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S1. Proof of Proposition 1 We provide a proof for a tree with four leaves (see Figure
S1) and extension to trees with a larger number of leaves follows by induction. The main idea
is to merge subtrees backward and integrate out responses of internal nodes when merging
subtrees.

PROOF. Consider a subtree T ′ rooted at (t1,X ′
1) with two leaves (1,X1) and (1,X2),

and one internal node (t2,X
′
2) (see Panel (A) of Figure S1). Assume that the root (t1,X ′

1)
of the subtree is fixed, and responses Xi,X

′
i ∈RJ , J ≥ 1, i= 1,2. With t= (t1, t2, t3)

T, the
conditional distribution for leaf responses would be Xi|X ′

2,T , t∼NJ(X
′
2, (1−t2)σ

2I), i=
1,2. Since X ′

2|X ′
1,T , t∼NJ(X

′
1, (t2 − t1)σ

2I), based on the conjugacy of the normal dis-
tribution, the marginal distribution is also normal. Conditional on t and T , mean and co-
variance of Xi, i= 1,2 can be derived by the law of iterated expectations and results in the
distribution of the subtree T ′ with two leaves:

1



2

E[Xi] =E[E[Xi|X ′
2]] =E[X ′

2] =X ′
1, i= 1,2;

V ar[Xi] = V ar[E[Xi|X ′
2]] +E[V ar[Xi|X ′

2]] = V ar[X ′
2] +E[(1− t2)σ

2I] = (1− t1)σ
2IJ ;

Cov[X1,X2] =Cov[E[X1|X ′
2],E[X2|X ′

2]] +E[Cov[X1,X2|X ′
2]] = V ar[X ′

2] +E[0] = (t2 − t1)σ
2IJ ;

The marginal distribution for the subtree T ′ with two leaves is[
X1 X2

]
∼MNJ×2

([
X ′

1 X
′
1

]
,IJ , σ

2ΣT ′
)
, ΣT ′

=

[
1− t1 t2 − t1
t2 − t1 1− t1

]
.

Therefore, we can merge two leaves responses X1 and X2. Similarly, we can also merge
the other subtree T ′′ to obtain.[

X3 X4

]
∼MNJ×2

([
X ′

1 X
′
1

]
,IJ , σ

2ΣT ′′
)
, ΣT ′′

=

[
1− t1 t3 − t1
t3 − t1 1− t1

]
.

Eventually, we can merge two subtrees (see Panel (B) of Figure S1), T ′ and T ′′. From con-
jugacy of the normal distribution, the resulting joint marginal distribution of Xi, i= 1,2,3,4
is normal. The mean and the variance can be derived along identical lines as above. The
only term left is the covariance, and we need to (re-)compute them for locations within and
between the combined subtrees. Explicitly,

Cov[X1,X2] =Cov[E[X1|X ′
1],E[X2|X ′

1]] +E[Cov[X1,X2|X ′
1]] = V ar[X ′

1] +E[(t2 − t1)σ
2IJ ] = t2σ

2IJ

Cov[X1,X3] =Cov[E[X1|X ′
1],E[X3|X ′

1]] +E[Cov[X1,X3|X ′
1]] = V ar[X ′

1] +E[0] = t1σ
2IJ .

This ensures that

XT =
[
X1 X2 X3 X4

]
∼MNJ×4

([
0 0 0 0

]
,IJ , σ

2ΣT ) ,ΣT =


1 t2 t1 t1
t2 1 t1 t1
t1 t1 1 t3
t1 t1 t3 1

 ,

as required. Moreover, denote ti,i′ as the most recent divergence time of leaves i and i′. We
observe that t1 = t1,3 = t1,4 = t2,3 = t2,4, t2 = t1,2, and t3 = t3,4 and complete the Proposi-
tion 1.

Figure S1: Merging subtrees for the integration process. (A) First step of merging upper subtree, and
(B) Final step of merging all subtrees.

S2. Efficient Two-Stage Hybrid ABC-MH Algorithm Here we offer details of two-
stage algorithm with pseudo code. In the Section S2.1, we describe the full algorithm of the
ABC with the following posterior summary of Euclidean parameters (c,σ2). The Section
S2.2 includes the implementation of the proposal function and the acceptance probability of
MH stage. Pseudo code for the full two-stage algorithm is presented below in Algorithm S1



PROBABILISTIC LEARNING OF TREATMENT TREES IN CANCER 3

S2.1. ABC Stage and the Posterior Summary of c and σ2 The Section 3 of the Main
Paper states the main idea of ABC and we offer the full algorithm of ABC including (i) the
synthetic data generation process, (ii) the regression adjustment (Blum, 2010) of ABC, and
(iii) posterior summary of the Euclidean parameters.

Data generation in ABC. Following Section 2 in the Main Paper, a synthetic data is gen-
erated from DDT as follows: (i) given cl ∼ Gamma(ac, bc), generate a tree Tl through the
divergence function a(t) = cl(1− t)−1, and (ii) given Tl and 1/σ2

l ∼ Gamma(aσ2 , bσ2), gen-
erate triples (tj ,X

′
i,Xi), i

′ = 1 . . . I − 1, i = 1 . . . I by a scaled Brownian motion upon Tl.
After discarding (Tl, ti,X ′

i), the leaf locations Xi form an I by J observed data matrix Xl. In
Algorithm S1, ABC repeats the procedure above to generate N syn synthetic data (see Figure
S2).

Figure S2: Schematic diagram of synthetic data generation and the calculation of summary statistics
(first stage of Algorithm S1). Sobs is calculated based on the actual observed data.

Regression adjustment in ABC. Originally proposed in Beaumont, Zhang and Balding
(2002) and later generalized by Blum (2010), regression adjustment for ABC is performed
in Step 8 of Algorithm S1. The motivation is to use smoothing technique to weaken the ef-
fect of the discrepancy between the summary statistic calculated from synthetic data and that
from the observed data. We briefly describe the the procedure of c. Additional details can be
found in Beaumont, Zhang and Balding (2002) and Blum (2010). Suppose we are given the
observed summary statistics S(c)

obs and unadjusted samples (cunadj
l ,S

(c)
l ), l = 1, . . . , k, we can

calculate the weight for each sample by

w
(c)
l =Kh(∥S

(c)
l −S

(c)
obs∥)(S1)

, where the bandwidth h is set at the largest value, such that Kh(maxl=1...k ∥S
(c)
l −S

(c)
obs∥) =

0 to ensure non-zero importance weight for k samples (Sisson, Fan and Beaumont, 2019)
and mean integrated square error consistency (Biau, Cérou and Guyader, 2015). Regression
adjustment seeks to produce adjusted samples cl but maintain the sample weights and thus
assumes the following model for the unadjusted samples cunadj with mean-zero i.i.d errors ϵl
where E(ϵ2l )<∞ for l= 1 . . . , k:

cunadj
l =m(S

(c)
l ) + ϵl .(S2)

The estimated regression function m̂ is then a kernel-based local-linear polynomial obtained
as a solution of argminα,β

∑k
l=1[c

unadj
l − (α + β(S

(c)
l − S

(c)
obs))]

2w
(c)
l . Using the empirical

residuals ϵ̂l = cunadj
l − m̂(S

(c)
l ), we then construct the adjusted values cl = m̂(S

(c)
obs) + ϵ̂l.
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Posterior summary of Euclidean parameters (c,σ2). The first stage of our ABC-MH al-
gorithm produces weighted samples {cℓ,w

(c)
l }, {σ2

ℓ ,w
(σ2)
l }, l= 1, . . . , k, and we summarize

the weighted samples as follows. We illustrate the calculations with c, and the calculations
for σ2 follow similarly. We calculate the posterior median and 95% credible interval by find-
ing the 50, 2.5 and 97.5% quantiles, and use the posterior median for the second stage of
the proposed ABC-MH algorithm when sampling the tree. In general, for calculating the
q × 100% quantile, we fit an intercept-only quantile regression of cℓ with weights w(c)

l ; this
is implemented by rq wrapped in the summary function summary.abc in the R package
abc.

S2.2. MH Algorithm for Updating the Tree in the DDT Model. In the second stage of
Algorithm S1, we have used existing MH tree updates (Knowles and Ghahramani, 2015).
We briefly describe the proposal for generating a candidate tree T ′ from the current tree T
and the acceptance probability. Given the current tree, a candidate tree is proposed in two
steps: (i) detaching a subtree from the original tree, and (ii) reattaching the subtree back to
the remaining tree (see Figure S3). In Step i, let (S,R) be the output of the random detach
function that divides the original tree T into two parts at the detaching point u, where S is the
detached subtree and R is the remaining tree. In this paper, we generate the detaching point
u by uniformly selecting a node and taking the parent of the node as the detaching point.
In Step ii, for the re-attaching point v, we follow the divergence and branching behaviors
of the generative DDT model by treating subtree S as a single datum and adding a new
datum S to R. Given the point v, a candidate tree T ′ results by re-attaching S back to R
at point v. The time of re-attaching point tv is then earlier than the time of the root of S to
avoid distortion of S : tv < t(root(S)). By choosing u and v as above, we have described the
proposal distribution from T to T ′, q(v,R), which is essentially the probability of diverging
at v on the subtree R. The acceptance probability is then

min

{
1,

f(T ′,X)q(u,R)

f(T ,X)q(v,R)

}
(S3)

, where f(T ,X) = f(T ,X|c0, σ2
0) = P (X|T , σ2

0)P (T |c0), P (X|T , σ2
0) is the likelihood of

the tree structure (Proposition 1), P (T |c0) is the prior for the tree (the first two terms in
Equation (4)), and c0 and σ2

0 are representative value chosen from the posterior sample of c
and σ2, respectively.

Figure S3: Schematic diagram of proposing a candidate tree in MH. (Left) Current tree T with detach
point u (yellow); (Middle) Intermediate subtrees with remaining tree R and the detached subtree S ;
(Right) The proposed tree T ′ with reattached point v (green).
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Algorithm S1 Two-stage hybrid ABC-MH algorithm
Input:

(a) Observed data: X= [X1, . . . ,XI ]
T consisting of I points in RJ ;

(b) Summary statistics S(c), S(σ2) defined in the Main Paper Section 3.1.1;
(c) Synthetic data of size N syn and threshold d ∈ (0,1) with k = ⌈N synd⌉, the number of nearest synthetic data

sets to retain;
(d) Prior for model parameters: c∼ Gamma(ac, bc), 1

σ2 ∼ Gamma(aσ2 , bσ2);
(e) Univariate Kernel Kh(·) with bandwidth h > 0 and compact support.

Output:
(a) Posterior samples of c and σ2 of size k =N synd;
(b) posterior samples of (T , t).

1: procedure EUCLIDEAN PARAMETERS(c, σ2)
2: for l= 1...N syn do
3: Sample Euclidean parameters from prior cl ∼ Gamma(ac, bc), σ

2
l ∼ Gamma(aσ2 , bσ2);

4: Simulate data Xl from DDT using (cl, σ
2
l );

5: Compute: S(c)
l and S

(σ2)
l along with ∥S(c)

l −S
(c)
obs∥ and ∥S(σ2)

l − S
(σ2)
obs ∥.

6: Choose {(cls , σ
2
ls
), s= 1, . . . , k} corresponding to k smallest ∥S(c)

l −S
(c)
obs∥ and ∥S(σ2)

l − S
(σ2)
obs ∥

7: Calculate the sample weights w(c)
ls

=Kh(∥S
(c)
ls

−S
(c)
obs∥) and w

(σ2)
ls

=Kh′(∥S(σ2)
ls

− S
(σ2)
obs ∥) based

on Equation (S1);

8: Compute regression adjusted samples cls and σ2ls with weights w(c)
ls

and w
(σ2)
ls

with the model (S2) and

calculate posterior summary c0 and σ20 plugging the adjusted cls and σ2ls .

9: procedure TREE PARAMETERS((T , t))
10: Follow the MH algorithm in Section S2.2 with fixed c0 and σ20 at the posterior median values and compute

acceptance probabilities with Equation S3.

S3. Tree Projection of Pairwise iPCP Matrix In the Main Paper Section 3.2, we men-
tioned that a pairwise iPCP matrix Σ with entries iPCPi,i′ , i, i

′ = 1, . . . , I need not to be a
tree-structured matrix and we address the projection of Σ on to the space of tree-structured
matrices here. Given L> 1 posterior trees with I leaves and the corresponding pairwise iPCP

matrix Σ =
(

iPCPi,i′

)
, each entry of iPCP matrix can be express as iPCPi,i′ =

∑L
l=1 t

(l)

i,i′

L ,

where t
(l)
i,i′ is the divergence time of leaves i and i′ in the l-th posterior tree. Obviously, every

entry of the iPCP matrix takes the element-wise Monte Carlo average over L tree-structured
matrix and breaks the inequalities (2) and (3) in the Main Paper. Following the work of Bravo
et al. (2009), by representing a tree as a tree-structured matrix, we can project Σ on to the
closest tree-structured matrix in terms of Frobenius norm. The projection can be formulated
as a constrained mixed-integer programming (MIP) problem:

argmin
ΣT

||Σ−ΣT ||F

s.t. ΣT
i,i′ ≥ 0; ΣT

i,i ≥ΣT
i,i′ ; Σ

T
i,i′ ≥min(ΣT

i,i′′ ,Σ
T
i′,i′′), for all i ̸= i′ ̸= i′′.

We applied the projection on the pairwise iPCP matrix from the breast cancer (panel (A)),
colorectal cancer (panel (B)) and melanoma (panel (C)) data of NIBR-PDXE and show the
result in the Figure S4. In Figure S4, the MAP tree, the tree representation of projected
iPCP matrix (MIP tree), the original iPCP matrix and the projected iPCP matrix are shown
in from the left to the right columns, respectively. From the left two columns of the tree
structures, we found that trees from the MAP and MIP show similar pattern and the MIP
tree allows a non-binary tree structure. For example, three combination therapies and two
PI3K inhibitors (CLR457 and BKM120) framed by a box form a tight subtree in both MAP
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and MIP tree, but the subtree in the MIP is non-binary. For the iPCP matrix, high element-
wise correlation Cor(ΣT

i,i′ ,Σi,i′) between the original iPCP Σ and the projected iPCP ΣT are
presented (BRCA: 0.9987; CRC: 0.9962; CM: 0.9918).

Figure S4: Comparison between (Left two columns) the tree structure from the MAP and the projected
iPCP matrix (MIP tree) and (Right two columns) the matrix from the original iPCP matrix and the
projected iPCP matrix for (A) breast cancer, (B) colorectal cancer and (C) melanoma. The matrix
from the original iPCP and the MIP projected iPCP matrix are aligned by the MIP tree.

S4. Simulation Studies of Euclidean Parameters In this section, we empirically com-
pare the Euclidean parameters of c and σ2 from ABC of the proposed two-stage algorithm
and single-stage MCMC. We organize this section as follows. We first compare other candi-
date summary statistics of c and σ2 for ABC in Section S4.1. In Section S4.2, we illustrate the
superior inference performance of Euclidean parameters from ABC than single-stage MCMC
through a series of simulations. Section S4.3 offers the diagnostic statistics and the sensitivity
analysis for ABC stage of the proposed two-stage algorithm and checks the convergence of
c and σ2 for the single-stage MCMC.

Simulation setup. For illustrative purposes, we fixed the observed PDX data matrix with 50
treatments (I = 50) and 10 PDX mice (J = 10) in all simulation scenarios. In addition, we let
c and σ2 take values from {0.3,0.5,0.7,1} and {0.5,1} respectively to mimic the PDX data
with tight and well-separated clusters. For each pair of (c,σ2), 200 replicated experiments
with different tree and observed PDX data matrices were independently drawn according to
the DDT generating model. We specify a prior distribution for c∼ Gamma(2,2) with shape
and rate parameterization. For diffusion variance σ2, let 1/σ2 ∼ Gamma(1,1). We compare
ABC-MH of the proposed two-stage algorithm against two alternatives based on single-stage
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MH algorithms (Neal, 2003) (see details in Section S2.2). The first one initializes at the
true parameter values and the true tree, referred to as MHtrue. The idealistic initialization at
the truth is a best case scenario in applying existing MH algorithm to inferring DDT models.
The second alternative, referred to as MHdefault, initializes (c,σ2) by a random draw from the
prior; the unknown tree is initialized by agglomerative hierarchical clustering with Euclidean
distance and squared Ward’s linkage (Murtagh and Legendre, 2014) – thus providing a fair
apples-to-apples comparison. For the ABC, we generated N syn synthetic data of c and σ2

and kept k = ⌈N synd⌉ nearest samples in terms of the ∥S(c)
l − S

(c)
obs∥ and ∥S(σ2)

l − S
(σ2)
obs ∥.

We varied the number of synthetic data N syn and the threshold parameter d ∈ (0,1) under
different settings and we specified N syn and d in each of the following sections. We ran two
MH algorithms with 10,000 iterations and discarded the first 7,000 iterations.

Performance metrics for Euclidean parameters. We used two algorithm performance met-
rics to compare our algorithm to the classical single-stage MCMC algorithms. First we com-
puted the effective sample sizes for each Euclidean parameter c and σ2 (ESSc and ESSσ2 )
given a nominal sample size (NSS) kept for posterior inference. ESS for each parameter rep-
resents the number of independent draws equivalent to NSS posterior draws of correlated
(MHtrue and MHdefault) or independent and unequally weighted samples (ABC stage of the
proposed algorithm). We let NSS for MH algorithms be the number of consecutive posterior
samples in a single chain after a burn-in period; let NSS for ABC be k as in Step 6, Algorithm
S1. For c and σ2, the ESS of MH (Gelman et al., 2013) is estimated by NSS/(1 +

∑∞
t=1 ρ̂t)

where ρ̂t is the estimated autocorrelation function with lag t (Geyer, 2011). The ESS for ABC
(Sisson, Fan and Beaumont, 2019) is the reciprocal of the sum of squared normalized weights,
1/

∑k
l=1 W̃

2
l , where W̃l = wl/

∑k
l′=1wl′ (see weights, wl, in Equation (S1)). Second, we

evaluated how well did the posterior distributions recover the true (c,σ2). We computed the
mean absolute percent bias for c and σ2: |E{c |X}− c|/c and |E{σ2 |X}− σ2|/σ2, respec-
tively. We also computed the empirical coverage rates of the nominal 95% credible intervals
(CrI) for c and σ2.

S4.1. Other Choices of Summary Statistics Proposition 1 points towards other potential
summary statistics for the first stage of Algorithm S1 that uses ABC to produce weighted
samples to approximate the posterior distributions for c and σ2. Here we consider a few such
alternatives with N syn = 600,000 and d= 0.5% and empirically compare their performances
to the summary statistics used in the Main Paper (S(c) and S(σ2)) in terms of the mean
absolute percent bias in recovering the true parameter values of c and σ2.

Summary statistic for c. Unlike building S(c) based on the inter-point distance, the off-
diagonal terms of T =

∑
j X·,jX

T
·,j (see the definition of T in Lemma 1 in Main Paper)

is another potential summary statistic for c. Since the divergence parameter c affects the
marginal likelihood implicitly through the divergence time t, the summary statistics for t
is informative for c. From Proposition 1, T is sufficient for σ2ΣT , where the off-diagonal
terms of σ2ΣT taking the form σ2td, d = 1 . . . n − 1 and containing unrelated information
from σ2. Let QT be a vector of the 10th, 25th, 50th, 75th and 90th percentiles of the off-
diagonal terms of T . Because T is sufficient for σ2ΣT and involves extra Gaussian diffusion
variance parameter, we can design alternative summary statistics based on QT through (i)
augmentation, (QT , S

(σ2)) or (ii) scaling, QT /S
(σ2). From Figure S5, S(c) proposed in the

Main Paper outperformed the summary statistics from QT by producing less biased posterior
mean estimates.

Summary statistic for σ2. Following Proposition 1, several matrix functionals on the data X
or statistics T can be considered as alternatives to S(σ2). We compare performance of three
candidates: (i) average L1 norm (AvgL1) of columns: 1

J

∑J
j=1 |X·,j |1; (ii) Frobenius norm
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Figure S5: Comparison among different summary statistics for c (red: (QT , S(σ2)); green: S(c); blue:
QT /S(σ2)) under different values of σ2 in terms of the mean absolute percent bias. (Left) σ2 = 0.5;
(Right) σ2 = 1.

of X; and, (iii) vector containing 10th, 25th, 50th, 75th and 90th percentiles of first principal
component (PC1) of X. From Figure S6, the first three methods are comparable while ABC
based on principal components shows larger bias due to the information loss.

Figure S6: Comparison among different summary statistics for σ2 under different values of c in terms
of the mean absolute percent bias. (Upper Left) c= 0.3; (Upper Right) c= 0.5; (Lower Left) c= 0.7;
(Upper Right) c= 1.0.

S4.2. Posterior Inference of Euclidean Parameters In this section, we show that two-
stage algorithm (ABC-MH) outperforms the single-stage MCMC (MH) for real parameters
in terms of (i) stable effective sample size (ESS) for (c,σ2); (ii) similar or better inference on
(c,σ2), as ascertained using mean absolute percent bias and nominal 95% credible intervals.
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S4.2.1. Stable Effective Sample Sizes of ABC-MH We calculated ESS-to-NSS ratios at
varying truths of c and σ2. To illustrate, we matched the NSS budget of ABC with that of MH
(NSS = 3,000) by keeping d= 0.5% of N syn = 600,000 synthetic data sets that are closest to
the observed data in terms of the summary statistic for each parameter (Step 6 of Algorithm
S1). Table S1 shows that the ESSc/NSS and ESSσ2/NSS ratio from ABC is stable between
0.64 to 0.68 and around 0.83 across different c and σ2 values, respectively. In contrast, the
ESSc/NSS ratio for MH quickly deteriorates (MHtrue: 0.97 to 0.41; MHdefault: 0.73 to 0.35)
as c increases from 0.3 to 1 and ESSσ2/NSS for MH are extremely poor (< 0.06) across
different values of c and σ2. MH produced very good ESSc under small value c= 0.3 but poor
ESSc under c = 1. As a result, under larger values of c, MH algorithms must run longer to
reach a target ESSc. Although ESSc for ABC is not as high as MHtrue or MHdefault at c= 0.3,
the stability of ESSc of ABC means that a predictably constant NSS is needed for conducting
posterior inference across different values of c. Finally, the ESSσ2 for the diffusion variance
parameter from MH algorithms are strikingly smaller than ABC, indicating ABC should be
preferred.

TABLE S1
ESS-to-NSS ratios between ABC-MH (d= 0.5%), MHtrue, and MHdefault. All values here are obtained from
200 independent replications. For each random replication at (c, σ2). All methods were controlled to produce

identical NSS with size 3,000.

ESS/NSS(sd) for c ESS/NSS(sd) for σ2

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3
ABC-MH 0.68(0.032) 0.67(0.027) 0.83(0.0048) 0.83(0.0042)
MHtrue 0.97(0.11) 0.96(0.13) 0.051(0.061) 0.056(0.072)
MHdefault 0.73(0.33) 0.67(0.34) 0.028(0.043) 0.038(0.08)

0.5
ABC-MH 0.66(0.02) 0.65(0.018) 0.83(0.0047) 0.83(0.0044)
MHtrue 0.85(0.23) 0.83(0.24) 0.034(0.042) 0.045(0.067)
MHdefault 0.66(0.35) 0.62(0.34) 0.033(0.051) 0.041(0.067)

0.7
ABC-MH 0.65(0.017) 0.64(0.017) 0.83(0.0047) 0.83(0.004)
MHtrue 0.63(0.31) 0.67(0.32) 0.024(0.027) 0.029(0.038)
MHdefault 0.53(0.33) 0.51(0.35) 0.028(0.039) 0.038(0.072)

1.0
ABC-MH 0.65(0.017) 0.64(0.017) 0.83(0.0044) 0.83(0.0041)
MHtrue 0.41(0.3) 0.44(0.32) 0.019(0.026) 0.019(0.023)
MHdefault 0.35(0.29) 0.35(0.29) 0.022(0.026) 0.022(0.027)

S4.2.2. Superior Quality Posterior Inference of ABC-MH Does ABC give better poste-
rior inference with a fixed computational budget? To make fair comparisons, we fixed a total
CPU time and used the same computing processor to run the ABC (1st stage of Algorithm
1) and MH algorithms. Let tMH and tABC be the estimated CPU time for generating one
iteration in MH and one synthetic data in ABC on the same processor. Note, tMH includes
the additional time for proposing a valid tree. By varying the number of synthetic samples,
we can match the total CPU time used by ABC with that of MH algorithms which were run
for 10,000 iterations. We generated 10,000tMH/tABC = 17,345 synthetic data sets and took
d= 5% with summary statistics S(c) and S(σ2) (see different values of d in Section S4.3.3)
for ABC. Table S2 shows that ABC produced posterior samples that confer comparable infer-
ences about c in terms of the bias and coverage of nominal 95% CrIs. The posterior mean of c
from ABC is comparable to that from MHtrue and less biased than MHdefault for all settings.
The coverage rates of the nominal 95% CrIs from ABC are comparable to MHtrue but higher
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than MHdefault. MHtrue, however, is initialized at true values and is unrealistic in practice. We
observed MHtrue sometimes failed to converge (Table S3), stuck around the initial true values
and resulted in deceptively low biases and good coverage rates. Turning to the inference of
σ2, ABC offers a much better alternative to MH algorithms in terms of smaller bias in the
posterior mean and better coverage of the 95% credible intervals (Table S2). This is primarily
caused by the difficulty of MH in exploring the posterior distribution of σ2 resulting in chains
with high auto-correlations. The squeezed boxplots in Figure S7 indicate that the chains for
σ2 in MHtrue and MHdefault were almost always slowly mixing and stuck around the initial
values. In addition, unlike the serial nature of MH, ABC can be further parallelized to reduce
the wall clock time to a fraction of what is required by MH using multicore processors. Al-
though parallelizing MH with techniques such as consensus MCMC (e.g., Scott et al., 2016)
is possible, the parallelized ABC does not require data splitting and will not trade the quality
of posterior inference for computational speed.

Figure S7: (Upper left) c = 0.3; (Upper right) c = 0.5; (Lower left) c = 0.7; (Lower right) c = 1.0.
The posterior standard deviation of σ2 from MH (green and blue) are close to zero across different
true c showing MH is stuck. Results are based on 200 replications.

S4.3. Algorithm Diagnostics Here we examine the convergence of MH through the
Geweke statistics (Geweke, 1992) and the goodness of fit for ABC. Specifically, two impor-
tant hyper-parameters are involved in ABC: (i) the kernel bandwidth h for samples weights
in Equation S1 and (ii) the threshold d for k = ⌈N synd⌉ nearest samples in the Step 6 of
Algorithm S1. We follow the test from Prangle et al. (2014) to justify the kernel bandwidth
h and conduct the sensitivity analysis for threshold d to understand how threshold d affects
the result in terms of the inferential performance.

S4.3.1. Convergence of MH Chains in Simulations In all of our simulations, we ran MH
for 10,000 iterations. Table S3 shows that the percentages of the converged MH chains for
200 replications are between 12.5 and 68.5% within a total 10,000 iterations (based on
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Geweke statistic). Running the chains longer will increase these percentages. In contrast,
with appropriate choice of bandwidth and the fraction of synthetic samples to keep, ABC
does not involve convergence issues and according to Section S4.2 achieves better ESS for a
fixed NSS and similar or better quality posterior inference for fixed CPU time.

TABLE S3
Percentage of converged chains for (i) MH initialized at true (c, σ2) (MHtrue), and (ii) MH initialized randomly

from prior (MHdefault). All values here are obtained from 200 independent replications.

Convergence % for c Convergence % for σ2

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3
MHtrue 68.0 68.5 16.5 22.5
MHdefault 36.5 28.5 12.5 16.0

0.5
MHtrue 50.0 52.0 23.0 29.5
MHdefault 40.5 37.5 18.5 23.5

0.7
MHtrue 38.0 46.0 26.5 27.0
MHdefault 33.5 31.0 14.5 25.0

1.0
MHtrue 35.0 30.5 20.5 30.5
MHdefault 27.5 33.0 14.0 25.0

S4.3.2. Diagnostics for ABC We empirically justify the choice of the kernel bandwidth
h and the goodness of approximation in ABC algorithm by the calibration method from Pran-
gle et al. (2014) based on the coverage property of the credible interval. Suppose we gener-
ated pseudo-observed data Xe in the eth replication from the DDT model with parameter
(ce, σ

2
e), where ce and σ2

e are random draws from the prior (ce ∼ Gamma(ac, bc),1/σ
2
e ∼

Gamma(aσ2 , bσ2)) and e = 1 . . .E. Once the tuning parameters (N syn, d, h) are decided,
Algorithm S1 will output regression adjusted sample (cℓ, σ

2
ℓ ) with size ℓ = 1, . . . , k;k =

⌈N synd⌉ based on the input data D. We describe diagnostics for c, and note that an iden-
tical description applies to σ2 as well. According to Cook, Gelman and Rubin (2006), the
ABC procedure produces reliable approximations of the posterior if the random variables
q
(c)
e := 1

k

∑k
l=1 I{cℓ>ce} follow a uniform distribution over the interval (0,1). Accordingly,

Prangle et al. (2014) suggest a goodness-of-fit test H0 : q
(c)
e ∼ Unif(0,1) as a diagnostic in

order to calibrate ABC. If the test fails to reject the null hypothesis, the empirical quan-
tiles can be viewed as being indistinguishable from the uniform distribution, and the credi-
ble interval from the posterior samples would show the asserted coverage. We use the Kol-
mogorov–Smirnov statistic to carry out the test, follow the simulation setting with I = 50 and
J = 10, and reuse 600,000 synthetic data sets. The synthetic data is randomly split into two
non-overlapping subsets: training data with size 597,000 and pseudo-observed data with size
E = 3,000. Again, we run the ABC part of Algorithm S1 by treating each of the pseudo-
observed data sets as the actually observed data with N syn = 597,000 and d = 0.5%. We
obtained statistically non-significant KS statistics for c and σ2 (p-values: 0.61 for c, 0.71 for
σ2). The 95% credible intervals from ABC showed 94.9% and 95.93% empirical coverage
rates which are close to the nominal level.

S4.3.3. Sensitivity Analysis of k Nearest Samples In the previous section, we have used
a simple diagnostic procedure to show the choice of bandwidth parameter h is reasonable.
Here we focus on conducting additional simulations to investigate how does varying values
of d in the Step 6 of Algorithm S1 impact the inferential performance of ABC. We focus on
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(a) Empirical quantiles at true c (b) Empirical quantiles at true σ2

Figure S8: The empirical quantiles at the true value follow the standard uniform distribution indicating
calibrated ABC. Results are based on 3,000 independent draws from the prior.

c to illustrate the main points. Similar to Table S2 in the Section S4.2 where d= 5%, in the
following we show the results for d = 0.5% and d = 1% in Table S4. First, for ABC itself,
the bias in the posterior mean is similar, e.g. the mean bias is 14% for all three different d
when c= 1.0 and σ2 = 0.5. For each pair of (c,σ2), the empirical coverage rate of the 95%
credible interval decreases when d increases from 0.5% to 5%. Specifically, the empirical
coverage range from 92% to 99% for d= 5%, 88% to 97% for d= 1% and 84% to 94% for
d= 0.5%. This is likely caused by a smaller sample size k = ⌈N synd⌉ and a higher posterior
variance under a similar level of bias.

TABLE S4
Sensitivity analysis of d for ABC-MH. We compare the inferential performance for c among ABC-MH with
d= 5%, ABC-MH with d= 1%, ABC-MH with d= 0.5%, MHtrue, and MHdefault. All values here are

obtained from 200 independent replications. For each random replication at (c, σ2), all methods were run for
identical total CPU time and only converged chains from MH algorithms were included.

Percent Bias(sd) Coverage(sd)

c method σ2 = 0.5 σ2 = 1 σ2 = 0.5 σ2 = 1

0.3

ABC-MH with d= 5% 12(9.4) 13(9.9) 98(0.99) 99(0.71)
ABC-MH with d= 1% 13(9.8) 14(10) 97(1.2) 96(1.5)
ABC-MH with d= 0.5% 14(10) 15(11) 94(1.6) 92(1.9)
MHtrue 13(9.8) 12(9.5) 94(2) 95(1.9)
MHdefault 45(20) 46(20) 33(5.5) 30(6.1)

0.5

ABC-MH with d= 5% 15(11) 15(11) 92(1.9) 93(1.8)
ABC-MH with d= 1% 15(12) 16(12) 88(2.3) 90(2.1)
ABC-MH with d= 0.5% 16(12) 16(12) 84(2.6) 86(2.4)
MHtrue 11(9) 11(8.6) 97(1.7) 97(1.6)
MHdefault 33(18) 31(19) 60(5.5) 57(5.7)

0.7

ABC-MH with d= 5% 13(10) 14(11) 96(1.5) 93(1.8)
ABC-MH with d= 1% 13(10) 13(11) 94(1.7) 90(2.1)
ABC-MH with d= 0.5% 13(11) 14(11) 90(2.1) 89(2.2)
MHtrue 12(9.1) 12(9.1) 95(2.6) 96(2.1)
MHdefault 25(15) 27(16) 73(5.5) 69(5.9)

1.0

ABC-MH with d= 5% 14(11) 14(13) 95(1.5) 94(1.6)
ABC-MH with d= 1% 14(10) 14(13) 88(2.3) 92(1.9)
ABC-MH with d= 0.5% 14(11) 15(13) 86(2.4) 86(2.4)
MHtrue 11(7.6) 13(11) 97(2) 92(3.5)
MHdefault 14(11) 16(14) 93(3.5) 89(3.8)
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S4.4. Sensitivity Analysis of the Number of Synthetic Data in ABC To our knowledge,
only two packages available from: (i) Neal (2003) on the website https://www.cs.
toronto.edu/~radford/dft.software.html and (ii) Knowles and Ghahramani
(2015) on the Github https://github.com/davidaknowles/pydt. Neal’s code is
implemented on R, and does not implement the inference algorithm, while Knowles pro-
grammed the C++ code from scratch including the library for the tree structure. However, the
C++ libraries from Knowles and Ghahramani (2015) are deprecated and require additional
updates for the version updates of the C++ compiler. Without additional documentation, the
C++ code is hard to adapt in our context. Thus, we implemented our algorithm in R based on
the existing libraries for tree structure (e.g. ape and phylobase) and the ABC algorithm
(e.g. ABC).

The main computation bottleneck for our algorithm on R is the ABC stage (141 hours
for 600,000 synthetic data), which is much slower than the MH stage (1.7 hours for 10,000
iterations) and the single stage MCMC (2.5 hours for 10,000 iterations). However, the ABC
can be easily parallelized to reduce the wall-clock time given a sufficient number of CPU
cores. In addition, we may reduce the number of synthetic data (NSyn) in ABC to further
improve speed. We have now conducted a simulation study to empirically demonstrate the
acceleration of the ABC through the reduction of NSyn. Specifically, we ran the ABC and
measured the posterior median under a lower NSyn.

We show the simulation results in Table S5. From Table S5, the σ̂2 are relatively stable in
terms of the mean and standard deviation under a lower NSyn. On the other hand, the standard
deviation of ĉ grows rapidly (sd : 0.0280 for NSyn = 600,000 and sd : 0.260 for NSyn =
5,000) when the NSyn decreases. For our main analyses, we went with the conservative
choice of NSyn = 600,000 for the confirmatory results.

NSyn Total CPU Hour ĉ (sd) σ̂2 (sd)

600,000 141 1.18 (0.0280) 1.87 (0.245)

300,000 70.5 1.18 (0.0278) 1.87 (0.246)

100,000 23.5 1.16 (0.0429) 1.87 (0.246)

50,000 11.8 1.18 (0.0707) 1.86 (0.235)

10,000 2.35 1.17 (0.159) 1.88 (0.240)

5,000 1.18 1.25 (0.260) 1.84 (0.249)
TABLE S5

The total CPU time and the median of the real parameters (mean and the standard deviation in the bracket)
under different numbers of synthetic data (NSyn) for the ABC stage. All values are obtained from 30 independent
replicates from the correct specified data generating mechanism. The underlying true c= 1.220 and σ2 = 1.755.

S5. Additional Simulation Results of Rx-Trees In this Section, we provide more simu-
lation results for the Section 4.2 in the Main Paper. We empirically compare the the proposed
two-stage ABC-MH with the single-stage MCMC in terms of the MAP tree estimation (Sec-
tion S5.1) and recovery of pairwise treatment similarities (Section S5.2).

Simulation setup. For the following simulations, we followed the same setup as in Sec-
tion S4 with I = 50 and J = 10, and let c and σ2 take values from {0.3,0.5,0.7,1.0} and
{0.5,1.0}, respectively. For each pair of (c,σ2), 50 pairs of tree and data on the leaves were
independently drawn based on the DDT model. For ABC, we generated N syn = 600,000 syn-
thetic data sets from the DDT model with threshold parameter d= 0.5%. We assigned priors
on c ∼ Gamma(2,2) and 1/σ2 ∼ Gamma(1,1) with shape and rate parameterization. We
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compare the proposed algorithm against two alternatives based on MH algorithms (MHtrue

and MHdefault. We ran MH algorithms (the 2nd stage of the proposed algorithm, MHtrue and
MHdefault) with 10,000 iterations and discarded the first 7,000 iterations.

Performance metrics. We assess the accuracy of tree estimation using Billera–Holmes–
Vogtmann (BHV) distance (Billera, Holmes and Vogtmann, 2001) between the true tree and
the maximum a posteriori (MAP) tree obtained from ABC-MH, MHtrue and MHdefault, or
between the true tree and the dendrogram obtained from hierarchical clustering, respectively.
For the pairwise similarities, we follow the Section 4.1 and calculate iPCPs for all pairs of
treatments and evaluate the iPCPs by correlation of correlation for estimated similarities and
true branching time and the Frobenius norm for the overall matrix.

S5.1. Recovery of the True Tree The proposed two-stage algorithm decoupled the real
and tree parameters, produced better inference for Euclidean parameters (See Section S4.2),
resulting in better inference for the unknown treatment tree. In particular, Figure S9 shows
that, in terms of the BHV distance, the MAP tree estimates from ABC-MH better recov-
ers the trees than MHdefault and hierarchical clustering with Euclidean distance and squared
Ward linkage (Hclust). On average, MAP from MHtrue is the closest to the true underlying
tree. However, MHtrue requires knowledge about the truth and is unrealistic in practice. In
addition, we observed that the chains from MHtrue in fact did not mix well and were stuck
at the initial values hence falsely appearing accurate. The second stage MH for sampling the
tree built on the high-quality posterior samples of c and σ2 obtained from the 1st stage ABC
and produced better MAP tree estimates that are on average closer to the simulation truths
than MHdefault and Hclust.

Figure S9: (Left) σ2 = 0.5; (Right) σ2 = 1. The BHV distance between the MAP estimate and the
underlying tree for each algorithm. Results are based on 50 replications.

S5.2. Estimation of Treatment Similarities The two-stage algorithm also produces better
iPCPs due to decoupling strategy and superior inference for Euclidean parameters in the
first stage. Similar to the results for MAP, pairwise iPCPs from ABC-MH better recover
the true branching time than MHdefault, Hclust and Pearson correlation and reach similar
quality to the iPCPs from MHtrue (See Figure S10). Since MHtrue requires unrealistic true
parameters, MHtrue is not attainable. From the simulations above, MAP and iPCPs from
ABC-MH outperform MHdefault and take care of overall and local tree details, respectively.
We apply the ABC-MH to obtain posterior DDT samples for the real data analysis section.
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Figure S10: Under different c and σ2, two-stage algorithm better estimates the pairwise similarities
than classical single-stage MCMC in terms of correlation of correlation (upper panels) and Frobenius
norm (lower panels). (Left) σ2 = 0.5; (Right) σ2 = 1. Results are based on 50 replications.

S5.3. Computation Time of the Gaussian Likelihood Evaluation Computationally, the
complexity for the belief propagation is faster in theory, but the computation time also replies
on the implementation. We empirically compare the running time of the evaluation of Gaus-
sian likelihood on R for (i) the naive method of the Cholesky decomposition and (ii) the belief
propagation algorithm. Specifically, we ran the dmvnorm function for naive method from the
package mvtnotm and the Marginals function for belief propagation from the package
BayesNetBP (Yu, Moharil and Blair, 2020). To our knowledge, the package BayesNetBP
is the only R package implements exact belief propagation for the Gaussian data without com-
mercial dependencies (Yu, Moharil and Blair, 2020). We ran each function 500 times on the
Breast cancer data with the dimension of 20 × 38 given the same tree structure. All com-
putation are executed on the same local computer of the Mac mini with M1 CPU and 8Gb
memory. On R, the belief propagation (0.0566 second) is slower than the naive likelihood
calculation (0.000148 second). The hindered belief propagation might be the result of the
for-loop, which is slow in R (Burns, 2011).

S5.4. Inference using the Whole Posterior Samples of c and σ2 Our algorithm runs the
approximate Bayesian computation (ABC) rejection algorithm (Sisson, Fan and Beaumont,
2019) to obtain the posterior samples of c and σ2 and uses the posterior median of c and σ2

as the common and fixed input for different chains of the MH algorithm. The ABC merges all
synthetic data into a larger dataset and re-use the same synthetic data for different chains of
the MH, which is advocated by Bertorelle, Benazzo and Mona (2010) and Blum et al. (2013).
Under the ABC framework, the same synthetic data results in the identical posterior samples
of c and σ2 as the common input for different chains of the MH.

Once MH algorithm receives the posterior samples, another viable option is to use the
whole posterior sample instead of using the fixed representative statistics only. We provide
a set of simulations to empirically compare two algorithms using: (i) fixed posterior median
only and (ii) the whole posterior samples. The algorithm (i) plugins the fixed posterior medi-
ans of c and σ2, while the algorithm (ii) randomly picks one posterior sample at each iteration
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in MH. Specifically, given L weighted posterior samples of cl and σ2
l , with the weights wc

l
and wσ

l , l= 1 . . . ,L, algorithm (ii) draws a posterior sample of cl and σ2
l with corresponding

weights at each iteration. Eventually, we measure the results through the pairwise similarity
with the correlation of correlation and the Frobenius norm.

We show our simulation results in Figure S11 using pairwise similarity. In Figure S11, the
algorithm (i) (DDT) and (ii) (DDT.all) perform similarly in terms of the correlation of correla-
tion (mean for DDT: (0.944,0.971,0.981,0.882) and DDT.all: (0.945,0.966,0.979,0.877))
and the matrix norm (mean for DDT: (1.154,1.415,1.558,1.811) and DDT.all: (1.156,1.503,1.516,1.814))
under four different data generating scenarios.

Figure S11: Simulation studies for comparing the quality of estimated treatment similarities based on
DDT (DDT: median of (c,σ2) and DDT.all: re-sample from the whole posterior samples of (c,σ2)),
hierarchical clustering, and empirical Pearson correlation. Two performance metrics are used: (Left)
Correlation of correlation (higher values are better); (Right) Matrix distances with Frobenius norm for
pairwise similarity and max norm for three-way similarity (lower values are better). DDT captures true
similarity best under four levels of misspecification scenarios.

S5.5. PDX Experiment with a Smaller Dimension We investigated the performance of
our method on smaller scale simulated datasets. Specifically, we applied our algorithm to
two datasets with smaller dimensions (treatments, patients): 5× 5 and 10× 15. We show the
simulation results in Figure S12 through the pairwise similarity (the correlation of correlation
and the Frobenius norm). Overall, our algorithm outperforms the distance based hierarchical
clustering (hclust) and the pairwise Pearson correlation in terms of the pairwise similarity
except for two cases. Specifically, our algorithm is the best or the second best except for two
cases: (i) the correlation of correlation under the scenario of the misspecified t-distribution
with the dimension of 5×5 and (ii) the Frobenius norm under the scenario of the misspecified
DDT with the dimension of 10×15. However, even under these two cases, our algorithm still
have a highest lower bound in case (i) and a lowest upper bound of the Frobenius norm
in case (ii), which indicates the advantage of avoiding the worst case for our algorithm.
In summary, under the 1 × 1 × 1 experimental design, we recommend our algorithm even
under an extremely small dataset such as the dimension of 5 by 5, given enough computation
resources.
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Figure S12: The pairwise similarity for the PDX experiment with a small number of dimensions.
(top): 5 treatments and 5 patients; (bottom): 10 treatments and 15 patients. The results are obtained
through 30 replicates.

S6. Additional Results for PDX Analysis In this section, we provide the pre-processing
procedures of NIBR-PDXE and present the results for non-small lung cancer (NSCLC) and
pancreatic ductal adenocarcinoma (PDAC) with tables including treatment and pathway in-
formation.

S6.1. PDX Data Pre-Processing We followed pre-processing procedure in Rashid et al.
(2020) and imputed the missing data by k-nearest neighbor method. We take the best average
response (BAR) as the response and scale the BAR by the standard deviation over all patients,
treatments and across five cancers. Since the scaled BAR contains missing values, we impute
the missing data by the k-nearest neighbor with k = 10 and compare all treatments to the
untreated group. Specifically, we take xij = BARij − BAR0j , i = 1 . . . I, j = 1 . . . J as the
observed data, where BAR0,j is the untreated BAR for patient j.

S6.2. Test for Distributional Assumption Our main interest of the paper is the tree-
structured covariance that models the treatment similarity. The relevant class of distribu-
tions for modeling thus consists of those whose properties are fully described through a
tree-structured covariance matrix (with mean equal to zero). A natural candidate is the pa-
rameterized family of mean-zero symmetric elliptical distributions indexed by tree-structured
covariance matrices, which includes the Gaussian as a special case.

From a methodological perspective, restriction in the paper to the Gaussian setting is to
be viewed as a first step towards modelling using the more general elliptical family, mainly
driven by computational considerations and interpretability within the context of the sci-
entific application. Notwithstanding this, the Gaussian setup, which facilitates scalable and
explicit computations, does not appear unreasonable: multivariate normality tests with the
multivariate qq-plot (Figure S13) demonstrate that BRCA (panel (A)) and CM (panel (B))
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roughly fall on the 45-degree line, but CRC (panel (C)) slightly deviates from the the 45-
degree lines indicating some departure from normality; this is further corroborated with the
Doornik-Hansen (Doornik and Hansen, 2008) multivariate normal test, which resulted in p-
values 0.0969 (BRCA), 0.0833 (CM) and <0.001 (CRC) for testing the null hypothesis that
the responses were Gaussian.

With an eye towards future extensions to the elliptical family, we carried out hypothesis
tests to assess the multivariate elliptical symmetry assumption; using the test proposed by
Babic et al. (2021) available in the R package ellipticalsymmetry (Babic, Ley and
Palangetic, 2021), we fail to reject the null hypothesis of elliptical symmetry with the p-
values of 0.6805 for BRCA, 0.8679 for CRC, and 0.4385 for CM.

Figure S13: The multivariate normality QQ-plot for (A) breast cancer, (B) melanoma, and (C) col-
orectal cancer

S6.3. Threshold of the Co-Clustering Generally, it is hard to recommend a universal
threshold for co-clustering without considering unique patterns in each dataset. For example,
different cancers may respond differently to treatments, resulting in varying degrees of tumor
size shrinkage. This is reflected by the varying distributions for all the pairwise iPCPs ob-
tained from datasets for three cancers (BRCA, CRC and CM); See the three sets of different
empirical quantiles in Table S6. Recognizing the practical utility of iPCP cutoffs, in the fol-
lowing, we use pairwise iPCPs to illustrate a practical strategy for determining such cut-offs;
similarly for multi-way iPCPs.

First, for a “fully-exploratory" analysis, where one does not assume any prior knowledge
about multiple monotherapies that share the same mechanism, we recommend ranking all the
pairwise iPCPs as in Table S6 and setting the cut-off at the 75-th percentile.

Second, for a “partially-exploratory" analysis, where one incorporates prior knowledge by
assuming the PDX dataset contains two or more specific monotherapies with known and the
same mechanism, we recommend using a cut-off determined by their corresponding iPCP.
For example, two treatments (BKM120 and BYL719) are both PI3K inhibitors and were
tested in the BRCA data with a pairwise iPCP of 0.8002, which we recommend as a practical
cut-off. If multiple such iPCPs are available for other pairs of treatments with a common
mechanism, we recommend the lowest iPCP as the cut-off. In this scenario, a question may
be raised regarding whether the biologically-motivated cut-off is similar to the cut-off deter-
mined by the empirical 75 percentile and which one to use. In fact, we observed that two
cut-offs were practically similar. For example, the 75-th percentile of all pairwise iPCPs for
BRCA is 0.753 and two treatments (binimetinib and BKM120) targeting the same pathway
PI3K-MAPK-CDK have a pairwise iPCP of 0.7427. As another example, in the CM data set,



20

the 75-th percentile of pairwise iPCPs is 0.801; the two treatments (LEE011, binimetinib) tar-
geting the same pathway PI3K-MAPK-CDK have a iPCP of 0.8210. In practice, when both
are available, we recommend using the 75 percentile cut-off for fully-exploratory analyses
and using the biologically-motivated cut-off for partially-exploratory analyses.

Cancer Min 25-th Median 75-th Max

BRCA 0.357 0.664 0.680 0.753 0.899

CRC 0.420 0.441 0.515 0.687 0.862

CM 0.610 0.723 0.742 0.801 0.939
TABLE S6

The descriptive statistics for all possible pairs of pairwise iPCP for the breast cancer (top), colorectal cancer
(middle) and the melanoma (bottom).

S6.4. Additional Results for Monotherapy In Main Paper, we listed the results for
monotherapies targeting the cell regulated pathways. We offer more monotherapies target-
ing the rest two categories of the pathways.
ERBB3 and tubulin inhibitors. Our model also found high iPCP values among ERBB3, tubu-
lin and PI3K-MAPK-CDK inhibitors in BRCA. ERRB3 inhibitor, LJM716, exhibits high
pairwise iPCP values with PI3K (BKM120: 0.7501, BYL719: 0.7513, CLR457: 0.7500),
MAPK (binimetinib: 0.7811), CDK (LEE011: 0.7847) and tubulin (paclitaxel: 0.7505) in-
hibitors. Since PI3K and MAPK are downstream pathways of ERBB3 (Balko et al., 2012)
and CDK works closely with PI3K and MAPK (Kurtzeborn, Kwon and Kuure, 2019; Repetto
et al., 2018), high iPCPs between ERBB3 inhibitor and PI3K-MAPK-CDK inhibitors are
not surprising. For ERBB3 and tubulin, ERBB3 is a critical regulator of microtubule as-
sembly (Wu et al., 2021) and tubulin plays an important role in building microtubules.
Since microtubules form the skeletons of cells and are essential for cell division (Gun-
ning et al., 2015; Haider et al., 2019), tubulin inhibitor, paclitaxel, kills cancer cell by in-
terfering cell division and is an FDA-approved treatment. In congruence with the above
results, tubulin inhibitor paclitaxel also shares high iPCPs with PI3K (BKM120: 0.8076,
BYL719: 0.8063, CLR457: 0.8076), MAPK (binimetinib: 0.7433), CDK (LEE011: 0.7587)
and ERBB3 (LJM716: 0.7505). In addition, another CDK4 inhibitor BPT also inhibits tubu-
lin (Mahale et al., 2015) and PI3K inhibitor BKM120 inhibits the formation of microtubule
(Bohnacker et al., 2017). Both offer additional reasons for high iPCP between tubulin and
PI3K-MAPK-CDK inhibitors.

MDM2 inhibitors. We found two drugs: CGM097 and HDM201 share high iPCP values in
BRCA (0.8365) and CRC (0.7860). Since CGM097 and HDM201 target the same pathway,
MDM2, high iPCPs suggest a high similarity between CGM097 and HDM201 and show con-
sistent results between our model and underlying biological mechanism. MDM2 negatively
regulates the tumor suppressor, p53 (Zhao, Yu and Hu, 2014) and if MDM2 is suppressed
by inhibitors, p53 is able to prevent tumor formation. Both CGM097 and HDM201 entered
phase I clinical trial (Konopleva et al., 2020) for wild-type p53 solid tumors and leukemia,
respectively.

S6.5. Rx-Tree for Non-Small Lung Cancer (NSCLC) and Pancreatic Ductal Adenocarci-
noma (PDAC) We applied the Rx-tree on the rest two cancers in the data: non-small lung
cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC). Similar to the Figure 5 in
the Main Paper, Rx-tree, pairwise iPCP and (scaled) Pearson correlation are shown in the
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left, middle and right panels in Figure S14, respectively. Again, we observe that the Rx-
tree and the pairwise iPCP matrix show the similar clustering patterns. For example, three
PI3K inhibitors (BKM120, BYL719 and CLR457) and a combination therapy (BKM120 +
binimetibin) in NSCLC form a tight subtree and are labeled by a box in the Rx-tree of Figure
S14 and a block with higher values of iPCP among therapies above also shows up in the
corresponding iPCP matrix. The Rx-tree roughly clusters monotherapies targeting oncogenic
process (PI3K-MAPK-CDK, MDM2 and JAK) and agrees with the biology mechanism. For
example, three PI3K inhibitors (BKM120, BYL719 and CLR457) belong to a tighter sub-
tree in both cancers. Following the same idea as the Main Paper, we further quantify the
treatment similarity through iPCP. However, compared to three cancers (BRCA, CRC and
CM) in the Main Paper, different problems of model fitting or interpretation lie in NSCLC
and PDAC: NSCLC deviates from the normal assumption of Equation (4) (Figure S13) and
PDAC shows lower iPCP (average iPCP of PDAC: 0.4119 < BRCA: 0.6734, CRC: 0.5653,
CM: 0.7535, NSCLC: 0.5817). For concerns raised above, we only verify the model through
the monotherapies with known biology for each cancer.

Figure S14: The Rx-tree and iPCP for non-small cell lung cancer (NSCLC, top row) and pancreatic
ductal adenocarcinoma (PDAC, lower row). Three panels in each row represent: (left) estimated Rx-
tree (MAP); distinct external target pathway information is shown in distinct shapes for groups of
treatments on the leaves; (middle) Estimated pairwise iPCP, i.e., the posterior mean divergence time
for pairs of entities on the leaves (see the result paragraph for definition for any subset of entities);
(right) Scaled Pearson correlation for each pair of treatments. The Pearson correlation ρ ∈ [−1,1] was
scaled by ρ+1

2 to fall into [0,1]. Note that the MAP visualizes the hierarchy amongst treatments; the
iPCP is not calculated based on the MAP, but based on posterior tree samples (see definition in Main
Paper Section 3.2)

Non-small cell lung cancer. Our model suggests high iPCP values for treatments share the
same target. For example, our model shows a high iPCP among three PI3K (BKM120,
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BYL719 and CLR457) inhibitors: (BKM120, BYL719): 0.8402, (BKM120, CLR457):
0.8321, (BYL719, CLR457): 0.8710. For treatments with different targets, our model also
exhibits a high iPCP values. For example, the monotherapy HSP990 that inhibits the heat
shock protein 90 (HSP90) shows a high iPCP with PI3K inhibitors ((BKM120, HSP990):
0.7108, (BYL719, HSP990): 0.7114, (CLR457,HSP990): 0.7109). Since the inhibiting of
HSP90 also suppresses PI3K (Giulino-Roth et al., 2017), it is not surprising to ses a high
iPCP between PI3K and HSP90 inhibitors.
Pancreatic ductal adenocarcinoma. For PDAC, our model overall suggests a lower iPCP (av-
erage iPCP of PDAC: 0.4119). Out of 91 pairs of monotherapies, only BYL719 and CLR457
share a higher iPCP (0.8415). The higher iPCP can be explained by the common target PI3K
of BYL719 and CLR457.

S6.6. R Shiny Application We illustrate the input and outputs of the proposed method via
a R Shiny application hosted on the web (Figure S15). The visualizations are based on com-
pleted posterior computations for illustrative purposes. A user needs to specify the following
inputs:

(A) Cancer type to choose the subset of data for analysis
(B) Number of treatments of interest in the subset A to evaluate synergy via iPCP
(C) Names of the treatments in the subset A

Given the inputs above, the Shiny app visualizes the outputs:

(D) maximum a posteriori treatment tree for all the available treatments
(E) PCPA(t) curve for the subset of treatments, A
(F) iPCPA value calculated from the corresponding PCPA(t)

Figure S15: R Shiny app screenshot for illustrating model inputs and outputs for analyzing PDX data
(20 treatments for breast cancer); the PCP curve and iPCP value are computed for a subset of three
selected treatments.
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S7. Random Effects Model for Multiple Animals Design The current work is built
upon the 1×1×1 design, but multi-replicate experiment set-up is extremely relevant in prac-
tice, and is an interesting direction for future work. Several possible modeling options can
extend our work to adapt to the multi-replicate experimental design. Following the comment,
we consider two different scenarios for the response: (i) homogeneous and (ii) heterogeneous
responses. First, recent literature (Evrard et al., 2020) suggests robustness for PDX studies
(including BAR and other tumor volume measurements) under different protocol and mice
replicates and implies the homogeneous responses. When the responses are homogeneous,
we can simply average the outcomes over the replicates, which makes out method directly
applicable. Alternatively, when the responses are heterogeneous, we can use random effects
for multiple replicates nested within each patient. We can incorporate the random effects ei-
ther in the mean structure or in the variance structure. Specifically, given a PDX experiment
with I treatments and J patients, for each treatment, we consider Kj independent mice repli-
cates for the j-th patient, j = 1, . . . , J . Let X.jk = [X1jk, . . . ,XIjk] ∈RI be a vector of BAR
response across I treatments from the k-th replicate of patient j. Following Proposition 1,
we may consider adding random effects in the mean structure:

X.jk
iid∼ NI(µjk, σ

2ΣT ); µjk ∼NI(0,Ω), j = 1, . . . , J ;k = 1, . . . ,Kj ,

where the µjk = [µ1jk, . . . , µIjk] is the normal random effect with mean zero and a variance
Ω. We assume Ω to be diagonal to maintain the ultrametric property for the marginal variance
of Var(X.jk) = σ2ΣT +Ω.

One may instead include random effects in the variance and the corresponding tree-
structured matrix. Following the same notation, we can formulate the distribution as

X.jk
iid∼ NI(0, σ

2ΣT
k ), k = 1, . . . ,Kj ,

where ΣT
k is the tree-structured matrix for each replicate. We can further consider two cases

with (i) pooling all tree-structured matrix of ΣT
k =ΣT for all k = 1, . . . ,Kj and (ii) assigning

different ΣT
k for each k. The case (i) of pooling all tree-structured matrix is the same as the

original Proposition 1 and ignores the heterogeneity of the responses. For the case (ii), we
can further assign a prior distribution on each tree-structured matrix and include the external
covariate information (e.g. heterogeneity of the response) in the prior distribution.
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TABLE S7
Full CPUs series used for computations.

Intel Xeon X series
X5660@2.80GHz
X5680@3.33GHz

Intel Xeon E series

E5-24400@2.40GHz
E5-24700@2.30GHz
E5-24500@2.10GHz
E5-2650v3@2.30GHz
E5-2650v4@2.20GHz
E5-2690v4@2.60GHz
E5-2690v4@2.60GHz

TABLE S8
Pathways full names and the corresponding abbreviations.

Abbreviation Target Name

PI3K Phosphoinositide 3-kinases

CDK Cyclin-dependent kinases

MAPK Mitogen-activated protein kinases

JAK Janus kinase

MDM2 Murine double minute 2

BRAF Serine/threonine-protein kinase B-Raf

MTOR Mechanistic target of rapamycin

EGFR/ERBB Epidermal growth factor receptor

SMO Smoothened

TNKS Tankyrase

PIM Proto-oncogene serine/threonine-protein kinase Pim-1

BIRC2 Baculoviral IAP repeat-containing protein 2

IGF1R Insulin-like growth factor 1 receptor
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TABLE S9
Monotherapy names with targets. Different target groups are labeled differently in the Figure 5 and Figure S14.

Treatment name Other names Trade name Target Target Group

5FU Fluorouracil Adrucil chemotherapy Other

abraxane nab-paclitaxel abraxane Tubulin Other

BGJ398 Infigratinib FGFR Receptor

binimetinib MEK162 Mektovi MAPK PI3K-MAPK-CDK

BKM120 Buparlisib PI3K PI3K-MAPK-CDK

BYL719 Alpelisib Piqray PI3K PI3K-MAPK-CDK

cetuximab Erbitux EGFR Receptor

CGM097 MDM2 MDM2

CKX620 MAPK PI3K-MAPK-CDK

CLR457 PI3K PI3K-MAPK-CDK

dacarbazine DTIC-Dome chemotherapy Other

encorafenib LGX818 Braftovi BRAF BRAF

erlotinib Erlotinib hydrochloride Tarceva EGFR Receptor

figitumumab CP-751871 IGF1R Receptor

gemcitabine Gemzar chemotherapy Other

HDM201 Siremadlin MDM2 MDM2

HSP990 HSP90 Other

INC280 Capmatinib Tabrecta MET Receptor

INC424 Ruxolitinib Jakafi and Jakavi JAK JAK

LDE225 Sonidegib Odomzo SMO Receptor

LDK378 Ceritinib Zykadia ALK Receptor

LEE011 Ribociclib Kisqal CDK PI3K-MAPK-CDK

LFA102 PRLR Receptor

LGH447 PIM Other

LGW813 IAP Other

LJC049 TNKS Other

LJM716 Elgemtumab ERBB3 Receptor

LKA136 NTRK Receptor

LLM871 FGFR2/4 Receptor

paclitaxel Taxol Tubulin Other

tamoxifen Nolvadex ESR1 Receptor

TAS266 DR5 Receptor

trametinib GSK1120212 Mekinist MAPK PI3K-MAPK-CDK

trastuzumab Herceptin ERBB2 Receptor

WNT974 PORCN Receptor
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TABLE S10
Combination therapy full names with known targets.

Combination Therapies Known Target Pathways Cancer

abraxane+gemcitabine Tubulin+chemotherapy PDAC

BKM120+binimetinib PI3K+MAPK NSCLC,PDAC

BKM120+encorafenib PI3K+BRAF CM

BKM120+LDE225 PI3K+SMO PDAC

BKM120+LJC049 PI3K+TNKS CRC

BYL719+binimetinib PI3K+MAPK CRC

BYL719+cetuximab PI3K+EGFR CRC

BYL719+cetuximab+encorafenib PI3K+EGFR+BRAF CRC

BYL719+encorafenib PI3K+BRAF CRC

BYL719+LEE011 PI3K+CDK BRCA

BYL719+LGH447 PI3K+PIM NSCLC

BYL719+LJM716 PI3K+ERBB3 BRCA,CRC,NSCLC,PDAC

cetuximab+encorafenib EGFR+BRAF CRC

encorafenib+binimetinib BRAF+MAPK CM

figitumumab+binimetinib IGF1R+MAPK PDAC

INC424+binimetinib JAK+MAPK PDAC

LCL161+paclitaxel BIRC2+Tubulin NSCLC

LEE011+encorafenib CDK+BRAF CM

LEE011+everolimus CDK+MTOR BRCA

LFW527+binimetinib IGF1R+MAPK NSCLC

LJM716+trastuzumab ERBB3+ERBB2 BRCA
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