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Summary. In population studies on the aetiology of disease, one goal is the estimation of
the fraction of cases that are attributable to each of several causes. For example, pneumonia
is a clinical diagnosis of lung infection that may be caused by viral, bacterial, fungal or other
pathogens.The study of pneumonia aetiology is challenging because directly sampling from the
lung to identify the aetiologic pathogen is not standard clinical practice in most settings. Instead,
measurements from multiple peripheral specimens are made.The paper introduces the statisti-
cal methodology designed for estimating the population aetiology distribution and the individual
aetiology probabilities in the Pneumonia Etiology Research for Child Health study of 9500 chil-
dren for seven sites around the world. We formulate the scientific problem in statistical terms
as estimating the mixing weights and latent class indicators under a partially latent class model
(PLCM) that combines heterogeneous measurements with different error rates obtained from a
case–control study.We introduce the PLCM as an extension of the latent class model.We also in-
troduce graphical displays of the population data and inferred latent class frequencies.The meth-
ods are tested with simulated data, and then applied to Pneumonia Etiology Research for Child
Health data. The paper closes with a brief description of extensions of the PLCM to the regres-
sion setting and to the case where conditional independence between the measures is relaxed.

Keywords: Aetiology; Bayesian method; Case–control; Latent class; Measurement error;
Pneumonia

1. Introduction

Identifying the pathogens that are responsible for infectious diseases in a population poses
significant statistical challenges. Consider the measurement problem in the Pneumonia Etiology
Research for Child Health (PERCH) study, which is a case–control study that has enrolled 9500
children from seven sites around the world. Pneumonia is a clinical syndrome that develops
because of an infection of the lung tissue by bacteria, viruses, mycobacteria or fungi (Levine
et al., 2012). The appropriate treatment and public health control measures vary by pathogen.
Which pathogen is infecting the lung usually cannot be directly observed and must therefore be
inferred from multiple peripheral measurements with differing error rates. The primary goals
of the PERCH study are to integrate the multiple sources of data

(a) to attribute a particular case’s lung infection to a pathogen and
(b) to estimate the prevalences of the aetiologic pathogens in a population of children that

met clinical pneumonia definitions.
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Fig. 1. Directed acyclic graph illustrating relationships between lung infection state IL, imperfect laboratory
measurements on the presence or absence of each of a list of pathogens at each site MNP, MB and ML,
disease outcome Y and covariates X

The basic statistical framework of the problem is pictured in Fig. 1. The disease status is de-
termined by clinical examination including chest X-ray (Deloria-Knoll et al., 2012). The known
pneumonia status (case–control) is directly caused by the presence or absence of a pathogen-
caused infection in the lung. For controls, the lung is known to be sterile and has no infection.
For a child who has been clinically diagnosed with pneumonia, the pathogen causing the in-
fection in the child’s lung is the scientific target of interest. Among the candidate pathogens
being tested, we assume that only one is the primary cause. Extensions to multiple pathogens
are straightforward. Because, for most cases, it is not possible to sample the lung directly, we
do not know with certainty which pathogen infected the lung, so we seek to infer the infection
status on the basis of a series of laboratory measurements of specimens from various body fluids
and body sources.

The PERCH study was originally designed with three sources of measurements that are
relevant to the lung infection: directly from the lung by lung aspirate, from blood culture and
from the nasopharyngeal cavity (by swab). Therefore, our model was designed to accommodate
all three sources. As the study progressed, less than 1% of cases had direct lung measurements and
this sampled group was unrepresentative of all cases. The model, and accompanying software,
includes all three sources of measurements for application to other aetiology studies, but the
analysis of the motivating PERCH data below uses only blood culture and nasopharyngeal swab
data.

The measurement error rates differ by type of measurement. Here, an error rate or epidemi-
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ologic error rate is the probability of the pathogen’s presence or absence in a specimen test
given the presence or absence of infection in the lung. For this application, it is convenient to
categorize measures into three subgroups referred to as ‘gold’, ‘silver’ and ‘bronze’ standard
measurements. A gold standard (GS) measurement is assumed to have both perfect sensitivity
and perfect specificity. Lung aspirate data would have been GS. A silver standard (SS) measure-
ment is assumed to have perfect specificity, but imperfect sensitivity. Culturing bacteria from
blood samples (‘B-cX’) is an example of SS measurements in the PERCH study. Finally, bronze
standard (BS) measurements are assumed to have imperfect sensitivity and imperfect specificity.
Polymerase chain reaction evaluation of bacteria and viruses from nasopharyngeal samples is
an example.

In the PERCH study, both SS and BS measurements are available for all cases. BS, but not
SS, measures are available for controls. Our goal was to develop a statistical model that com-
bines GS and SS measurements from cases, with BS data from cases and controls to estimate
the distribution of pathogens in the population of pneumonia cases, and the conditional prob-
ability that each of the J pathogens is the primary cause of an individual child’s pneumonia
given her or his set of measurements. Even in applications where GS data are not available, a
flexible modelling framework that can accommodate GS data is useful for both the evaluation
of statistical information from BS data (Section 3) and the incorporation of GS data if they
become available as measurement technology improves.

Latent class models (LCMs) (Goodman, 1974) have been successfully used to integrate multi-
ple diagnostic tests or raters’ assessments to estimate a binary latent status for all study subjects
(Hui and Walter, 1980; Qu and Hadgu, 1998; Albert et al., 2001; Albert and Dodd, 2008). In the
LCM framework, conditional distributions of measurements given latent status are specified.
Then the marginal likelihoods of the multivariate measurements are maximized as a function
of the disease prevalence, sensitivities and specificities. This framework has also been extended
to infer ordinal latent status (Wang et al., 2011).

There are three salient features of the PERCH childhood pneumonia problem that require
extension of the typical LCM approach. First, we have partial knowledge of the latent lung
state for some subjects as a result of the case–control design. In the standard LCM approach,
the study population comprises subjects with completely unknown class membership. In this
study, controls are known to have no pathogen infecting the lung. Also, if GS measurements
were available from the lung for some cases, their latent variable would be directly observed. As
the latent state is known for a non-trivial subset of the study population, we refer to this model
as a partially latent class model (PLCM).

Second, in most LCM applications, the number of observed measurements on a subject is
much larger than the number of latent state categories. Here, the number of observations is of
the same order as the number of categories that the latent status can assume. For example, if we
consider only the PERCH study BS data, we simultaneously observe the presence or absence
of each member from a list of possible pathogens for each child. Even with additional control
data, the larger number of latent categories of latent status leads to weak model identifiability
as is discussed in more detail in Section 2.1.

Lastly, measurements with differing error rates (i.e. GS, SS and BS) need to be integrated.
Note that the modelling framework that is introduced here is general and can be applied to
studies where multiple BS measurements are available, each with a different set of error rates.
Understanding the relative value of each level of measurements is important to invest resources
into data collection (number of subjects, type of samples) and laboratory assays optimally. An
important goal is therefore to estimate the relative information from each type of measurements
about the population and individual aetiology distributions.
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Albert and Dodd (2008) studied a model where some subjects are selected to verify their latent
status (i.e. collect GS measurements) with the probability of verification either depending on the
previous test results or being completely at random. They showed that GS data can make model
estimates more robust to model misspecifications. We further quantify how much GS data would
reduce the variance of model parameter estimates for design purposes. Also, they considered
binary latent status and did not have available control data. Another related literature that uses
both GS and BS data is on verbal autopsy in the setting where no complete vital registry system
has been established in the community (King and Lu, 2008). Quite similar to the goal of infer-
ring pneumonia aetiology from laboratory measurements, the goal of verbal autopsy is to infer
the cause of death from a prespecified list by asking close family members questions about the
presence or absence of several symptoms. King and Lu (2008) proposed to estimate the cause-
of-death distribution in a community by using data on dichotomous symptoms and GS data
from the hospital where the cause of death and symptoms are both recorded. However, their
method involves non-parametric models and requires a sizable sample of GS data, especially
when the number of symptoms is large. In addition, a key difference between verbal autopsy
and most infectious disease aetiology studies is that the verbal autopsy studies are by definition
case only.

Another approach that has previously been used with case and control data is to perform
logistic regression of case status on laboratory measurements and then to calculate point estim-
ates of population attributable risks for each pathogen (Bruzzi et al., 1985; Blackwelder et al.,
2012). This method does not account for imperfect laboratory measurements and cannot use GS
or SS data if available. Also, the population attributable fraction method assigns zero aetiology
for the subset of pathogens that have estimated odds ratios that are smaller than 1, without
taking account of the statistical uncertainty for the odds ratio estimates.

In this paper, we define and apply a PLCM to incorporate these three features: known infec-
tion status for controls, a large number of latent classes and multiple types of measurement. We
use a hierarchical Bayesian formulation to estimate

(a) the population aetiology distribution or aetiology fraction (the frequency with which each
pathogen ‘causes’ clinical pneumonia in the case population) and

(b) the individual aetiology probabilities (the probabilities that a case is ‘caused’ by each of
the candidate pathogens, given observed specimen measurements for that individual).

In Section 4, to facilitate communications with scientists, we introduce graphical displays
that put data, model assumptions and results together. They enable the scientific investigators
to understand better the various sources of evidence from data and their contribution to the
final aetiology estimates.

The remainder of this paper proceeds as follows. In Section 2, we formulate the PLCM and the
Gibbs sampling algorithms for implementation. In Section 3, we evaluate our method through
simulations tailored for the childhood pneumonia aetiology study. Section 4 presents the analysis
of PERCH data. Lastly, Section 5 concludes with a discussion of results and limitations and
a few natural extensions of the PLCM also motivated by the PERCH data, as well as future
directions of research.

The R package implementing the methods proposed in this paper is available from https://
github.com/zhenkewu/nplcm.

2. A partially latent class model for multiple indirect measurements

We develop a PLCM to address two characteristics of the motivating pneumonia problem:



Partially Latent Class Models for Case–Control Studies 5

(a) a partially latent state variable because the pathogen infection status is known for controls
but not cases and

(b) multiple categories of measurements with different error rates across classes.

As shown in Fig. 1, let IL
i , taking values in {0, 1, 2, : : : , J}, represent the true state of child i’s

lung (i=1, : : : , N) where 0 represents no infection (control) and IL
i = j, j =1, : : : , J , represents

the jth pathogen from a prespecified cause-of-pneumonia list that is assumed to be exhaustive.
IL
i is the scientific target of inference for individual diagnosis. Let MS

i represent the J × 1
vector of binary indicators of the presence or absence of each pathogen in the measurement at
site S, where, in our childhood pneumonia aetiology study, S can be nasopharyngeal, blood
or lung. Let mS

i be the actual observed values. In what follows, we replace S with BS, SS
or GS, because they correspond to the measurement types nasopharyngeal, blood and lung
respectively.

Let Yi =yi ∈{0, 1} represent the indicator of whether child i is a healthy control or a clinically
diagnosed case. Note that IL

i = 0 given Yi = 0. To formalize the PLCM, we define three sets of
parameters:

(a) π= .π1, : : : ,πJ /′, the vector of compositional probabilities for each of J pathogen causes,
i.e. Pr.IL

i = j|Yi =1,π/, j =1, : : : , J ;
(b) ψS

j = Pr.MS
ij = 1|IL

i = 0/, the false positive rate (FPR) for measurement j (j = 1, : : : , J)
at site S (note that the FPRs {ψS

j }J
j=1 can be estimated from the control data at site S,

because IL
i =0 denotes that the ith subject has no infection in the lung, i.e. a control);

(c) θS
j = Pr.MS

ij = 1|IL
i = j/, the true positive rate (TPR) for measurement j at site S for a

person whose lung is infected by pathogen j, j =1, : : : , J .

We further let ψS = .ψS
1 , : : : ,ψS

J /′ and θS = .θS
1 , : : : , θS

J /′. Using these definitions, we have FPR
ψGS

j = 0 and TPR θGS
j = 1 for GS measurements, so MGS

ij = 1 if and only if IL
i = j, j = 1, : : : , J

(perfect sensitivity and specificity). For SS measurements, the FPR ψSS
j =0 so MSS

j =0 if IL
i �= j

(perfect specificity).
We formalize the model likelihood for each type of measurement. We first describe the model

for BS measurement MBS for a control or a case. For control i, positive detection of the jth
pathogen is a false positive representation of the non-infected lung. Therefore, we assume that
MBS

ij |ψBS ∼Bernoulli.ψS
j /, j =1, : : : , J , with conditional independence, or equivalently

P
0,BS
i =Pr.MBS

i =m|ψBS/=
J∏

j=1
.ψBS

j /mj .1−ψBS
j /1−mj , .1/

where m=mBS
i . For a case infected by pathogen j, the positive detection rate for the jth pathogen

in BS assays is θBS
j . Since we assume a single cause for each case, detection of pathogens other

than j will be false positive results with probability equal to the FPR as in the controls:ψBS
l , l �=j.

This non-differential misclassification across the case and control populations is the essential
assumption of the latent class approach because it allows us to borrow information from control
BS data to distinguish the true cause from background colonization. We further discuss this
non-differential misclassification in the context of the pneumonia aetiology problem in the final
section. Then,

P
1,BS
i =Pr.MBS

i =m|π,θBS,ψBS/

=
J∑

j=1
πj.θBS

j /mj .1−θBS
j /1−mj

∏
l �=j

.ψBS
l /ml .1−ψBS

l /1−ml .2/
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is the likelihood contributed by BS measurements from case i, where m =mBS
i .

Similarly, the likelihood contribution from case i’s SS measurements that have perfect speci-
ficities can be written as

P
1,SS
i =Pr.MSS

i =m|π,θSS/=
J ′∑

j=1
πj.θSS

j /mj .1−θSS
j /1−mj 1{

ΣJ ′
l=1ml�1

}, .3/

where m=mSS
i and 1{·} is the indicator function, which equals 1 if the statement in the brackets

is true and otherwise is 0. Here J ′ � J represents the number of actual SS measurements on
each case, and θSS = .θSS

1 , : : : , θSS
J ′ /. SS measurements test only for a subset of all J pathogens

(for example blood culture detects only bacteria) and J ′ is the number of bacteria that are
potential causes. Finally, for completeness, GS measurement is assumed to follow a multinomial
distribution with likelihood

P
1,GS
i =Pr.MGS

i =m|π/=
J∏

j=1
π

1{mj=1}
j 1{Σjmj=1}, .4/

where m =mGS
i .

Let δi be the binary indicator of a case i having GS measurements; it equals 1 if the case has
available GS data and 0 otherwise. Combining likelihood components (1)–(4), the total model
likelihood for BS, SS and GS data across independent cases and controls is

L.γ;D/= ∏
i:Yi=0

P
0,BS
i

∏
i:Yi=1,δi=1

P
1,BS
i P

1,SS
i P

1,GS
i

∏
i:Yi=1,δi=0

P
1,BS
i P

1,SS
i , .5/

where γ= .θBS,ψBS,θSS,π/′ stacks all unknown parameters, and data

D ={mBS
i }i:Yi=0

⋃{mBS
i , mGS

i , mSS
i }i:Yi=1,δi=1

⋃{mBS
i′′ , mSS

i′′ }i′′:Yi′′=1,δi′′=0

collect all the available measurements on study subjects. Our primary statistical goal is to estimate
the posterior distribution of the population aetiology distribution π, and to obtain individual
etiology (IL

Å ) prediction given a case’s measurements.
To enable Bayesian inference, prior distributions on model parameters are specified as fol-

lows:π∼Dirichlet.a1, : : : , aJ /, ψBS
j ∼beta.b1j, b2j/, θBS

j ∼beta.c1j, c2j/, j =1, : : : , J , and θSS
j ∼

beta.d1j, d2j/, j = 1, : : : , J ′. Hyperparameters for the aetiology prior, a1, : : : , aJ , are usually 1s
to denote equal and non-informative prior weights for each pathogen if expert prior knowl-
edge is unavailable. The FPR for the jth pathogen, ψBS

j , generally can be well estimated from
control data; thus b1j =b2j =1 is the default choice. For TPR parameters θBS

j and θSS
j , if prior

knowledge on TPRs is available, we choose .c1j, c2j/ so that the 2:5% and 97:5% quantiles of
the beta distribution with parameter .c1j, c2j/ match the prior minimum and maximum TPR
values elicited from pneumonia experts. Otherwise, we use default value 1s for the beta hyper-
parameters. Similarly we choose values of .d1j, d2j/ either by prior knowledge or default values
of 1. We finally assume prior independence of the parameters as [γ]= [π][ψBS][θBS][θSS], where
[A] represents the distribution of random variable or vector A. These priors represent a bal-
ance between explicit prior knowledge about measurement error rates and the desire to be as
objective as possible for a particular study. As described in the next section, the identifiability
constraints on the PLCM require specification of a reasonable subset of parameter values to
identify parameters of greatest scientific interest.

2.1. Model identifiability
Potential non-identifiability of LCM parameters is well known (Goodman, 1974). For example,
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an LCM with four observed binary indicators and three latent classes is not identifiable despite
providing 15 degrees of freedom to estimate 14 parameters (Goodman, 1974). In principle, the
Bayesian framework avoids the non-identifiability problem in LCMs by incorporating prior
information about unidentified parameter subspaces (e.g. Garrett and Zeger (2000)). Many
researchers point out that the posterior variance for non-identifiable parameters does not de-
crease to 0 as the sample size approaches ∞ (e.g. Kadane (1975), Gustafson et al. (2001) and
Gustafson (2005)). Even when data are not fully informative about a parameter, an identified
set of parameter values that is consistent with the observed data can, nevertheless, be valuable
in a complex scientific investigation (Gustafson, 2009) such as the PERCH study.

When GS data are available, the PLCM is identifiable; when they are not, the two sets of
parameters π and {θBS

j }J
j=1 are not both identified and prior knowledge must be incorporated.

Here we restrict attention to the scenario with only BS data for simplicity but similar arguments
pertain to the BS plus SS scenario. The problem can be understood from the form of the positive
measurement rates for pathogens among cases. In the PLCM likelihood for the BS data (only
retaining components in equation (5) with superscripts BS), the positive rate for pathogen j is
a convex combination of the TPR and FPR:

Pr.MBS
ij =1|πj, θBS

j ,ψBS
j /=πjθ

BS
j + .1−πj/ψBS

j , .6/

where the left-hand side of this equation can be estimated by the observed positive rate of
pathogen j among cases. Although the control data provide ψBS

j -estimates, the two parameters
πj and θBS

j are not both identified. GS data, if available, identify πj and resolve the lack of
identifiability. Otherwise, we need to incorporate prior scientific information on one of them,
usually the TPR (θBS

j ). In the PERCH study, prior knowledge about θBS
j is obtained from

infectious disease and laboratory experts (Murdoch et al., 2012) based on vaccine probe studies
(Cutts et al., 2005; Madhi et al., 2005). If the observed case positive rate is much higher than
the rate in controls (ψBS

j ), only large values of the TPR (θBS
j ) are supported by the data, making

aetiology estimation more precise (Section 2.2).
The full model identification can be generally characterized by inspecting the Jacobian matrix

of the transformation F from model parameters γ to the distribution p of the observables,
p = F.γ/. Let γ= .θBS,ψBS,π1, : : : ,πJ−1/′ represent the .3J − 1/-dimensional unconstrained
model parameters. The PLCM defines the transformation .p1, p0/′ =F.γ/, where p1 and p0 are
the two contingency probability distributions for the BS measurements in the case and control
populations, each with dimension 2J − 1. It can be shown that the Jacobian matrix has J − 1
of its singular values 0, which means that the model parameters γ are not fully identified from
the data. The FPRs (ψBS

j , j =1, : : : , J) in the PLCM are, however, identifiable parameters that
can be estimated from control data. Therefore, the PLCM is termed partially identifiable (Jones
et al., 2010).

2.2. Parameter estimation and individual aetiology prediction
The parameters in likelihood (5) include the population aetiology distribution π, TPRs and
FPRs for BS measurements, ψBS and θBS, and TPRs for SS measurements θSS. The poste-
rior distribution of these parameters can be estimated by constructing approximating samples
from the joint posterior via a Markov chain Monte Carlo (MCMC) Gibbs sampler. The full
conditional distributions for the Gibbs sampler are detailed in Appendix A.

We develop a Gibbs sampler with two essential steps:

(a) multinomial sampling of lung infection state among cases, IL
i |π, Yi =1∼multinomial.π/;
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(b) the measurement stage given lung infection state,

MBS
ij |IL

i ,θBS,ψBS ∼Bernoulli{1{IL
i =j}θ

BS
j + .1−1{IL

i =j}/ψBS
j }, j =1, : : : , J ,

conditionally independent.

This is readily implemented by using the freely available software WinBUGS 1.4 (Lunn et al.,
2000). In the application below, convergence was monitored by using auto-correlations, kernel
density plots and Brooks–Gelman–Rubin statistics (Brooks and Gelman, 1998) of the MCMC
chains. The statistical results below are based on 10000 iterations of burn-in followed by 50000
production samples from each of three parallel chains.

The Bayesian framework naturally allows individual within-sample classification (infection
diagnosis) and out-of-sample prediction. This section describes how we calculate the aetiol-
ogy probabilities for an individual with measurements mÅ. We focus on the more challenging
inference scenario when only BS data are available; the general case follows directly.

The within-sample classification for case i is based on the posterior distribution of latent
indicators given the observed data, i.e. Pr.IL

i = j|D/, j = 1, : : : , J , which can be obtained by
averaging along the cause indicator IL

i chain from MCMC samples. For a case with new BS
measurements mÅ, we have

Pr.IL
i = j|mÅ, D/=

∫
Pr.IL

i = j|mÅ,γ/Pr.γ|mÅ, D/dγ, j =1, : : : , J , .7/

where the second factor in the integrand can be approximated by the posterior distribution
given current data, i.e. Pr.γ|D/. For the first term in the integrand, we explicitly obtain the
model-based, one-sample conditional posterior distribution,

Pr.IL
i = j|mÅ,γ/=πj lj.mÅ;γ/

/∑
m
πrm lm.mÅ;γ/, j =1, : : : , J ,

where

lm.mÅ;γ/= .θBS
j /mÆj .1−θBS

j /1−mÆj
∏
l �=j

.ψBS
l /mÆl .1−ψBS

l /1−mÆl

is the mth mixture component likelihood function evaluated at mÅ. The log-relative-probability
of IL

i = j versus IL
i = l is

Rjl = log
(
πj

πl

)
+ log

{(
θBS

j

ψBS
j

)mÆj
(

1−θBS
j

1−ψBS
j

)1−mÆj
}

+ log

{(
ψBS

l

θBS
l

)mÆl
(

1−ψBS
l

1−θBS
l

)1−mÆl
}
:

The form of Rjl informs us about what is required for correct diagnosis of an individual. Suppose
that IL

i = j; then, averaging over mÅ, we have E[Rjl] = log.πj=πl/ + I.θBS
j ;ψBS

j / + I.ψBS
l ; θBS

l /,
where I.v1; v2/ = v1 log.v1=v2/ + .1 − v1/ log{.1 − v1/=.1 − v2/} is the information divergence
(Kullback, 2012) that represents the expected amount of information in mÅj ∼ Bernoulli.v1/

for discriminating against mÅj ∼Bernoulli.v2/. If v1 =v2, then I.v1; v2/=0. The form of E[Rjl]
shows that there is only additional information from BS data about an individual’s aetiology in
the person’s data when there is a difference between θBS

j and ψBS
j , j =1, : : : , J .

Following equation (7), we average Pr.IL
i = j|mÅ,γ/ over MCMC iterations to obtain an

individual prediction for the jth pathogen, p̂ij, withγ replaced by its simulated valuesγÅ at each
iteration. Repeating for j = 1, : : : , J , we obtain a J probability vector, p̂i = .p̂i1, : : : , p̂iJ /′, that
sums to 1. This scheme is especially useful when a newly examined case has a BS measurement
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pattern that is not observed in D, which often occurs when J is large. The final decisions
regarding which pathogen to treat can then be based on p̂i. In particular, the pathogen with
largest posterior value might be selected. It is Bayes optimal under mean misclassification loss.
Individual aetiology predictions described here generalize the positive or negative predictive
value from single to multivariate binary measurements and can aid diagnosis of case subjects
under other user-specified misclassification loss functions.

3. Simulation for three pathogens case with gold standard and bronze standard data

To demonstrate the utility of the PLCM for studies like the PERCH study, we simulate BS data
sets with 500 cases and 500 controls for three pathogens A, B and C by using known PLCM
specifications. We focus on three states to facilitate viewing of the π-estimates and individual
predictions in the three-dimensional simplex S2. We use a ternary diagram (Aitchison, 1986)
representation where the vector π= .πA,πB,πC/′ is encoded as a point with each component
being the perpendicular distance to one of the three sides. The parameters involved are fixed
at TPR θ= .θA, θB, θC/′ = .0:9, 0:9, 0:9/′, FPR ψ= .ψA,ψB,ψC/′ = .0:6, 0:02, 0:05/′ and π=
.πA,πB,πC/′ = .0:67, 0:26, 0:07/′. We focus on BS and GS data here and have dropped the
BS superscript on the parameters for simplicity. We further let the fraction of cases with GS
measurements, Δ, be either 1% as in the PERCH study or 10%. Although GS measurements
are rare in the PERCH study, we investigate a large range of Δ to understand in general how
much statistical information is contained in BS measurements relative to GS measurements.

For any given data set, three distinct subsets of the data can be used: BS only, GS only and BS
plus GS, each producing its posterior mean of π, and 95% credible region (Bayesian confidence
region), by a transformed Gaussian kernel density estimator for compositional data (Chacón
et al., 2011). To study the relative importance of the GS and BS data, the primary quantity of
interest in the simulations is the relative sizes of the credible regions for each data mix. Here, we
use uniform priors on θ and ψ, and a Dirichlet.1, : : : , 1/ prior for π. The results are shown in
Fig. 2.

First, in Figs 2(a) (1% GS) and 2(b) (10% GS), each region covers the true aetiology π.
In data that are not shown here, the nominal 95% credible regions cover slightly more than
95% of 200 simulations. Credible regions narrow in on the truth as we combine BS and GS
data, and as the fraction of subjects with GS data, Δ, increases. Also, the posterior mean from
the BS plus GS analysis is an optimal balance of information contained in the GS and BS
data.

Using the same simulated data sets, Figs 2(c) and 2(d) also show individual aetiology predic-
tions for each of the 8 .= 23/ possible BS measurements .mA, mB, mC/′, mj = 0, 1, obtained by
the methods from Section 2.2. Consider the example of a newly enrolled case without GS data
and with no pathogen observed in her BS data: m = .0, 0, 0/′. Suppose that she is part of a case
population with 10% GS data. In the case that is illustrated in Fig. 2(d), her posterior predic-
tive distribution has highest posterior probability 0:76 on pathogen A reflecting two competing
forces: the FPRs that describe background colonization (colonization among the controls) and
the population aetiology distribution. Given other parameters, m = .0, 0, 0/′ gives the smallest
likelihood for IL

i =A because of its high background colonization rate (FPR ψA = 0:6). How-
ever, before observing .0, 0, 0/′, πA is well estimated to be much larger than πB and πC. Therefore
the posterior distribution for this case is heavily weighted towards pathogen A.

Because it is rare to observe pathogen B in a case whose pneumonia is not caused by B, for a
case with observation .1, 1, 1/′, the prediction favours B. Although B is not the most prevalent
cause among cases, the presence of B in the BS measurements gives the largest likelihood when
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(a) (b)

(d)(c)

Fig. 2. (a), (b) Population and (c), (d) individual aetiology estimates for a single sample with 500
cases and 500 controls with true πD .0.67, 0.26, 0.07/0 and either (a), (c) 1% .N D 5/ or (b), (d) 10%
GS data on cases (in (c) and (d), 8 (= 23) BS measurement patterns and predictions for individual children
are shown with measurement patterns attached; the numbers at the vertices show empirical frequencies of
GS measurements): ˚, true population aetiology distribution π; , , , 95% credible regions
for analysis using BS data only, BS plus GS data and GS data only respectively; , , , corresponding
posterior mean of π; , 95% highest posterior density region of the uniform prior distribution

IL
i refers to B. For any measurement pattern with a single positive result, the case is always

classified into that category in this example.
Most predictions are stable with increasing GS percentage Δ. Only 000 cases have predic-

tions that move from near the centre to the corner of A. This is mainly because that TPR θ
and aetiology fractions π are not as precisely estimated in GS scarce scenarios relative to GS
abundant scenarios. Averaging over a wider range of θ andπ produces 000 case predictions that
are ambiguous, i.e. near the centre. As Δ increases, parameters are well estimated, and precise
predictions result.
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4. Analysis of Pneumonia Etiology Research for Child Health data

The PERCH study is an on-going standardized and comprehensive evaluation of aetiologic
agents causing severe and very severe pneumonia among hospitalized children aged 1–59 months
in seven low and middle income countries (Levine et al., 2012). The study sites include countries
with a significant burden of childhood pneumonia and a range of epidemiologic characteristics.
The PERCH study is a case–control study that has enrolled over 4000 patients hospitalized for
severe or very severe pneumonia and over 5000 controls selected randomly from the community
frequency matched on age in each month. More details about the PERCH design are available
in Deloria-Knoll et al. (2012).

To analyse PERCH data with the PLCM model, we have focused on preliminary data from
one site with good availability of both SS and BS laboratory results (no missingness). Final
analyses of all seven countries will be reported elsewhere on completion of the study. Included
in the current analysis are BS data (nasopharyngeal specimens with PCR detection of pathogens)
for 432 cases and 479 frequency-matched controls on 11 species of pathogens (seven viruses and
four bacteria, representing a subset of pathogens evaluated; their abbreviations are shown on
the right-hand margin in Fig. 3, and full names in Table 1) and SS data (blood culture results)
on the four bacteria for only the cases.

In the PERCH study, prior scientific knowledge of measurement error rates is incorporated
in the analysis. On the basis of microbiology studies (Murdoch et al., 2012), the PERCH inves-
tigators selected priors for the TPRs of our BS measurements, θBS

j , in the range of 50–100%
for viruses and 0–100% for bacteria. Priors for the SS TPRs were based on observations from
vaccine probe studies—randomized clinical trials of pathogen-specific vaccines where the total
number of clinical pneumonia cases prevented by the vaccine is much larger than the few SS
laboratory-confirmed cases prevented. Comparing the total preventable disease burden with the
number of blood culture (SS) positive cases prevented provides information about the TPR of
the bacterial blood culture measurements, θSS

j , j =1, : : : , 4. Our analysis used the range 5–15%
for the SS TPRs of the four bacteria that are consistent with the vaccine probe studies (Cutts
et al., 2005; Madhi et al., 2005). We set beta priors that match these ranges (Section 2) and
assumed a Dirichlet(1, : : : , 1) prior on aetiology fractions π.

In latent variable models such as the PLCM, key variables are not directly observed. It is
therefore essential to picture the model inputs and outputs side by side to understand the analysis
better. In this spirit, Figs 3(a) and 3(b) display, for each of the 11 pathogens, a summary of the
BS and SS data respectively along with some of the intermediate model results, and the prior and
posterior distributions for the aetiology fractions in Fig. 3(c) (the rows are ordered by posterior
means). The observed BS rates (with 95% confidence intervals) for cases and controls are shown
on the far left with dots. The conditional odds ratio contrasting the case and control rates given
the other pathogens is listed with 95% confidence interval in the box to the right of the BS
data summary. Below the case and control observed rates is a horizontal line with a triangle.
From left to right, the line starts at the estimated FPR ψ̂BS

j and ends at the estimated TPR
θ̂BS

j , both obtained from the model. Below the TPR are two boxplots summarizing its posterior
(top) and prior (bottom) distributions for that pathogen. These boxplots show how the prior
assumption influences the TPR estimate as expected given the identifiability constraints that
were discussed in Section 2.1. The triangle on the line is the model estimate of the case rate to
compare with the observed value above it. As discussed in Section 2.1, the model-based case
rate is a linear combination of the FPR and TPR with mixing fraction equal to the estimated
aetiology fraction. Therefore, the location of the triangle, expressed as a fraction of the distance
from the FPR to the TPR, is the model-based point estimate of the aetiologic fraction for each
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Table 1. Pathogen names and their abbreviations

Bacteria
HINF Haemophilus influenzae
PNEU Streptococcus pneumoniae
SASP Salmonella species
SAUR Staphylococcus aureus

Viruses
ADENO Adenovirus
COR 43 Coronavirus OC43
FLU C Influenza virus type C
HMPVA B Human metapneumovirus type A or B
PARA1 Parainfluenza type 1 virus
RHINO Rhinovirus
RSVA B Respiratory syncytial virus type A or B

pathogen. The SS data are shown in a similar fashion to the right of the BS data. By definition,
the FPR is 0:0% for SS measures and there are no control data. The observed rate for the cases
is shown with its 95% confidence interval. The estimated SS TPR θ̂SS

j with prior and posterior
distributions is shown as for the BS data, except that we plot 95% and 50% credible intervals
for the SS TPR above its prior 95% and 50% intervals.

Fig. 3(c) displays the marginal posterior and prior distributions of the aetiologic fraction
for each pathogen. We appropriately normalized each density to match the height of the prior
and posterior curves. The posterior mean, 50% and 95% credible intervals are shown above the
density.

Fig. 3 shows that respiratory syncytial virus, RSV, Streptococcus pneumoniae, PNEU, rhi-
novirus, RHINO, and human metapneumovirus, HMPV A B, occupy the greatest fractions of
the aetiology distribution, from 15% to 30% each. That RSV has the largest estimated mean
aetiology fraction reflects the large discrepancy between case and control positive rates in the
BS data: 25:1% versus 0:8% (marginal odds ratio 38:5 (95% credible interval .18:0, 128:7/)).
RHINO has case and control rates that are close to each other, yet its estimated mean aetiology
fraction is 16:7%. This is because the model considers the joint distribution of the pathogens,
not the marginal rates. The conditional odds ratio of case status with RHINO given all the other
pathogen measures is estimated to be 1:5 .1:1, 2:1/, in contrast with the marginal odds ratio,
which is close to 1 .0:8, 1:3/.

As discussed in Section 2.1, the data alone cannot precisely estimate both the aetiologic
fractions and TPRs without prior knowledge. This is evidenced by comparing the prior and
posterior distributions for the TPRs in the BS boxes for some pathogens such as HMPV A B
and PARA1 (i.e. Fig. 3(a)). The posteriors are similar to their priors, indicating that little else
about the TPR is learned from the data. The posteriors for some pathogens making up π (i.e.
shown in Fig. 3(c)) are likely to be sensitive to the prior specifications of the TPRs.

We performed sensitivity analyses using multiple sets of priors for the TPRs. At one extreme,
we ignored background scientific knowledge and let the priors on the FPR and TPR be uniform
for both the BS and the SS data. Ignoring prior knowledge about error rates lowers the aetiology
estimates of the bacteria PNEU and Staphylococcus aureus, SAUR. The substantial reduction
in the aetiology fraction for PNEU, for example, is a result of the difference in the TPR prior for
the SS measurements. In the original analysis (Fig. 3), the informative prior on the SS sensitivity
(TPR) places 95% mass between 5% and 15%. Hence the model assumes that almost 90% of
the PNEU infections are being missed in the SS sampling. When a uniform prior is substituted,
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the fraction that is assumed missed is greatly reduced. For RSV, its posterior mean aetiology
fraction is stable (29:4−30:0%). The aetiology estimates for other pathogens are fairly stable,
with changes in posterior means between −2:3% and 3:4%.

Under the original priors for the TPR, PARA1 has an estimated aetiologic fraction of 6:4%,
even though it has conditional odds ratio 5:9 .2:6, 15:0/. In general, pathogens with larger condi-
tional odds ratios have larger aetiology fraction estimates. But a pathogen also needs a reasonably
high observed case positive rate to be allocated a high aetiology fraction. The posterior aetiol-
ogy fraction estimate of 6:4% for PARA1 results because the prior for the TPR takes values
in the range of 50−99%. By equation (6), the TPR weight in the convex combination with the
FPR (around 1:5%) must be very small to explain the small observed case rate 5:6%. When a
uniform prior is placed on the TPR instead, the PARA1 aetiology fraction increases to 9:4%
with a wider 95% credible interval.

We believe that RHINO’s aetiologic fraction may be inflated as a result of its negative associ-
ation with RSV among cases. Under the conditional independence assumption of the PLCM,
this dependence can only be explained by multinomial correlation between the latent cause in-
dicators: IL

i ≡RSV versus IL
i ≡RHINO, i.e. −πRSVπRHINO. There is strong evidence that RSV

is a common cause with a stable estimate π̂RSV around 30%. The strong negative association
in the cases’ measurements between RHINO and RSV therefore is being explained by a larger
aetiologic fraction estimate π̂RHINO relative to other pathogens that have less or no association
with RSV among the cases. The conditional independence assumption is leveraging informa-
tion from the associations between pathogens in estimation of the aetiologic fractions. If true,
this issue can be addressed by extending the PLCM to allow for alternative sources of correla-
tion between the measurements, e.g. competition between pathogens within the nasopharyngeal
space.

We have checked the model in two ways by comparing the characteristics of the observed
measurements’ joint distribution with the same characteristic for the distribution of data of the
same size generated by the model. By generating the new data characteristics at every iteration
of the MCMC chain, we can obtain the posterior predictive distribution by integrating over the
posterior distribution of the parameters (Garrett and Zeger, 2000).

Among the cases, the 95% predictive interval includes the observed values in all except two
of the BS patterns and even there the fits are reasonable. Among the controls, there is evidence
of a lack of fit for the most common BS pattern with only PNEU and HINF (Fig. S1 in the
on-line supplementary materials). Fewer cases with this pattern are observed than predicted
under the PLCM. This lack of fit is probably due to associations of pathogen measurements in
control subjects. Note that the FPR estimates remain consistent regardless of such correlation
as the number of controls increases; however, posterior variances for them may be underestim-
ated.

A second model checking procedure is for the conditional independence assumption. We
estimated standardized log-odds-ratios for cases and controls (Fig. S2 in on-line supplementary
materials). Each value is the observed log-odds-ratio for a pair of BS measurements minus
the mean log-odds-ratio from the posterior predictive distribution value, under the model’s
independence assumption, divided by the standard deviation of the same posterior predictive
distribution. We find two large deviations among the cases: RSV with RHINO and RSV with
HMPV. These are probably caused by strong seasonality in RSV that is out of phase with weaker
seasonality in the other two. Otherwise, the number of standardized log-odds-ratios that are
greater than 2 (eight out of 110) associations is only slightly larger than what is expected under
the assumed model (six expected).

An attractive feature of using MCMC sampling to estimate posterior distributions is the ease
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(a)

(b) (c)

Fig. 4. Summary of posterior distribution of pneumonia aetiology estimates ( , 95% credible regions within
the bacterial or viral groups): (a) posterior distribution of viral aetiology; (b) posterior aetiology distribution for
the top two causes given a bacterial infection; (c) posterior aetiology distribution for the top two causes given
a viral infection

of estimating posteriors for functions of the latent variables and/or parameters. One interesting
question from a clinical perspective is whether viruses or bacteria are the major cause and, among
each subgroup, which species predominate. Fig. 4(a) shows the posterior distribution for the rate
of viral pneumonia, and the conditional distributions of the two leading viruses and bacteria
among viral and bacterial causes in Figs 4(b) and 4(c) respectively. The posterior distribution of
the viral aetiologic fraction has mode around 70:0% with 95% credible interval .57:0%, 79:2%/.
As shown in Fig. 4(b), PNEU accounts for most bacterial cases (47:2% .24:9%, 71:1%/), and
SAUR accounts for 25:5% .8:7%, 49:9%/. Of all viral cases (Fig. 4(c)), RSV is estimated to cause
about 42:9% .32:8%, 54:8%/, and RHINO about 24:2% .13:7%, 37:2%/.

5. Discussion

In this paper, we estimated the frequency with which pathogens cause disease in a case pop-
ulation by using a PLCM to allow for known states for a subset of subjects and for multiple
types of measurement with different error rates. In a case–control study of disease aetiology,
measurement error will bias estimates from traditional logistic regression and attributable frac-
tion methods. The PLCM avoids this pitfall and more naturally incorporates multiple sources
of data. Here we formulated the model with three levels of measurement error rates.

Without GS data, we show that the PLCM is only partially identified because of the relation-
ship between the estimated TPR and prevalence of the associated pathogen in the population.
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Therefore, the inferences are sensitive to the assumptions about the TPR. Uncertainty about
their values persists in the final inferences from the PLCM regardless of the number of subjects
studied.

The current model provides a novel solution to the analytic problems that are raised by the
PERCH study. This paper introduces and applies a PLCM to a preliminary set of data from one
PERCH study site. Confirmatory laboratory testing, incorporation of additional pathogens and
adjustment for potential confounders may change the scientific findings that will be reported in
the final complete analysis of the study results when it is completed.

An essential assumption that is relied on in the PLCM is that the probability of detecting
one pathogen at a peripheral body site depends on whether that pathogen is infecting the child’s
lung but is unaffected by the presence of other pathogens in the lung, i.e. the non-differential
misclassification error assumption. We have formulated the model to include GS measures even
though they are available for only a small and unrepresentative subset of the PERCH cases. In
general, the availability of GS measures makes it possible to test this assumption as has been
discussed by Albert and Dodd (2008).

Several extensions have potential to improve the quality of inferences that are drawn and are
being developed for the PERCH study. First, because the control subjects have known class,
we can model the dependence structure between the BS measurements and use this to avoid
aspects of the conditional independence assumption that is central to most LCM methods. The
approach is to extend the PLCM to have K subclasses within each of the current disease classes.
These subclasses can introduce correlation between the BS measurements given the true disease
state. An interesting question concerns the bias–variance trade-off for different values of K. This
idea follows previous work on the parallel factors decomposition of probability distribution for
multivariate categorical data (Dunson and Xing, 2009). This extension will enable model-based
checking of the standard PLCM.

Second, in our analyses to date, we have assumed that the pneumonia case definition is error
free. Given new biomarkers and availability of chest radiographs that can improve on the clinical
diagnosis of pneumonia, one can introduce an additional latent variable to indicate true disease
status and use these measurements to assign probabilistically each subject as a case or control.
Finally, regression extensions of the PLCM would allow PERCH investigators to study how
the aetiology distributions vary with human immunodeficiency virus status, age group and
season.
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Appendix A: Full conditional distributions in Gibbs sampler

In this section, we provide analytic forms of full conditional distributions that are essential for the Gibbs
sampling algorithm. We use a data augmentation scheme by introducing latent lung state IL

i into the
sampling chain and we have the following full conditional distributions.

(a) [IL
i |others]: if MGS

i is available, Pr.IL
i =j|others/ equals 1, if MGS

ij =1 and MGS
il =0, for l �=j; otherwise

it is 0. If MGS
i is missing, according to whether MSS

i is available, the full conditional is given by

Pr.IL
i = j|others/∝ .θBS

j /
MBS

ij .1−θBS
j /

1−MBS
ij

∏

l �=j

.ψBS
l /MBS

il .1−ψBS
l /1−MBS

il

× [.θSS
j /

MSS
ij .1−θSS

j /
1−MSS

ij 1{Σl �=jMSS
il

=0}]1{j�J ′}πj ; .8/

if SS measurement is not available for case i, we remove terms involving MSS
ij .

(b) [ψBS
j |others] ∼ beta.Nj + b1j , n1 −Σi:Yi=11{IL

i =j} +n0 −Nj + b2j/, where n1 and n0 are the numbers
of cases and controls respectively, and Nj =Σi:Yi=1,IL

i �=j MBS
ij +Σi:Yi=0 MBS

ij is the number of positive
results at position j for cases with IL

i �= j and all controls.
(c) [θBS

j |others] ∼ beta.Sj + c1j , Σi:Yi=1 1{IL
i =j} − Sj + c2j/, where Sj =Σi:Yi=1,IL

i =j MBS
ij is the number of

positive results for cases with jth pathogen as their causes.
(d) [θSS

j |others]∼beta.Tj +d1j , Σi:Yi=1,SS available 1{IL
i =j} −Tj +d2j/, where

Tj = ∑

i:Yi=1,IL
i =j,SS available

MSS
ij :

When no SS data are available, this conditional distribution reduces to beta.d1j , d2j/, the prior.
(e) [π|IL

i , i : Yi =1]∼Dirichlet.a1 +U1, : : : , aJ +UJ /, where Uj =Σi:Yi=11{IL
i =j}.
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