical forms of Γ(·, ·) (e.g., Γηi,` =

η>i Q?` in Figure 1, Main Paper).

Finally, it remains to specify the class-specific measurement likelihood function (1) in

Main Paper. Given Γ defined by (S2), we parameterize the response probabilities λi` = λ`(ηi)

by

λ`(ηi) = λR` (ηi;Q?`,β`) ∈ [0, 1],ηi ∈ A, ` = 1, . . . , L, (S3)

where we require that {λR` (α) : α ∈ A} must satisfy the relative magnitude restriction (S1)
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across latent classes.

A1.2.1 Equivalent Formulation of RLCM

It is sometimes convenient to formulate RLCM using distinct levels of response probabilities.

Let K+
` = #{λi` : ηi ∈ A`} (K−` = #{λi` : ηi /∈ A`}) be the number of distinct response

probability levels at feature ` = 1, . . . , L. In RLCMs, we have K+
` = 1 and K−` ≥ 1,

` = 1, . . . , L (see Table S1 in Supplementary Materials that tabulate the number of distinct

response probabilities at dimension `, (K+
` , K

−
` ), for other variants of LCMs). Let θ` be the

maximum response probability at feature ` and ψ` = {ψl1, . . . , ψl,K−` } be the rest of response

probabilities, respectively. Given ηi = α /∈ A`, let vi = v(ηi, `), where v(·, ·): (ηi, `) 7→ v is

the integer-valued function that selects among ψ` her associated response probability ψ`,vi

at feature `. The parameters θ` and ψ` may be further parameterized by (β`, Q?`) as in

(S3). For models with K−` = 1, vi = 1; Otherwise, ν(·, ·) depends on A (the set of possible

patterns of ηi), the specific functional form of λR` (·) and parameter values of (β`, Q?`) in a

RLCM (see the example (S5) in Supplementary Materials A1.3; The traditional LCM results

by setting Q = 1M×L and under K+ +K− = K̃ for each `).

We therefore have an equivalent formulation for the response probability parameters λR`

in (S3):

λR` (ηi;Q?`,β`) = {θ`}Γηi,` ·
{
ψ`,v(ηi,`)

}1−Γηi,` ∈ [0, 1], (S4)

where β` = {θ = {θ`},Ψ = {ψ`}} with constraints θ` > ψ`,v,∀v = 1, . . . , K−` .

A1.3 Other Examples of RLCM in the Literature

Two-parameter examples of RLCM. Model (2) in Main Paper is a two-parameter RLCM

because K+
` + K−` = 2. A second two-parameter example results by assuming Γi` =∏M

m=1(ηim)Qm` (e.g., Junker and Sijtsma, 2001). This model, referred to as Deterministic

In and Noise And (DINA) gate model in the cognitive diagnostic literature, assumes a con-

junctive (noncompensatory) relationship among latent states m = 1, . . . ,M . That is, it

is necessary to possess all the attributes (states) indicated by non-zero elements in Q?` to

be capable of providing a positive error-free response Γi` = 1. The model also imposes
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the assumption that possessing additional unnecessary attributes does not compensate for

the lack of the necessary ones. These two-parameter models are equivalent upon defining

η∗im = 1 − ηim, Γ∗i` = 1 − Γi`, ψ
∗
` = 1 − ψ` and ψ∗` = 1 − θ` (Chen et al., 2015). There are

several other examples in this category as discussed by Xu (2017).

Multi-parameter examples of RLCM. Two-parameter models assume that “Γα,` = Γα′,` =

0 implies identical response probabilities λα,` = λα′,` = ψ`”, regardless of the distinct pat-

terns α 6= α′. In practice, deviation from such assumptions occurs if α has more nonzero

elements than α′ and requires additional levels of response probability in the class with latent

states α, i.e., K−` > 1. Multi-parameter models where K−` > K+
` = 1, popular in multi-

dimensional item response theory, is readily specified for example by assuming an all-effect

model: λi` = λR` (ηi;β`, Q?`) = expit
{
β>` h(ηi, Q?`)

}
=

expit

{
β`0 +

M∑
m=1

β`m(Qm`ηim) +
∑

m<m′

β`mm′(Qm`ηim)(Qm′`ηim′) + . . .+ β`12...M
∏
m

(Qm`ηim)

}
(S5)

that includes higher order interactions among latent states required by an item (Henson

et al., 2009); Here expit(x) = exp(x)
1+exp(x)

. When
∏

m=m1,...,ms
Qm` = 0, this saturated model

needs no β`,m1...ms term. Setting second or higher order terms to zero, an additive main-effect

model results. The effects of latent states need not be additive. For example, log(λi`) =

β`0 +
∑M

m=1 β`mQm`ηim specifies a multiplicative model that penalizes the absence of an

required latent state m if Qm` = 1.

A1.4 RLCM Connection to Hoff (2005)

Setting Q = IL×L and ηi ∈ A = {0, 1}L (i.e., M = L) gives “mixture of Bernoulli products”

with each latent class (defined by ηi) having relevant features at possibly overlapping subsets

of features Sα = {` : Γα,` = 1}, α ∈ A (Hoff, 2005). Hoff (2005) assumes the positive

response probability λi` = {θ`,v}Γi` (ψ`)
1−Γi` , where Γi` = ηi` given Q = IL×L and the multiple

true positive rates {θ`,v} are greater than a single false positive rate ψ`, for ` = 1, . . . , L. This

model can be written into a RLCM form with K+ = 1 and K− ≥ 1 by reparametrization:

Γ∗i` = 1 − Γi`, ψ
∗
`,v = 1 − θ`,v and θ∗` = 1 − ψ` and relabeling of the outcomes Y ∗i` = 1 − Yi`.

Indeed, the positive response probability under relabeling and reparameterization is λ∗i` =

P(Y ∗i` = 1 | −) = 1− P(Yi` = 1 | −) = 1− λi` =
{
ψ∗`,v
}1−Γ∗i` (θ∗` )

Γ∗i` .
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A1.5 Identifiability Considerations: Posterior Algorithm Design

There are two sources of indeterminancy in restricted LCMs: invariance of the likelihood

function to permutation of the ordering of the latent states and over-parameterized models.

The permutation invariance manifests itself as a multimodal posterior distribution. Where

Q is unknown, we address the permutation invariance by labeling the latent states one at a

time by the non-zero patterns of the corresponding rows in an estimated Q. We address the

over-parameterization by introducing prior distributions that encourage few clusters hence

a small number of parameters via mixture of finite mixture models (Miller and Harrison,

2017). We now discuss identifiability results based on likelihood function.

Given K̃ and M , identifiability conditions characterize the theoretical limits of recovering

the unknown model parameters (Q, Λ, πK̃) from the likelihood for all or a subset of the

parameter space. We first discuss the identifiability of Q because it is needed for interpreting

latent states in data analysis and for estimating both H and πK̃ . Based on the likelihood

[Yi | πK̃ ,Λ,Γ = Γ(Q)] with a given Q and a saturated A (or “full diversity”: πα > 0,∀α ∈

A = {0, 1}M), Xu (2017) studied sufficient conditions for strict identifiability of Λ and πK̃

over the entire parameter space in RLCMs. Under weaker conditions upon the design matrix

Γ (instead of Q) and possibly non-saturated A, Gu and Xu (2018) established conditions

that guarantee partial identifiability for general RLCMs which means the likelihood function

is flat over a subset of the parameter space. When Q-matrix is completely unknown, it is

possible to identify {πK̃ ,Λ, Q} just using likelihood [Yi | πK̃ ,Λ,Γ = Γ(Q)]. In particular,

Chen et al. (2015) provided sufficient conditions for the special cases of DINA and DINO

models (see Supplementary Material A1.3); Xu and Shang (2018) further generalized them

to general RLCM: (Q, Λ, πK̃) are strictly identifiable (up to row reordering of Q) in RLCMs

with saturated A if the following two conditions hold:

C1) The true Q can be written as a block matrix Q = [IM ; IM ; Q̃] after necessary column

and row reordering, where Q̃ is a M × (L− 2M) binary matrix and

C2) (Λα,`, ` > 2M)> 6= (Λα′,`, ` > 2M)> for any α 6= α′ and α � α′,

where a � b for a = {aj} and b = {bj} if and only if aj ≥ bj holds element-wise.

Because condition (C2) depends on Q, Λ and row and column permutations, the number
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of operations to check (C2) increases exponentially with M , O((L− 2M)2MM), for a satu-

rated A with 2M patterns of latent state vectors. We instead use condition (C3) that just

depends on Q and that is invariant to row or column permutations:

C3) Each latent state is associated to at least three items,
∑L

`=1Qm` ≥ 3 for all m.

Xu and Shang (2018) studied identifiability issues for general RLCM: (Q, Λ, πK̃) are

strictly identifiable (up to row reordering of Q) in RLCMs with saturated A if the following

two conditions hold:

C1) The true Q can be written as a block matrix Q = [IM ; IM ; Q̃] after necessary column

and row reordering, where Q̃ is a M × (L− 2M) binary matrix and

C2) (Λα,`, ` > 2M)> 6= (Λα′,`, ` > 2M)> for any α 6= α′ and α � α′,

where a � b for a = {aj} and b = {bj} if and only if aj ≥ bj holds element-wise.

Because condition (C2) depends on Q, Λ and row and column permutations, the number

of operations to check (C2) increases exponentially with M , O((L− 2M)2MM), for a satu-

rated A with 2M patterns of latent state vectors. We instead use condition (C3) below that

just depends on Q and that is invariant to row or column permutations:

C3) Each latent state is associated to at least three items,
∑L

`=1Qm` ≥ 3 for all m.

Condition (C3) enables convenient restrictions in MCMC sampling and takes justO(LM)

operations to check. For special cases of RLCM, the DINA and DINO models (Section A1.3)

with a saturated A, Conditions (C1) and (C3) suffice to identify (Q, Λ, πK̃) (Theorem 2.3,

Chen et al., 2015).

Posterior algorithms typically restrict MCMC sampling of non-identified parameters by

identifiability conditions to prevent aggregation of posterior probability mass from multiple

modes. For example, in factor analysis of multivariate continuous data, one can restrict the

loading matrices in lower triangular forms (e.g., Geweke and Zhou, 1996). Alternatively, one

may first perform MCMC sampling with weak and simple-to-check constraints without fully

ensuring identifiability and just check afterwards whether the parameters are conditionally

identifiable. One then performs necessary deterministic transformations on parameters that

may only be identified up to equivalent classes to pick coherent and economical representa-

tives, for example, by relabeling sampled mixture components at each iteration or varimax
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rotations of factor loading matrices in classical Gaussian factor analysis (e.g., Ročková and

George, 2016).

We initialize the sampling chain from the set defined by simple identifiability condi-

tions (C1) and (C3) and only check afterwards at each iteration whether the parameters

are conditionally identifiable according to conditions (C1) and (C2) that are stronger and

computationally more expensive. The relabeling of the latent states is done by inspecting

the non-zero patterns in the rows of Q (Step 7, Supplementary Material A2).

In applications where Q is unknown with M < L/2, we focus on the set of Q-matrices

that satisfy both (C1) and (C3):

Q = {Q ∈ {0, 1}M×L : Q = P1Q
†P2, Q

† = [IM ; IM ; Q̃], Q̃1L−2M � 1L−2M}, (S6)

where P1 and P2 are M - and L-dimensional permutation matrices for rows and columns,

respectively. The constraint Q also greatly facilitates posterior sampling by focusing on a

small subset of binary matrices. In fact, among all M by L binary matrices, the fraction of

Q ∈ Q is at most
( L
2M)[2(L−2M)M ]

2L·M
and quickly decay as the number of machines M increases. In

some applications it may also simplify posterior inference by exploiting further assumptions

upon Q for example partially known Q or non-overlapping (i.e., orthogonal) rows of Q.

We now turn to inferring subject-specific latent state vectorsH = {ηi} based on complete-

data likelihood [{Yi} | H,Λ, Q]. Even given Q, conditions for identifying H exist but may fall

short of ensuring consistent estimation of H because the number of unknowns in H diverges

as the sample size increases. For example, it requires extra conditions that the number of

measurements L increases with the sample size (e.g., Chiu et al., 2009). In finite samples and

dimensions, we address this issue in a Bayesian framework by encouraging H to be of low

complexity, i.e., few clusters of distinct and sparse latent state vectors {ηi}, which combined

with data likelihood will by design tend to concentrate the posterior at such low-complexity

H.

In addition, when the latent space A $ {0, 1}M , general identifiability theory for Q

depends on the identifiability of Γ, the structure of which then determines the set of Qs that

are identifiable from the observed data distribution. Some RLCMs motivate our posterior

algorithm design. For example, in two-parameter RLCMs, if two latent states are either
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always present or absent at the same time (“partners”), it is impossible for the likelihood

alone to distinguish it from a model that combines the two latent states. In our posterior

algorithm, we therefore merge such “partner” latent states if present at some iterations and

the corresponding rows in Q (Step 3, Supplementary Material A2.1). As another example,

two latent states can form a hierarchical structure, that is, one latent state cannot be present

unless the other is. Suppose the second latent state require the first latent state, then Q2∗

values at {` : Q1` = 1} can be zero or one without altering the model likelihood. The sparsity

priors on H and the rows of Q constraining
∑

`Qm` therefore concentrate the posterior

distributions of H and Q towards low-dimensional latent states and a smaller number of

rows in Q (Section 2.6.2 in Main Paper).

Finally, in applications where prior information about a subset of response probabilities

Λ is available, it is essential to integrate the informative priors into model estimation if

strict or generic identifiabilities do not hold (e.g., Gustafson, 2009; Wu et al., 2016). The

sufficient conditions (C1) and (C2) ensure identifiability of Q with completely unknown

(Λ,πK̃). Otherwise, absent likelihood-based identifiability of Q and other parameters, prior

information about Λ alleviates the non-identifiability issue by concentrating the posterior at

parameter values that better explain the observed data in light of the informative priors. In

general non-identified models, the uncertainty in the prior will propagate into the posterior

and will not vanish even as the sample size approaches infinity (e.g., Kadane, 1974).

A1.5.1 Additional likelihood-based identifiability conditions given K̃, M and Γ

(or Q)

Given Γ, Gu and Xu (2018) established that the separability of Γ is sufficient and necessary

for identifying πK̃ under two-parameter models for known conditional response probabilities

Λ; If Γ is inseparable, πK̃ is identified up to equivalent classes defined by identical rows in

Γ (in this paper, we transposed Γ used in Gu and Xu (2018)). When Λ is unknown, Gu and

Xu (2018) established sufficient conditions for πK̃-partial identifiability (strictly identify Λ

but identify πK̃ up to equivalent classes defined by identical rows in Γ). For Q-restricted

two-parameter models, if A is saturated and Γ is separable, then these conditions become

minimal, i.e. sufficient and necessary conditions: 1) ≥ 3 items per latent state and 2)

Q = [IM , Q
>
1 ] where Q1 has distinct columns.
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For multi-parameter models, separability of Γ is sufficient for identifying πK̃ given known

Λ. πK̃ will be strictly identifiable given two technical conditions (Gu and Xu, 2018, C3 and

C4) - Condition (C3) implies separability of Γ which could be true for Q-RLCM induced Γ

with unsaturated A and without single-attribute items in Q. They also established “generic

identifiability” results for Λ and πK̃ when Γ is inseparable: as long as one can flip entries

to satisfy two technical conditions. The notion of “generic identifiability” is introduced,

because the identifiability results for multi-parameter models hold except on a Lebesgue

measure-zero set where the models are reduced to two-parameter models. For the special

cases of Q-restricted model (saturated), the two technical conditions do not require the Q-

matrix to contain an identity submatrix and provides a flexible new condition for generic

identifiability under various Q-matrix structures; the results are generically identifiable up

to label swapping among those latent classes that have the same row vectors in the Γ-matrix.

A1.6 On the prior distribution on H∗

By Beta-Bernoulli conjugacy, we integrate the joint distribution in (4)-(5) in Main Paper

[H∗ | p][p | α1, α2] over p to obtain the marginal prior:

pr(H∗ | α1, α2) =
M∏
m=1

(α1α2/M)Γ(sm + α1α2/M)Γ(T − sm + α2)

Γ(T + α2 + α1/M)
, (S7)

where Γ(•) is the Gamma function and sm =
∑T

m=1 η
∗
jm, j = 1, . . . ,M . Holding α2 constant,

the average number of positives among η∗j decreases with α1; Holding α1 constant, the latent

state vectors, η∗j and η∗j′ , j 6= j′, become increasingly similar as α2 decreases. In fact, the

probability of two subjects with distinct cluster indicators Zi and Zi′ have identical m-th

latent state, P[η∗im = η∗i′m | Zi = j, Zi′ = j′, j 6= j′, α1, α2] = E{p2
m + (1 − pm)2 | α1, α2} =

1− 2 α1

α1+M

(
1− α1α2+M

α1α2+α2M+M

)
approaches one when α2 goes to zero.

A1.7 On Extending Prior of H∗ to M =∞

In Main Paper, we have focused on models with a finite number of latent states with M = M †

typically set to a number that is large enough for the particular applications. In the MCMC

sampling (Supplementary Material A2.1), not all of the “working” M † states will be used

10



by the observations. The active number of states is usually strictly smaller than M † based

on our experience in simulation studies. We extend to infinite M to obtain a prior for H∗

under infinite dimension of latent state vectors (ηi). We take M in (S7) in Main Paper to

infinity and obtain infinite-column prior for H∗; This construction defines the infinite Indian

Buffet process (Ghahramani and Griffiths, 2006). Supplementary Material A2.3 provides

posterior sampling algorithms for dealing with an infinite number of latent states by a novel

slice sampler without the need of truncation (Teh et al., 2007).

A1.8 Prior for Partition C

The prior distribution p(C | γ, pK(·)) is an exchangeable partition probability function

(EPPF, Pitman, 1995), because it only symmetrically depends on the sizes of each block

of the partition {|Cj| : Cj ∈ C}. Miller and Harrison (2017, Theorem 4.1) also derives an

urn process for generating partitions C1, C2, . . . , such that the probability mass function for

CN is given by p(C | γ, pK(·)) = VN(T )
∏

C∈C γ
(|C|); we will use this urn process for Gibbs

updates of {Zi} one subject at a time in (S11) below in Supplementary Material A2. Note

that the mapping from Z to C is many-to-one with each C corresponding to
(
K
T

)
T ! distinct

Z that differ only by relabeling. Starting from a prior for partition C then followed by

drawing component-specific parameters from their prior distributions is particularly fruitful

in product partition models (e.g., Hartigan, 1990). This is our strategy in Section 2.3 in

Main Paper to specify priors for clusters with an unknown number of classes and unkonwn

latent state space A.

A1.9 On Merging Clusters with Identical Discrete Latent States

At each MCMC iteration, two observations falling in distinct clusters (Zi 6= Zi′) might have

identical latent states, i.e., η∗Zi
= η∗Z′i

where the equality holds elementwise. At each iteration,

we use unique multivariate binary vectors among all subjects H = {ηi = η∗Zi
, i = 1, . . . , N}

to define “scientific clusters” C̃ through merging clusters associated with identical latent

states. That is,

C̃ =
{
{i : ηi = η̃∗j}, j = 1, . . . , T̃

}
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where {η̃∗j , j = 1, . . . , T̃} collects T̃ (≤ T ) unique patterns among {η∗j , j = 1, . . . , T}. Let

M : {η∗Zi
, i = 1, . . . , N} 7→ C̃ represent this merge operation, i.e., C̃ =M({η∗j}, {Zi}).

As detailed in Section A2 below, we will first sample {Zi} from its posterior distribution.

Given {Zi}, we then update H∗ = {η∗j} and merge clusters C to obtain C̃ via the mapping

M. Define partial ordering “ � ” over partitions C1 � C2 if for any C1 ∈ C1, one can find

a C2 ∈ C2 satisfying C1 ⊆ C2. We have C � C̃, i.e., C̃ is coarser than C. Our procedure for

obtaining clusters C̃ differs from mixture models where distinct Zi values with probability

one correspond to distinct component parameters sampled from a continuous base measure

(e.g., Miller and Harrison, 2017, Proof of Theorem 4.2). C̃ = C is implicitly assumed in Hoff

(2005) under a Dirichlet process mixture model.

We specify priors on K that represents the distinct values that {Zi} can take and a prior

on H∗ = {η∗j , j = 1, . . . , T}, which together induce a prior for C̃ via

p(C̃ | α1, γ) =
∑
C:C�C̃

p(C̃ | C, α) · p(C | γ) (S8)

=
∑
C:C�C̃

(
2M

T̃

)
(T̃ )!

{∫
p(H∗ | S,p)p(p | α1)dp

}
· p(S | γ) · T !, (S9)

where S = {S1, . . . , ST} is a ordered partition of N subjects, obtained by randomly ordering

parts or blocks of C uniformly over T ! possible choices and p(S | γ) · T ! = p(C | γ).

The prior for the number of components K serves to regularize the number of clusters

T = |C| among observed subjects (see Miller and Harrison (2017, Equation 3.6)). Because

C̃ is coarser than C, a exponentially decaying prior on K then encourages a small number

of scientific clusters C̃ among N subjects which results in using fewer component specific

parameters to fit finite samples and improves estimation of unknown H∗ and Q.

Remark S1. The K introduced in the prior specification is to make it not upper bounded and

therefore differs from K̃. The latter represents the number of distinct latent state vectors

in the population and must be no greater than 2M . α̃k, k = 1, . . . , K̃ represent the set of

true distinct latent state vectors in the population; while η∗j , j = 1, . . . , T (T ≤ K) represent

the realized latent state vectors that are possibly duplicated in the data generating process

(4)-(5) in Main Paper or the posterior sampling. With unconstrained K, we are able to build

on the algorithm of Miller and Harrison (2017) that does not bound the number of mixture
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components. The resulting algorithm works for general mixture of finite mixture models with

discrete component distributions.

A1.10 Priors for Other Model Parameters

We focus on the situation where Q is completely unknown. Let Q be uniformly distributed

over the constrained space in {0, 1}M×L defined by (S6). In applications where Q is not

fully identifiable and/or encouraged to be different among its rows in finite samples, we

specify sparsity priors for each column of Q to encourage proteins to be specific to a small

number of machines. In applications where Q is not fully identifiable or encouraged to

be different among its rows, we specify sparsity priors for each column of Q to encourage

proteins to be specific to a small number of machines. That is, P(Qm` | {Qm′,`,m
′ 6=

m}, ζ) = 1/
{

1 + exp
{
−ζ
∑

1≤m′<m′′≤M∗ Qm′`Qm′′`

}}
, where ζ is the canonical parameter

characterizing the strength and direction of interactions among m. We either fix ζ to be a

negative number, or specify a hyperprior for ζ; In this paper, we fix ζ = 0.

We specify the priors for response probabilities Λ = {λi`} in (S4) to satisfy the monotonic

constraints in (S1) as follows

ψ`,v∼Beta(Nψaψ, Nψ(1− aψ)), v = 1, . . . , K−` , constrained to ∆ =
{
{ψ`} : ψ`,1 < . . . < ψ`,K−`

}
,

θ1, . . . , θL ∼ Beta(Nθaθ, Nθ(1− aθ)) I{( max
1≤v≤K−`

ψ`,v, 1)}, aψ ∼ Beta(a0, b0), and aθ ∼ Beta(a′0, b
′
0),

for ` = 1, . . . , L, where K−` ≥ 1 is the number of response probability parameters for latent

classes α with Γα,` = 0 defined in (S2) and the truncation of θ` follows from the definition

of RLCM (S1). With (aθ, aψ) unknown, the hierarchical priors on θ and {ψv} propagate

into the posterior and have the effect of shrinking the parameters towards a population value

by sharing information across dimensions; (Nθ, Nψ) can further be sampled in the posterior

algorithm or fixed. When multi-parameter RLCMs specify particular parametric forms of

the response probability for feature ` (e.g., in (S5)), other sets of priors on the parameters

may be readily incorporated into posterior sampling by modifying Step 4 in Supplementary

Material C.1. Finally, we specify prior for hyperparameter α1. One may specify a prior

conjugate to [H∗ | α1] by α1
d∼ Gamma(e0, f0) (shape and inverse scale parameterization
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with mean e0/f0 and variance e0/f
2
0 ). Posterior sampling for non-conjugate prior for α1 can

also be carried out by sampling over a dense grid upon bounded reparameterization (see

Step 5 in Supplementary Material A2).

A1.11 Joint Distribution

The joint distribution of data Y = {Yi}, true and false positive rates θ and Ψ, Q matrix,

and latent state vectors H = {ηi}, denoted by pr(Y , H = H(H∗,Z), Q,θ,Ψ), is

{
N∏
i=1

L∏
`=1

[
Γηi,`θ

Yi`
` (1− θ`)1−Yi` + (1− Γηi,`)ψ

Yi`
`,vi

(1− ψ`,vi)1−Yi`
]}

×
L∏
`=1

[
TruncatedBeta(θ`; aθ, bθ, ( max

1≤v≤K−`
ψ`v, 1))

∏
v

Beta(ψ`v; aψ, bψ)1{ψ` ∈ ∆}

]
·

× f(α1) · IBPM(H∗;α1, K) · P(C; γ, pK(·)), (S10)

where f(α1) is the density function of the hyperprior of truncated IBP (to at most M

columns) parameter α1 and P(C; γ, pK(·)) is the prior in the space of partitions of observa-

tions.

A2 Details of Posterior Algorithm

A2.1 Pre-specified Latent State Dimension M <∞

When the number of components K is unknown, one class of techniques updates component-

specific parameters along with K. For example, the reversible-jump MCMC (Green, 1995,

RJ-MCMC) works by an update to K along with proposed updates to the model parameters

which together are then accepted or rejected. However, designing good proposals for high-

dimensional component parameters can be non-trivial. Alternative approaches include direct

sampling of K(e.g., Nobile and Fearnside, 2007; McCullagh et al., 2008). Here we build on

the algorithm of Miller and Harrison (2017) for sampling clusters with discrete component

parameters η∗j . We focus on model (1-3) in Main Paper to illustrate the posterior algorithm.

1. Initialization. Initialize all model parameters from prior distributions. When a Qm? is
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initialized to have redundant ones under high true positive rates, the likelihood of a

sparse observation Yi is much lower under ηim = 0 than under ηim = 1. Consequently,

the sampling chain will visit ηim = 0, i.e., inactive latent state m, with high probability.

To better initialize active latent states, we therefore use a more stringent data-driven

initialization for Q?` by Qm`
d∼ Bernoulli(p),m = 1, . . . ,M, only if many observations

are positive at dimension `: N−1
∑

i Yi` > τ1, where p and τ1 can be prespecified. In

our simulations and data analysis, we set p = 0.1 and τ1 = 0.3.

2. Split-merge update clusters C.

The one-subject-at-a-time, Gibbs-type update is typically slow in exploring a large

space of clusterings. In fact, the number of ways to partition N subjects is BN ,

referred to as the Bell number and can be computed through the iterative formula

BN+1 =
∑N

n=0

(
N
n

)
Bn with B0 = B1 = 1 resulting in B50 > 2157. We remedy this by

adding split-merge updates designed for conjugate models (Jain and Neal, 2004) that

alter the cluster memberships for many subjects at once.

Gibbs updates of the partitions. Given our focus on estimating clusters, we choose to

directly sample C from its posterior without the need for considering component labels

or empty components. A key step is to sample C based on an urn process that begins

with one cluster comprised of all subjects (or a warm start informed by crude initial

cluster estimates) and re-assigns each subject to an old or new cluster (Miller and

Harrison, 2017). In sampling {Zi} one subject at a time, the full conditional distribu-

tion [Zi | Z−i,Y,θ,ψ, Q,p] given cluster assignments for the rest Z−i = {Zi′ , i′ 6= i},

other model parameters and data is proportional to the product of the conditional

prior pr(Zi | Z−i, γ) and the complete data likelihood integrated over latent states

[Y | Z,θ,ψ, Q,p]. Because of exchangeability among subjects, we view subject i as

the last observation to be updated during a Gibbs step which assigns subject i to an

existing cluster C ∈ C−i or a new cluster on its own with probabilities:

P(Zi = j | −) ∝

(|C|+ γ) · g(C∪{i})
g(C)

, if C ∈ C−i, j = 1, . . . , |C−i|, or

γ VN (t+1)
VN (t)

· g(C), if C = {i}, j = |C−i|+ 1,
(S11)
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where g(C) = g(C;θ,ψ, Q,p) =
∏L

`=1 pr({Yi` : i ∈ C} | θ,ψ, Q,p) is the marginal

likelihood for data in cluster C (see (S14) in Supplementary Material A2.2 for an

illustration using DINO model). If adding subject i to any existing C ∈ C−i cluster fits

poorly with data YC , i.e., knowing YC tells little about Yi, low marginal likelihood

ratio g(C∪{i})
g(C)g({i}) will result for any C ∈ C−i. The Gibbs update will favor forming a

cluster of its own {i}.

Because the Gibbs update (S11) assigns clusters one subject at a time and updates

clusters in a local fashion resulting in potential slow mixing of the sampling chain for C,

we use global updates to create or remove clusters for multiple subjects at a time that

are likely to be accepted according to a Metropolis-Hastings ratio. We adapt an existing

recipe designed for models with priors conjugate to the component-specific parameters

(Jain and Neal, 2004), which uses split-merge updates to make global changes to cluster

configuration followed by further refinement of clusters via Gibbs update one subject

at a time. Given θ, ψ, Q and Y, a single split-merge update comprises the following

steps:

1a) Randomly choose two observations i and j from N subjects; Let S be the indices

of subjects either belonging to CZi
or CZj

.

1b) Perform r = 5 steps of intermediate Gibbs scan (S11) restricted to observations in

the same clusters as i or j. That is, use (S11) to update observation k ∈ S \{i, j}

with the constraint that Zk ∈ {Zi, Zj}; At the end of intermediate Gibbs scan,

we obtain Z launch. In this step, one assigns a subject k in S \ {i, j} to either the

cluster of i or j with probability

P(Zk = z | Z−k,Y, other parameters )

=
(|Cz|+ γ)g(Cz ∪ {k})/g(Cz)

(|CZi
|+ γ)g(CZi

∪ {k})/g(CZi
) + (|CZj

|+ γ)g(CZj
∪ {k})/g(CZj

)
, z ∈ {Zi, Zj},

(S12)

1c) Perform a final Gibbs scan restricted to observations S \ {i, j} using (S12) and

obtain updated clusters as the proposal states to be used in a Metroplis-Hasting

step which we denote by Zcand. We compute the proposal densities q(Zcand | Z)

16



and q(Z | Zcand); For the non-trivial cases, the proposal densities depend on the

random launch state Z launch and are products of Gibbs update densities in (S12).

1d) Accept or reject the proposed clustering Zcand with acceptance probability com-

puted from prior ratio (based on two sets of clusters induced by Zcand vs Z launch),

likelihood ratio (given clusters Zcand vs Z launch and other population parameters),

ratio of proposal densities (from 1c). See Jain and Neal (2004) for the general

recipe of computing the acceptance probability.

1e) Perform one complete Gibbs scan (S11) of Z for all individuals to refine the

current state of cluster indicators.

The above is referred to as (5, 1, 1) split-merge update where 5 intermediate Gibbs scans

are used to reach launch states Z launch, one Metroplis-Hasting step to accept or reject

a candidate clustering Zcand, and one final complete Gibbs scan for all observations to

refine the newly obtained cluster (Jain and Neal, 2004).

3. Update individual machine usage profiles H = {ηim}. Because subjects within a cluster

share latent states ηi = η∗j , i ∈ {i : Zi = j} for cluster j = 1, . . . , T , we sample from

[η∗j | others] ∝
M∏
m=1

{pm}η
∗
jm{1− pm}1−η∗jm ·

∏
`:ξj`=0

ψ
nj`1

` (1− ψ`)nj`0 ·
∏

`:ξj`=1

θ
nj`1

` (1− θ`)nj`0 ,

where ξj` = Γη∗j ,`
indicates the active or inactive status at dimension ` in cluster Cj,

p = {pm} are within-cluster prevalence of M latent states and nj`1 =
∑

i:Zi=j
Yi` and

nj`0 =
∑

i:Zi=j
(1− Yi`). Because η∗j ∈ {0, 1}M , it is important to move around in this

space fast. We currently use multinomial sampling in simplex ∆2M−1, which can be

improved by either Hamming ball sampler or parallel tempering.

We remark on “partner latent states” that motivate merging a subset of rows in Q(b).

Let H(b) = {η(b)
im} be an N by M binary matrix that collects latent states for all

subjects at iteration t. Let M
(b)
eff =

∑M
m=1 I{1>NH

(b)
?m 6= 0} be the number of nonzero

columns in H at t-th MCMC iteration. The identifiability conditions apply only to

the first M
(b)
eff rows of Q. Condition (C1) and (C3) hold at each iteration regardless

of the value of M
(b)
eff because Q ∈ Q truncated to first M

(b)
eff rows remains in Q. At
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each iteration, conditions (C1) and (C3) also hold if we collapse two identical columns

(m,m′) of H(b) to combine two partner machines that are present or absent together

among subjects (η
(b)
im = η

(b)
im′ , i = 1, . . . , N); We set H

(b)
?m′ = 0N and the other row

Q
(b)
m` = max{Q(b)

m`, Q
(b)
m′`}, ` = 1, . . . , L. It is easy to verify that this scheme preserves

conditions (C1) and (C3) and readily generalizes to cases where more than two columns

of H(b) are identical. In the population, the diversity assumption A = {0, 1}M does

not hold if two latent states always positive together. When external knowledge is

available for two “partner” states with separate known rows in Q, it can be readily

integrated into posterior sampling.

4. Sample false positive rates from

[ψ` | others]∼ Beta

(∑
i

(1− ξi`)Yi` + aψ,
∑
i

(1− ξi`)(1− Yi`) + bψ

)
I{(0, θ`)}, ` = 1, . . . , L.

Sample true positive rates from

[θ` | others] ∼ Beta

(∑
i

ξi`Yi` + aθ,
∑
i

ξi`(1− Yi`) + bθ

)
I{(ψ`, 1)}, ` = 1, . . . , L.

We also implemented in “rewind” specified upper bounds for {ψ`} and lower bounds

for {θ`} when needed.

5. Update hyperparameter α. Suppose the hyperprior for α is p(α). Then by the

marginal distribution of H∗ from finite-M IBP (Ghahramani and Griffiths, 2006), we

reparametrize in terms of β = α
α+1
∈ (0, 1) and obtain

[β | H∗] ∝ p(β) ·
(

β

1− β

)M M∏
m=1

Γ(sm + β/{M(1− β)})
Γ(T + 1 + β/{M(1− β)}))

,

which can be sampled from a dense grid over (0, 1) and sm =
∑T

j=1 η
∗
jm is the number

of clusters that m-th latent state is positive. We use Beta distribution β ∼ Beta(aβ, bβ)

where aβ = bβ = 1 in our simulations and data analyses.
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6. Update prevalence parameters p = {p1, . . . , pm} from

[p | others] ∝
M∏
m=1

(pm)n
∗
m1(1− pm)n

∗
m0Beta(pm;α/M, 1), (S13)

which we sample independently pm ∼ Beta(n∗m1 + α/M, n∗m0 + 1), m = 1, . . . ,M .

7. Update machine matrix Q via constrained Gibbs sampler. Update to Q
(b)
m`, ` =

1, 2, . . . , L, m = 1, 2, . . . ,M under two mutually exclusive scenarios:

1a) Keep Q
(t−1)
m` if one of the three criteria holds: 1) Q

(t−1)
?` = em, 2) 1>LQ

(t−1)
m,? = 3 and

Qm` = 1 or 3) Q
(t−1)
m` = 0, Q

(t−1)
?` = em and there are only two em in the columns

of Q.

1b) Otherwise, flip Q
(t−1)
m` to a different value z with probability p(z | others)/(1−p(z |

others)), where p(z | others) is the full conditional distribution

pr(Qm` = z | others) ∝
N∏
i=1

pr
(
Yi` | {ηi}, Q(b)

new, Qm` = z,Q
(t−1)
old , θ`, ψ`

)
=

∏
i:ξi`=1

θ
n′1`1
` (1− θ`)n

′
1`0 ·

∏
i:ξi`=0

ψ
n′0`1
` (1− ψ`)n

′
0`0 , z = 0, 1,

where n′1`1 =
∑N

i=1 ξi`Yi`, n
′
1`0 =

∑N
i=1 ξi`(1− Yi`), n′0`1 =

∑N
i=1(1− ξi`)Yi`, n′0`0 =∑N

i=1(1− ξi`)(1− Yi`), and Q
(b)
new and Q

(t−1)
old represent entries of Q that have and

have not been updated, respectively.

2) Permute the rows of Q(b) by natural ordering of binary codes {Qm?,m = 1, . . . ,M}

represented in binary system. We order the rows of Q(b) by decreasing order of

M -dimensional vector Q(b)v where v = (2L−1, 2L−2, . . . , 1)>. We only do so after

all the MCMC iterations.

Condition (C1) guarantees that once Q> is written in left-ordered form (Ghahra-

mani and Griffiths, 2006), the bottom row of Q corresponds to a row with a

positive ideal response at the smallest dimension `(1) = arg min`{Qm` = 1,∀m, `},

which if shared by more than one row, then the row having a postive ideal re-

sponse at the second lowest dimension `(2) = arg min`:`>`(1){Qm` = 1,∀m, `} is

placed at the bottom row; this scheme of ordering the rows of Q will always
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succeed according to (C1).

Finally, suppose at iteration s, the MCMC algorithm produces latent states unused by

any observation: Mnon,(b) = {m′ :
∑

i η
(b)
im′ = 0}. We reset to zeros the subset of rows

of Q corresponding to the unused latent states at an iteration. Given the sampled η
(b)
i ,

the corresponding set of rows Q
(b)
Mnon = {Q(b)

m?,m ∈ Mnon,(b)} does not enter likelihood.

We re-initiate Q
(b)
Mnon which upon sequential Gibbs scans create new machines that may

enter and improve the likelihood at the next iteration. In our experiments, resetting

Q
(b)
m? side-steps the difficulty of splitting a sampled machine that is populated with too

many ones. Resetting is also practically easier to implement compared to a fine-tuned

split-merge algorithm applied to the rows of Q in tandem with simulated annealing

which are designed for a more complex time series segmentation tasks (e.g., Fox et al.,

2014).

Convergence checks. In simulations and data analysis, we ran three MCMC chains

each with a burn-in period of 10, 000 iterations followed by 10, 000 iterations stored

for posterior inference. We look for potential non-convergence in terms of Gelman-

Rubin statistic (Brooks and Gelman, 1998) that compares between-chain and within-

chain variances for each model parameter where a large difference (Rc > 1.1) indicates

non-convergence; We also used Geweke’s diagnostic (Geweke and Zhou, 1996) that

compare the observed mean for each unknown variable using the first 10% and the last

50% of the stored samples where a large Z-score indicates non-convergence (|Z| > 2).

In our simulations and data analyses, we observed fast convergence (many satisfied

convergence criteria within 2, 000 iterations) that led to well recovered clusters and Q

matrices (results not shown here).

A2.2 Marginal Likelihood g(C)

To illustrate the calculation of marginal likelihood g(C) central to the posterior sampling of

clusters in (S11), we focus on two-parameter DINO model; see Remark S3 for extensions to

general restricted LCMs. Given assignment of subjects to clusters C, the model likelihood
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in a cluster Cj ∈ C is

pr
(
{Yi, i ∈ Cj} | η∗j ,Θ,Ψ, Q

)
=
∏

`:ξj`=0

ψ
nj`1

` (1− ψ`)nj`0 ·
∏

`:ξj`=1

θ
nj`1

` (1− θ`)nj`0 , (S14)

where nj`1 =
∑

i:Zi=j
Yi` and nj`0 =

∑
i:Zi=j

(1− Yi`) are the number of positive and negative

responses at dimension ` for subjects in cluster Cj, and ξj` = Γη∗j ,`
= 1−

∏M
m=1(1− η∗jm)Qm`

indicates the true status for ` = 1, . . . , L and the product over ` is due to conditional

independence given a cluster. We obtain the marginal likelihood g(C) for cluster Cj by

integrating out latent states η∗j in (S14):

g(C) =
∑

α∈{0,1}M
pr ({Yi, i ∈ Cj} | α,Θ,Ψ, Q)P(η∗j = α | p), (S15)

where P(η∗j = α | p) =
∏M

m=1 p
ηm
m (1− pm)1−ηm . Note that g(C) factorizes with respect to `

when M = L and Q = IL×L that leads to ξj` = η∗j`.

Remark S2. Computational considerations. One of the computational costs results from the

summation under a large M in (S15), or “add” operation over α ∈ {0, 1}M . The factor-

ization with respect to ` allows the summations to be done for each ` separately and there-

fore reduces the number of “add” operations from O(2M) to O(M) (Hoff, 2005, Equation

(8)). More generally, g(C) also factorizes with respect to blocks that partition {1, . . . ,M},

{Mu, u = 1, . . . , U} with ∪Mu = {1, . . . ,M} when the corresponding row blocks of Q are

orthogonal (Q̌u = ∨m∈MuQm?, u = 1, . . . , U are orthogonal), resulting in reduced “add” op-

erations O(2maxu |Mu|L). Given Q, we use Reverse Cuthill-McKee (RCM) algorithm (Cuthill

and McKee, 1969) for the M by M matrix QQ> to simultaneously rearrange its rows and

columns to obtain this block structure.

Remark S3. To generalize (S14) from two-parameter models to general restricted LCMs,

simply replace the first product with
∏

`:Γη∗
j
,`=0

(
ψ`,v(η∗i ,`)

)nj`1
(
1− ψ`,v(η∗i ,`)

)nj`0.

A2.3 Algorithm under M =∞

This section presents the algorithm without the need to pre-specify the exact or an upper

bound of the number of factors M . The algorithm adapts the slice sampler for infinite factor
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model (Teh et al., 2007) which performs adaptive truncation of the infinite model to finite

dimensions and avoids approximation of the Indian Buffet Process (IBP) prior for H∗. The

algorithm builds on the semi-ordered representation of the IBP, where the probabilities of

active states are non-ordered and the probabilities of inactive states truncated to a random

number M0 are ordered. We use this algorithm to infer the number of active states.

0. Initialize the number of active states M+, the random truncation level for inactive

states M0 = 0. Initialize Q with an appropriate M∗ = M+ +M0 by L binary matrix;

Initialize the IBP hyperparameter α; Initialize p of length M∗ to be the vector of the

probabilities for each state being used (if the initial M0 = 0 as recommended, then

p needs not be ordered). Initiate H∗ as (Tmax + 3) by Mmax matrix with all zeros,

where Tmax and Mmax are the guessed maximum number of clusters and truncated

number of states the algorithm will visit across iterations. Neither Tmax nor Mmax

is introduced to approximate any probabilistic distribution: one can increase both

numbers as appropriate at the expense of extra memory.

Repeat steps 1 to 10 below for iterations b = 1, . . . , B:

1. Gibbs update cluster indicators Z = {Zi, i = 1, . . . , N} and the cluster-specific sizes

|Cj|, j = 1, . . . , t, where t is the number of unique values in Z

2. For Iteration 1, update H∗ elementwise for t ·M∗ elements corresponding to the cur-

rently non-empty clusters and the current truncation level M∗ for the number of fac-

tors; Otherwise, update H∗ by the full conditional distribution given other parameters

including the slice variable s:

pr(η∗jm = z | others) ∝ pm
p+

min

×

M∏
m=1

{pm}η
∗
jm{1− pm}1−η∗jm ·

∏
`:ξj`=0

ψ
nj`1

` (1− ψ`)nj`0 ·
∏

`:ξc`=1

θ
nj`1

` (1− θ`)nj`0 ,

for z = 0, 1, m = 1, . . . ,M+, where p+
min = p+

min(H∗, {pm,m = 1, 2, . . . , }) = min1≤m≤M+{pm}

depends on η∗jm and is the normalizing constant for the uniform distribution of the slice

variable: pr(s | H∗, {pm,m = 1, 2, . . . , }) = 1{0≤s≤p+min}
/p+

min. For example, given s one
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must set to zero any column m ∈ {1, . . . ,M+} in H∗, {η∗jm, j = 1, . . . , t} whenever

pm < s.

3. Update Q matrix (M∗ by L) as in Step 6 in Section A2.1;

4. Update the number of active factors (M+) by finding the number of columns in H∗

with non-zero column sums.

5. Update unordered {pm,m = 1, . . . ,M+} by pm ∼ Beta(
∑t

j=1 η
∗
jm, 1 + t −

∑t
j=1 η

∗
jm),

m = 1, . . . ,M+;

6. Update slice variable s ∼ Uniform(0,minm pm);

7. Starting from m = 1, sample

p0
(m) | p0

(m−1) ∼ exp{α
t∑

j=1

(1− p0
(m))

j}(p0
(m))

α(1− p0
(m))

N · 1{0≤p0
(m)
≤p0

(m−1)
},

until p0
(M0+1) < s, where p0

(0) = 1. Use adaptive rejection sampling (ARS, Gilks and

Wild, 1992) to sample from this distribution iteratively for m = 1, . . . ,M0, where

M0 > 0 only when p0
(1) > s;

8. If M0 > 0, update p by concatenating the old p and p0; update M∗ = M+ +M0;

9. Pad H∗ with M0 columns of zeros to its right; Subset the rows of Q to those M+ factors

and pad it with M0 extra rows sampled from an appropriate initialization sampler;

10. Update other parameters θ, ψ, α as in Section A2.1.

A3 Posterior summaries of co-clustering and latent states

Here we focus on posterior co-clustering probabilities πii′ = P(Zi = Zi′ | Y), for subjects

i, i′ = 1, . . . , N . We estimate πii′ by the empirical frequencies π̂ii′ of subjects i and i′

being clustered together across MCMC iterations. For point estimation, we compute the

least square (LS) clustering Ĉ(LS) on the basis of the squared distance from the posterior

co-clustering probabilities, arg minb
∑

i,i′

{
δ(Z

(b)
i , Z

(b)
i′ )− π̂ii′

}2

, where δ(a, a′) = 1 if a = a′

and zero otherwise (Dahl, 2006).
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RLCM has the salient feature of subject-specific discrete latent states ηi. However, the

interpretation of ηi depends on Q which is of scientific interest on its own in many applica-

tions. Based on the posterior samples obtained from a model with an unknown Q, we select

the iteration(s) b∗ that minimizes the loss: b∗ = arg minb ‖Q(b)>Q(b) − 1
B

∑B
b′=1 Q

(b′)>Q(b′)‖F
where ‖ · ‖F =

√∑
a2
ij computes matrix Frobenius norm. Q>Q is a L by L matrix invariant

to relabeling of latent states and represents with its (`, `′)-th element the number of positive

states required by feature ` only when ` = `′ or by both of the feature pair (`, `′) when ` 6= `′.

Turning to the inference of H = {ηi}, we generate more posterior samples and reduce Monte

Carlo errors of approximating [H | Q = Q(b∗),Y] by refitting a model with Q = Q(b∗).

Remark S4. On posterior summary given a pre-specified Q. In applications where Q is known

(Example 3), we infer for each subject the probability of having a latent state pattern α,

P(ηi = α | Y), as estimated by the relative frequency of the event ηi = α across MCMC

iterations: 1
B

∑B
b=1 1{η(b)

i = α},∀α ∈ A where b indexes the stored MCMC samples ob-

tained in Supplementary Material A2.1. Similarly, the posterior distribution for the total

number of positive latent states P(
∑M

m=1 ηim = z | Y) is estimated by the empirical frequen-

cies 1
B

∑B
b=1 1{

∑M
m=1 η

(b)
im = z}, z = 0, . . . ,M , which in Example 3 represents the number of

pathogens infecting the lung of a pneumonia child. To characterize the differential impor-

tance of each latent state among clusters, we also compute the posterior probability for m-th

state being positive P(η∗(j)m = 1 | {Yi}), j = 1, . . . , J ′, for J ′ largest clusters across MCMC

iteration. Note that given Q, no merging or relabeling is required as in Step 3 and 7 in

Supplementary Material A2.1. The number of scientific clusters K̃ can also be summarized

by its empirical frequencies based on posterior samples.

A4 Additional simulated example: removing irrelevant

features reduces the noise and improves cluster es-

timation

When Q is unknown, the proposed method for scientifically structured clustering includes

an additional step for sampling Q. A zero column in Q, say column `, indicates irrelevance

of `-th dimension because all positive observations at that dimension will be false positives.
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By estimating which columns are zeros, our algorithm removes irrelevant features when

clustering observations.

Clustering multivariate binary data on a subset of features reduces the impact of noise

introduced by less important features and therefore can be superior to all-feature clustering

methods such as the standard latent class analysis. For example, in model (1-3) in Main

Paper with Q = IL×L in (2), irrelevant features Lc = {` : Γ?` = 0} ideally would not enter

likelihood ratio calculations when assigning observations to clusters. Indeed, let Rkk′(Yi) be

the log relative probabilities of assigning an observation Yi to cluster k (C(k)
−i ) versus k′ (C(k′)

−i )

given other parameters and clustering C−i can be Taylor approximated by

Rkk′(Yi) ≈ log
|C(k)
−i |+ γ

|C(k′)
−i |+ γ

+
L∑
`=1

p` log

(
θ̂(k)`

θ̂(k′)`

)Yi`
(

1− θ̂(k)`

1− θ̂(k′)`

)1−Yi`

, (S16)

where θ̂(k)` is an estimated true positive rate in cluster k at feature ` and the terms corre-

sponding to irrelevant features become negligible if θ̂(k)` ≈ ψ`. The response probabilities at

irrelevant dimensions ({ψ` : ` ∈ Lc}) are nevertheless estimated with error and interfere with

assigning each observation to an existing cluster. Rkk′(Y ) > 0,= 0, < 0 indicate assignment

of observation Y to cluster k more, equally and less likely than to cluster k′, respectively.

Consider a triple of observations (Y1,Y2,Y3) where the first (cluster k′) and the rest (cluster

k) belong to two distinct clusters, respectively. The probability of clustering Y1 and Y2 into

their respective true clusters is p12 = (1− expit{Rkk′(y1)})expit{Rkk′(y2)}; the probability of

assigning Y2 and Y3 into the same true cluster is p23 = expit{Rkk′(y2)}expit{Rkk′(y3)}. Here

we have used lower case yi to represent the sub-vector of Yi that entered the calculation in

(S16).

We simulated L1 = 5 relevant dimensions and L2 = 40 irrelevant dimensions Lc =

{6, . . . , 45}. To mimic the noisy estimates of the response probabilities in cluster k and k′, we

simulated θ̂(k)` = (log r, log ε) and θ̂(k′)` = (log r′, log ε′) where r`1, . . . , r`,L1

d∼ Beta(0.1Nk, 0.9Nk),

r′`1, . . . , r
′
`,L1

d∼ Beta(0.9Nk′ , 0.1Nk′) and ε`1, . . . , r`,L2

iid∼ Beta(0.1Nk, 0.9Nk) and ε′`1, . . . , ε
′
`,L2

iid∼

Beta(0.1Nk′ , 0.9Nk′). We set Nk = Nk′ = 20. Given {θ̂(k)`} and {θ̂(k′)`}, we draw observa-

tions from two classes that have response probability profiles (Y2 and Y3 from {θ(k)`, ` =

1, . . . , L} = (0.9, . . . , 0.9︸ ︷︷ ︸
L1

, 0.1, . . . , 0.1︸ ︷︷ ︸
L2

) and Y1 from {θ(k′)`, ` = 1, . . . , L} = (0.1, . . . , 0.1︸ ︷︷ ︸
L1

, 0.1, . . . , 0.1︸ ︷︷ ︸
L2

)).

25



Based on R = 100 replications, Figure S1 shows R = 100 values of p12 (left) and R = 100

values of p23 (right) computed by setting {yi, i = 1, 2, 3} to be the irrelevant, all and relevant

features in the data vector {Yi, i = 1, 2, 3}, respectively.

By selecting relevant features, the model improves our ability to separate observations

from distinct clusters and group observations that belong to the same cluster. On the left

panel, the all-feature p12 values are pulled towards zero (towards left) that favors assigning

Y2 to cluster k and Y1 to cluster k′. On the right panel, the all-feature p23 values are pulled

towards one (towards right) that favors clustering Y2 and Y3 together in the true cluster (k).

In practice, the relevant features are of course to be inferred from data, by their observed

marginal independence from the rest of the measured features. The improvements of clus-

tering using subset clustering with inferred subsets can be seen from in Figure 2 in Main

Paper by the superior clustering performance in (f) under feature selection compared to (e)

obtained without selecting features.
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Figure S1: Removing irrelevant features improves estimation of clusters. Left) 100
random pairs of observations drawn from distinct clusters; the probability of them not
being clustered correctly is lowered (pulled towards zero) once the irrelevant features
are removed. Right) 100 random pairs of observations drawn from the same cluster;
the probability of co-clustering to the correct cluster is increased towards one once the
irrelevant features are removed.

A5 Additional Analysis Results

We also fitted a Bayesian RLCM without the partial clusters C(0) identified in prior work

by the scientists. We estimated lower true positive rates so that it is more likely to observe

negative protein landmarks within clusters partially identified by having a machine with a

protein at that landmark. This makes the findings more difficult to interpret. As discussed

in the simulation studies, clustering performance of Bayesian RLCM is poorer under lower

sparsity levels s = 10%. As our scientific team recruits and tests more serum samples from

their scleroderma patient cohort, samples with novel antibodies will improve inference about

the measurement error parameters. This highlights the importance of using available prior

knowledge about the measurement technologies in inferring latent states in finite samples
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(e.g., Wu et al., 2016). Figure S5 in Supplementary Materials compares for each landmark

the prior and posterior distributions of the true and false positive rates. The discrepancies

observed at many landmarks suggest the learning of measurement error parameters from the

data. Other landmarks have similar prior and posterior distributions as a result of nearly

flat likelihood function or absence of protein at that landmark so learning based only on

likelihood is impossible.

There are potential improvements in our analysis. The posterior predictive probabil-

ities (PPP) of observing a more extreme log odds ratio in future data P(LOR1,2(Yrep) <

LOR1,2(Y) | Y) are between 0.004 and 0.024. Most of these misfits of marginal log odds

ratio occurred for landmark pairs with an observed marginal two-way table with small cell

counts. Because the Bayesian RLCM treats the zeros as random, if these zero cells corre-

spond to impossible combinations of proteins, or structural zeros, it may overestimate the

probability for these cells; See Manrique-Vallier and Reiter (2014) for a truncated extension

of traditional latent class models that can be adapted to address the structural zero issue.

On the other hand, the neighboring Landmarks 1 and 2 have an observed log odds ratio of

−1.17 (s.e. 0.48) with PPP 0.011. The two landmarks compete for being aligned with an

observed band during pre-processing (Wu et al., 2017a) hence creating negative dependence

even within a latent class. Deviation from local independence can be further accounted

for by explicitly modeling local dependence structure, discussed elsewhere, e.g., by nesting

subclasses within each class (e.g., Wu et al., 2017b).
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A6 Additional Figures and Tables

There are three major aspects of a specification of RLCM: a) whether the latent states

(ηi) that define the clusters take values from a known or unknown subset A ⊆ {0, 1}L;

b) whether it is known, partially known, or unknown about how a binary design matrix Γ

depends on {ηi} along with other parameters, where Γ specifies which and how measurements

exhibit between-class differential response probabilities, and c) the parametric form of the

conditional distribution of measurements given latent states and response probabilities (Λ):

[Yi | ηi,Λ], where Λ = {λi`} is parameterized and must satisfy restrictions imposed by the

design matrix Γ. Table S1 in Supplementary Materials summarizes the above and some

other variants of LCMs by specifications of the latent state space (A), design matrix (Γ),

and measurement likelihood.
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Figure S3: For each of four clustering methods (Bayesian RLCM, Hoff
(2005), HC, Bayesian LCA), the percent being ranked the first or the second
in terms of the mean aRI averaged across R = 60 replications (Section 4.1
in Main Paper). Each histogram is produced for the 1, 920 combinations
of parameters investigated in Section 4.1 in Main Paper.
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Figure S4: MCMC samples of the number of scientific clusters (C̃) with
its marginal posterior on the right margin.
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Figure S5: Prior vs posterior for all true positive rates {θ`} (left) and false
positive rates {ψ`} (right).
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Figure S6: Observed marginal positive rate (solid vertical line) plotted against the
posterior predictive distributions for L = 50 landmarks in Example 1.
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Figure S7: Significant deviations of model predicted log odds ratios (LOR) from the ob-
served LOR. A blank cell indicates a good model prediction for the observed pairwise LOR
(|SLORD| < 2); A red (blue) cell indicates model under- (over-) fitting SLORD > 2(< −2),
where standardized LOR difference (SLORD) is defined as the observed LOR for a pair of
landmarks minus the mean LOR for the predictive distribution value divided by the standard
deviation of the LOR predictive distribution. A red box indicate that the pair of landmarks
have cell counts in the 2 by 2 observed marginal table all greater than 5.
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Ročková, V. and George, E. I. (2016). Fast bayesian factor analysis via automatic rotations

to sparsity. Journal of the American Statistical Association, 111(516):1608–1622.

Rukat, T., Holmes, C. C., Titsias, M. K., and Yau, C. (2017). Bayesian boolean matrix

factorisation. In International Conference on Machine Learning, pages 2969–2978.

Teh, Y. W., Grür, D., and Ghahramani, Z. (2007). Stick-breaking construction for the indian

buffet process. In Artificial Intelligence and Statistics, pages 556–563.

Templin, J. L. and Henson, R. A. (2006). Measurement of psychological disorders using

cognitive diagnosis models. Psychological methods, 11(3):287.

Wu, Z., Casciola-Rosen, L., Shah, A. A., Rosen, A., and Zeger, S. L. (2017a). Estimating

autoantibody signatures to detect autoimmune disease patient subsets. Biostatistics, page

kxx061.

Wu, Z., Deloria-Knoll, M., Hammitt, L. L., and Zeger, S. L. (2016). Partially latent class

models for case–control studies of childhood pneumonia aetiology. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 65(1):97–114.

Wu, Z., Deloria-Knoll, M., and Zeger, S. L. (2017b). Nested partially latent class models for

dependent binary data; estimating disease etiology. Biostatistics, 18(2):200.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The

Annals of Statistics, 45(2):675–707.

40



Xu, G. and Shang, Z. (2018). Identifying latent structures in restricted latent class models.

Journal of the American Statistical Association, 0(0):1–12.

41


	Remarks
	Other Examples in Psychology and Epidemiology that Require Scientifically-Structured Clustering
	General Technical Formulation of RLCMs: Imposing Restrictions for Scientifically-Structured Classes
	Equivalent Formulation of RLCM

	Other Examples of RLCM in the Literature
	RLCM Connection to hoff2005subset
	Identifiability Considerations: Posterior Algorithm Design
	Additional likelihood-based identifiability conditions given K"0365K, M and  (or Q)

	On the prior distribution on H*
	On Extending Prior of H* to M=
	Prior for Partition C
	On Merging Clusters with Identical Discrete Latent States
	Priors for Other Model Parameters
	Joint Distribution

	Details of Posterior Algorithm
	Pre-specified Latent State Dimension M < 
	Marginal Likelihood g(C)
	Algorithm under M=

	Posterior summaries of co-clustering and latent states
	Additional simulated example: removing irrelevant features reduces the noise and improves cluster estimation
	Additional Analysis Results
	Additional Figures and Tables

