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This supplement is organised as follows. We begin with a list of commonly used notations

in the supplement. We next introduce some technical definitions in Appendix A. In Appendix

B, we present the proofs of Lemma 1, Theorems 1, 2 and 3. Finally, in Appendix C, we detail

the simulation setting and present some additional simulation results.

Notations
St The state vector at time t

At The action taken at time t

Rt The immediate reward at time t

Ft The state transition function at time t, i.e., St+1 = Ft(St, At, εt)

V π The state value function under π

ηπ The value under π, aggregated over different initial states

Qopt The optimal Q-function

Q̂[T1,T2] The estimated optimal Q-function using data collected from the interval [T1, T2]

β̂[T1,T2] The estimated regression coefficients using data collected from the interval [T1, T2]

∗The first two authors contributed equally to this paper
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β∗[T1,T2] The population limit of β̂[T1,T2]

φL(a, s) The set of sieve basis functions of length L

u A candidate change point location

γ The discounted factor, between 0 and 1

ε The boundary removal parameter

TS The test statistic

TSb The bootstrap test statistic

A Some Technical Definitions

We first introduce the class of p-smoothness functions. For a J-tuple α = (α1, . . . , αJ)> of

nonnegative integers and a given function h on S, let Dα denote the differential operator:

Dαh(s) =
∂‖α‖1h(s)

∂sα1
1 · · · ∂s

αJ
J

.

Here, sj denotes the jth element of s. For any p > 0, let bpc denote the largest integer that is

smaller than p. The class of p-smooth functions is defined as follows:

Λ(p, c) =

h : sup
‖α‖1≤bpc

sup
s∈S
|Dαh(s)| ≤ c, sup

‖α‖1=bpc
sup

s1,s2∈S
s1 6=s2

|Dαh(s1)−Dαh(s2)|
‖s1 − s2‖p−bpc2

≤ c

 ,

for some constant c > 0.

B Proofs

Throughout the proof, we use c, c̄, C, C̄ to denote some generic constants whose values are

allowed to vary from place to place. For any two positive sequences {aN,T}N,T , {bN,T}N,T , the

notation aN,T � bN,T means that there exists some constant C > 0 such that aN,T ≤ CbN,T for

any N and T .
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B.1 Proof of Lemma 1

We prove Lemma 1 in this section. Define

ηπ(T+1):∞ = E
{
Eπ
(∑
t≥0

γtRt+T+1|ST+1

)}
,

for any policy π. Since the rewards are uniformly bounded,
∑

t>M γt|Rt| is bounded byO(γM)

where the big-O term is uniform in π. As M diverges to infinity, ηπ(T+1):∞ can be uniformly

approximated by

ηπ(T+1):(T+M) = E
{
Eπ
(M−1∑

t=0

γtRt+T+1|ST+1

)}
, (B.1)

with arbitrary precision, for any π.

Similarly, EV π
T (St+1) can be uniformly approximated by

ηπ,T(T+1):(T+M) = E
{
Eπ,FT ,rT

(M−1∑
t=0

γtRt+T+1|ST+1

)}
, (B.2)

with arbitrary precision, where the second expectation is taken by assuming that the transition

and reward functions equal to FT and rT , respectively.

For any sufficiently small constant ε > 0, it follows from the assumption in formula (4) in

the main paper that

sup
T≤t≤T+M

sup
a,s,S
|P(Ft(s, a, ε1) ∈ S)− P(Ft+1(s, a, ε1) ∈ S)| ≤ ε,

sup
T≤t≤T+M

sup
a,s
|rt(a, s)− rt+1(a, s)| ≤ ε,

(B.3)

for sufficiently large NT . In the following, we aim to show that the difference between (B.1)

and (B.2) is O(ε), for any M . Since ε can be made arbitrarily small and M can be made

arbitrarily large, the proof is hence completed.

First, it follows from (B.3) that

sup
S
|P(FT (s, a, ε1) ∈ S)− P(FT+j(s, a, ε1) ∈ S)| ≤ jε and |rT (a, s)− rT+j(a, s)| ≤ jε,(B.4)

for any 1 ≤ j ≤M and any (a, s).
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Second, for any 0 ≤ j ≤ M , we define ηπ,T,j(T+1):(T+M) as the cumulative discounted reward

under π, assuming that the transition and reward functions equal FT and rT up to time point T+

j, and equal {FT+k}k>j and {rT+k}k>j from T+j+1 to T+M . By definition, ηπ,T,j(T+1):(T+M) =

ηπ,T(T+1):(T+M) when j = M and ηπ,T,j(T+1):(T+M) = ηπ(T+1):(T+M) when j = 0. To bound the

difference between (B.1) and (B.2), it suffices to bound
M−1∑
j=0

|ηπ,T,j+1
(T+1):(T+M) − η

π,T,j
(T+1):(T+M)|. (B.5)

Third, for any j < M , the difference |ηπ,T,j+1
(T+1):(T+M) − η

π,T,j
(T+1):(T+M)| can be upper bounded

by

γj|E{Eπ,FT ,rT (Eπ,rTRT+j+1|ST+j+1)|ST+1} − E{Eπ,FT ,rT (EπRT+j+1|ST+j+1)|ST+1}|

+γj+1|E{Eπ,FT ,rT (Eπ,rTV π(ST+j+2)|ST+j+1)|ST+1} − E{Eπ,FT ,rT (EπV π(ST+j+2)|ST+j+1)|ST+1}|.

Since the reward is uniformly bounded, so is the value function V π. By (B.4), the first line is

bounded by γjε(j + 1), and the second line is bounded by γj+1ε(j + 1)C where C denotes the

upper bound for the value function. As such, (B.5) is upper bounded by

(C + 1)
∑
j

γjε(j + 1) = O(ε).

The proof is hence completed.

B.2 Proof of Theorem 1

We begin by introducing the following auxiliary lemmas. Specifically, Lemma B.1 derives

the uniform rate of convergence of the estimated Q-function. Lemma B.2 provides a uniform

upper error bound on |Ŵ[T1,T2] −W[T1,T2]|. Without loss of generality, assume T0 = 0. Their

proofs are provided in Sections B.3 and B.4, respectively.

Lemma B.1. Under the null hypothesis, there exists some constant ε0 > 0 such that

sup
a,s,T2−T1≥εT

|Q̂[T1,T2](a, s)−Qopt(a, s)| = O{(NT )−ε0},

with probability at least 1 − O(N−1T−1), where ε corresponds to the boundary removal pa-

rameter defined in Section 4.1.
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Lemma B.2. Under the null hypothesis, there exists some constant c̄ > 0 such that ‖W−1
[T1,T2]‖2 ≤

c̄ and that supT2−T1≥εT |Ŵ[T1,T2]−W[T1,T2]| = O{(εNT )−1/2
√
L log(NT )} with probability at

least 1−O(N−1T−1). Here, ‖W−1
[T1,T2]‖2 corresponds to the matrix operator norm of W−1

[T1,T2].

B.2.1 `1Type Test

We begin with an outline of the proof of Theorem 1. The proof is divided into four steps.

In Step 1, we show there exist some constants c, C > 0 such that

P(|
√
NT (TS1 − TS∗1)| ≤ C(NT )−c)→ 1, (B.6)

where

TS∗1 = max
εT<u<(1−ε)T

√
u(T − u)

T 2

{
1

T

T−1∑
t=0

∑
a

∫
s

|Q̂[0,u](a, s)− Q̂[u,T ](a, s)|πbt (a|s)pbt(s)ds

}
,

where pbt denotes the marginal distribution of St under the behavior policy. By definition, TS∗1

corresponds to a version of TS1 by assuming the marginal distribution of the observed state-

action pairs is known to us.

In the second step, we define

Q̂b,0
[T1,T2](a, s) =

1

N(T2 − T1)
φ>L(a, s)W−1

[T1,T2]

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)δi,t(β̂[T1,T2])ei,t, ∀T1, T2,

a version of Q̂b
[T1,T2](a, s) with Ŵ−1

[T1,T2] replaced by its oracle value, and establish a uniform

upper error bound for maxi,t,T1,T2 |Q̂b
[T1,T2](Ai,t, Si,t)−Q̂

b,0
[T1,T2](Ai,t, Si,t)|. Specifically, we show

that there exists some constant c > 0 such that the uniform upper error bound decays to zero at

a rate of O{(NT )−1/2−c}, with probability approaching 1 (WPA1). By triangle inequality, we

can show that

P(|
√
NT (TSb1 − TSb,01 )| ≤ C(NT )−c)→ 1, (B.7)

for some constant C > 0, where

TSb,01 = max
εT<u<(1−ε)T

√
u(T − u)

T 2

{
1

NT

T−1∑
t=0

N∑
i=1

|Q̂b,0
[0,u](Ai,t, Si,t)− Q̂

b,0
[u,T ](Ai,t, Si,t)|

}
.
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Using similar arguments as in the proof of (B.6) in Step 1 (see Pages 7 – 9), we can show that

|TSb,01 − TSb,∗1 | is upper bounded by C(NT )−c for some c, C > 0, WPA1, where

TSb,∗1 = max
εT<u<(1−ε)T

√
u(T − u)

T 2

{
1

T

T−1∑
t=0

∑
a

∫
s

|Q̂b,0
[0,u](a, s)− Q̂

b,0
[u,T ](a, s)|π

b
t (a|s)pbt(s)ds

}
.

This together with (B.7) yields that

P(|
√
NT (TSb1 − TSb,∗1 )| ≤ C(NT )−c)→ 1,

for some constants c, C > 0. It also implies that

P(|
√
NT (TSb1 − TSb,∗1 )| ≤ C(NT )−c|Data)

P→ 1. (B.8)

In the third step, we define TS∗∗1 to be a version of TS∗1 with Q̂[T1,T2] replaced by the leading

term in Assumption (A1). Similarly, we define TSb,∗∗1 to be a version of TSb,∗1 with δi,t(β̂[T1,T2])

replaced by the oracle value δ∗i,t. We will show that

P(|
√
NT (TS∗1 − TS∗∗1 )| ≤ C(NT )−c)→ 1,

P(|
√
NT (TSb,∗1 − TSb,∗∗1 )| ≤ C(NT )−c|Data)

P→ 1.
(B.9)

Combining the results in (B.6)-(B.9), we have shown that

P(|
√
NT (TS1 − TS∗∗1 )| ≤ C(NT )−c)→ 1,

P(|
√
NT (TSb1 − TSb,∗∗1 )| ≤ C(NT )−c|Data)

P→ 1.
(B.10)

In the last step, we aim to show the proposed test controls the type-I error. A key step in

our proof is to bound the Kolmogorov distance between TS∗∗1 and TSb,∗∗1 . This together with

(B.10) yields the validity of the proposed test. Notice that TS∗∗1 can be viewed as a function of

the set of mean zero random vectors{
Zu ≡

W−1
[0,u]

Nu

N∑
i=1

u−1∑
t=0

φL(Ai,t, Si,t)δ
∗
i,t −

W−1
[u,T ]

N(T − u)

N∑
i=1

T−1∑
t=u

φL(Ai,t, Si,t)δ
∗
i,t : u

}
. (B.11)

Similarly, TSb,∗∗1 can be represented as a function of the bootstrapped samples{
Zb
u ≡

W−1
[0,u]

Nu

N∑
i=1

u−1∑
t=0

φL(Ai,t, Si,t)δ
∗
i,tei,t −

W−1
[u,T ]

N(T − u)

N∑
i=1

T−1∑
t=u

φL(Ai,t, Si,t)δ
∗
i,tei,t : u

}
.(B.12)
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When T and L are fixed, the classical continuous mapping theorem can be applied to establish

the weak convergence results. However, in our setting, L needs to diverge with the number of

observations to alleviate the model misspecification error. We also allow T to approach infinity.

Hence, classical weak convergence results cannot be applied. Toward that end, we establish

a nonasymptotic error bound for the Kolmogorov distance as a function of N, T and L, and

show that this bound decays to zero under the given conditions. The proof is based on the

high-dimensional martingale central limit theorem developed by Belloni and Oliveira (2018).

We next detail the proof for each step.

Step 1. For each u, we aim to develop a concentration inequality to bound the difference∣∣∣∣∣
√
u(T − u)

T 2

{
1

NT

T−1∑
t=0

N∑
i=1

∑
a

∫
s

[|Q̂[0,u](Ai,t, Si,t)− Q̂[u,T ](Ai,t, Si,t)|

− |Q̂[0,u](a, s)− Q̂[u,T ](a, s)|]πbt (a|s)pbt(s)ds
}∣∣∣ . (B.13)

In the proof of Lemma B.1, we have shown that supT1,T2 ‖β̂[T1,T2] − β∗[T1,T2]‖2 = O(L−c) for

some constant c > 1/2, with probability at least 1−O(N−1T−1).

Define the set B[T1,T2](C) = {β ∈ RL : ‖β − β∗[T1,T2]‖2 ≤ CL−c}. It follows that there

exists some sufficiently large constant C > 0 such that β̂[T1,T2] ∈ B[T1,T2](C) with probability

at least 1−O(N−1T−1). (B.13) can thus be upper bounded by

sup
β1∈B[0,u](C)

β2∈B[u,T ](C)

∣∣∣∣∣ 1

2NT

T−1∑
t=0

N∑
i=1

{|φ>L(Ai,t, Si,t)(β1 − β2)| − E|φ>L(Ai,t, Si,t)(β1 − β2)|}

∣∣∣∣∣ . (B.14)

The upper bound for (B.14) can be established using similar arguments as in the proof of

Lemma B.2. To save space, we only provide a sketch of the proof here. Please refer to the

proof of Lemma B.2 for details.

Notice that the suprema in (B.14) are taken with respect to infinitely many βs. As such,

standard concentration inequalities are not applicable to bound (B.14). Toward that end, we

first take an ε-net of B[0,u](C) and B[u,T ](C) for some sufficiently small ε > 0, denote by

B∗[0,u](C) and B∗[u,T ](C), respectively, such that for any β ∈ B[0,u](C) (or B[u,T ](C)), there ex-

ists some β∗ ∈ B∗[0,u](C) (or B∗[u,T ](C)) that satisfies ‖β−β∗‖2 ≤ ε. The purpose of introducing
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some an ε-net is to approximate these sets by collections of finitely many βs so that concentra-

tion inequalities are applicable to establish the upper bound. Set ε = C(NT )−2L−c. It follows

from Lemma 2.2 of Mendelson et al. (2008) that there exist some B∗[0,u](C) and B∗[u,T ](C) with

number of elements upper bounded by 5L(NT )2L.

Under (A4), we have supa,s ‖φL(a, s)‖2 = O(
√
L). Thanks to this uniform bound, the

quantity within the absolute value symbol in (B.14) is a Lipschitz continuous function of

(β1, β2), with the Lipschitz constant upper bounded by O(
√
L). As such, (B.14) can be ap-

proximated by

sup
β1∈B∗[0,u](C)

β2∈B∗[u,T ]
(C)

∣∣∣∣∣ 1

2NT

T−1∑
t=0

N∑
i=1

∑
a

{|φ>L(Ai,t, Si,t)(β1 − β2)| − E|φ>L(Ai,t, Si,t)(β1 − β2)|}︸ ︷︷ ︸
I(β1,β2) (without absolute value)

∣∣∣∣∣,(B.15)

with the approximation error given by O(C
√
LN−2T−2L−c) where the big-O term is uniform

in u.

It remains to develop a concentration inequality for (B.15). Since the number of elements

in B∗[0,u](C) and B∗[u,T ](C) are bounded, we could develop a tail inequality for the quantity

within the absolute value symbol in (B.15) for each combination of β1 and β2, and then apply

Bonferroni inequality to establish a uniform upper error bound. More specifically, for each pair

(β1, β2), let

I∗(β1, β2) =
1

2N
√
T

T−1∑
t=0

N∑
i=1

[E{|φ>L(Ai,t, Si,t)(β1 − β2)||Si,t−1} − E|φ>L(Ai,t, Si,t)(β1 − β2)|],

with the convention that Si,−1 = ∅. Notice that I(β1, β2) − I∗(β1, β2) forms a mean-zero

martingale under the Markov assumption, we can first apply the martingale concentration in-

equality (see e.g., Tropp, 2011) to show that

|I(β1, β2)− I∗(β1, β2)| = O(L−ε0
√
N−1T−1 log(NT )), (B.16)

for some ε0 > 0, with probability at least 1−O{(NT )−CL} for some sufficiently large constant

C > 0. Here, the upper bound O(L−ε0
√
N−1T−1 log(NT )) decays faster than the parametric

rate, due to the fact that the variance of the summand decays to zero under the condition that
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supa,s,u |φ>L(a, s)(β∗[0,u]−β∗[u,T ])| = O(N−c6T−c6) for some c6 > 1/2, imposed in the statement

of Theorem 1. Specifically, notice that Var{φ>L(At, St)(β1 − β2)|St−1} is upper bounded by

E[{φ>L(At, St)(β1 − β2)}2|St−1] ≤ 3E[{φ>L(At, St)(β
∗
[0,u] − β∗[u,T ])}2|St−1]

+3E[{φ>L(At, St)(β1 − β∗[0,u])}2|St−1] + 3E[{φ>L(At, St)(β2 − β∗[u,T ])}2|St−1] ≤ C(NT )−2c6

+C max
a,a′,s

λmax

{∫
s′
φL(a′, s′)φ>L(a′, s′)p(s′|a, s)ds′

}
max(‖β1 − β∗[0,u]‖2

2, ‖β2 − β∗[u,T ]‖2
2)

= O(NT )−2c6 +O{max(‖β1 − β∗[0,u]‖2
2, ‖β2 − β∗[u,T ]‖2

2)} = O(NT )−2c6 +O(L−2c),

for some constant C > 0, where the first inequality is due to Cauchy-Schwarz inequality, the

second inequality is due to the condition on supa,s,u |φ>L(a, s)(β∗[0,u] − β∗[u,T ])|, and the first

equality is due to (A4) and the fact that p is uniformly bounded (see (A3) and the definition of

the p-smoothness function class in Section A).

Next, under (A5), the transition functions {Ft}t satisfies the conditions in the statement

of Theorem 3.1 in Alquier et al. (2019). In addition, under (A4) and the condition that

supa,s,u |φ>L(a, s)(β∗[0,u] − β∗[u,T ])| = O{(NT )−c6} for some c6 > 1/2, each summand in

the definition of I∗(β1, β2) is upper bounded by O(L−c) for some c > 1/2. We can apply

the concentration inequality for non-stationary Markov chains developed therein to show that

|I∗(β1, β2)| = O(L−ε0
√
N−1T−1 log(NT )), with probability at least 1 − O{(NT )−CL} for

some sufficiently large constantC > 0. Similarly, the upper boundO(L−ε0
√
N−1T−1 log(NT ))

decays to zero at a rate faster than the parametric rate due to that each summand E{|φ>L(Ai,t, Si,t)(β1−

β2)||Si,t−1} − E|φ>L(Ai,t, Si,t)(β1 − β2)| is bounded by O(L−min(c,c6)). This together with the

upper bound for |I(β1, β2)− I∗(β1, β2)| in (B.16), Bonferroni inequality and the condition that

L is proportional to (NT )c5 yields the desired uniform upper bound for (B.15). This completes

Step 1 of the proof.

Step 2. By definition Q̂b,0
[T1,T2](Ai,t, Si,t)− Q̂b

[T1,T2](Ai,t, Si,t) is equal to the sum of

1

N(T2 − T1)
φ>L(Ai,t, Si,t)(Ŵ

−1
[T1,T2] −W

−1
[T1,T2])

N∑
i′=1

T2−1∑
t′=T1

φL(Ai′,t′ , Si,t)δi′,t′(β̂[T1,T2])ei′,t′ .(B.17)
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and

1

N(T2 − T1)
φ>L(Ai,t, Si,t)W

−1
[T1,T2]

N∑
i′=1

T2−1∑
t′=T1

φL(Ai′,t′ , Si′,t′)(δi′,t′(β̂[T1,T2])− δ∗i′,t′)ei′,t′ . (B.18)

Consider the first term. In Lemma B.2, we establish a uniform upper error bound for ‖Ŵ[T1,T2]−

W[T1,T2]‖2 and show that ‖W−1
[T1,T2]‖2 is upper bounded by some constant. Using similar argu-

ments in Part 3 of the proof of Lemma 3 in Shi et al. (2021), we can show that ‖Ŵ−1
[T1,T2] −

W−1
[T1,T2]‖2 is of the same order of magnitude as ‖Ŵ[T1,T2] −W[T1,T2]‖2. The boundedness as-

sumption of Rt implies that the Q-function is bounded. This together with Lemma B.1 implies

the estimated Q-function is bounded as well, and so is δi′,t′(β̂[T1,T2]). By (A4), the conditional

variance of (B.17) given the data is upper bounded by

CL2

ε2N2T 2
λmax

{
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φ
>
L(Ai,t, Si,t)

}
.

Similar to Lemma B.2, we can show that the maximum eigenvalue of the matrix inside the curly

brackets converges to λmax{(T2 − T1)−1
∑T2−1

t=T1
EφL(At, St)φ

>
L(At, St)}, which is bounded

by some finite constant under (A4). Under the given conditions on ε and L, the conditional

variance of (B.17) given the data is of the order (NT )−2c−1, for some constant c > 0, WPA1.

Notice that the probability of a standard normal random variable exceeding z is bounded by

exp(−z2/2) for any z > 1; see e.g., the inequality for the Gaussian Mill’s ratio (Birnbaum,

1942). Since (B.17) is a mean-zero Gaussian random variable given the data, it is of the order

O{(NT )−c−1/2
√

log(NT )}, with probability at least 1 − O{(NT )−C} for any sufficiently

large constant C > 0. This together with Bonferroni inequality yields the desired uniform

upper error bound for the first term. As for the second term, notice that by Lemma B.1, the

difference δi,t(β̂[T1,T2])− δ∗i,t decays at a rate of (NT )−c for some constant c > 0, uniformly in

i, t, T1, T2, WPA1. Based on this result, we can similarly derive the upper error bound for the

second term. This completes the proof.

Step 3. By triangle inequality and (A1), the difference |TSb,∗1 − TSb,∗∗1 | can be upper bounded
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by

max
εT<u<(1−ε)T

1

2T

T−1∑
t=0

∑
a

∫
s

|φ>(a, s)(b[0,u] − b[u,T ] +O(N−c1T−c1))|πbt (a|s)pbt(s)ds

≤ max
εT<u<(1−ε)T

1

2T

T−1∑
t=0

∑
a

∫
s

|φ>(a, s)(b[u,T ] − b[0,u])|πbt (a|s)pbt(s)ds

+O(N−c1T−c1) max
εT<u<(1−ε)T

sup
ν∈RL:‖ν‖2=1

1

2T

T−1∑
t=0

∑
a

∫
s

|φ>(a, s)ν|πbt (a|s)pbt(s)ds,

WPA1. The first term on the RHS is O{(NT )−c6} under the given conditions in the statement

of Theorem 1. Under (A2), {pt}t is uniformly bounded. So is {pbt}t. It follows from (A4) that

the second term is O(N−c1T−c1). This yields the first assertion in (B.9). The second assertion

can be similarly proven based on the result supT1,T2 ‖β̂[T1,T2] − β∗[T1,T2]‖2 = O(L−c) for some

constant c > 1/2, WPA1, as shown in Lemma B.1.

Step 4. As we have commented, the proof is based on the high-dimensional martingale cen-

tral limit theorem developed by Belloni and Oliveira (2018). Let Z and Zb denote the high-

dimensional random vectors formed by stacking the random vectors in the set (B.11) and

(B.12), respectively. It can be represented as
∑

i,t Zi,t where each Zi,t depends on the data

tuple (Si,t, Ai,t, Ri,t, Si,t+1). We first observe that it corresponds to a sum of high-dimensional

martingale difference. Specifically, for any integer 1 ≤ g ≤ NT , let i(g) and t(g) be the

quotient and the remainder of g + T − 1 divided by T that satisfy

g = {i(g)− 1}T + t(g) + 1 and 0 ≤ t(g) < T.

Let F (0) = {S1,0, A1,0}. Then we recursively define {F (g)}1≤g≤NT as follows:

F (g) =

{
F (g−1) ∪ {Ri(g),t(g), Si(g),t(g)+1, Ai(g),t(g)+1}, if t(g) < T − 1;
F (g−1) ∪ {Ri(g),T−1, Si(g),T , Si(g)+1,0, Ai(g)+1,0}, otherwise.

This allows us to rewrite Z as
∑NT

g=1 Z
(g) =

∑NT
g=1 Zi(g),t(g). Similarly, we can rewrite Zb

as
∑NT

g=1 Z
b,(g). Under the Markov assumption (MA) and conditional mean independence as-

sumption (CMIA), it forms a sum of martingale difference sequence with respect to the fil-

tration {σ(F (g))}g≥0 where σ(F) denotes the σ-algebra generated by F . Similarly, we can

11



represent Zu =
∑NT

g=1 Z
(g)
u . The test statistic can be represented as

TS∗∗1 = max
εT<u<(1−ε)T

√
u(T − u)

T 2

1

T

T−1∑
t=0

∑
a

∫
s

|φ>L(a, s)Zu|pbt(s)πbt (a|s)ds︸ ︷︷ ︸
ψu

.

Due to the existence of the max operator and the absolute value function, TS∗∗1 is a non-

smooth function of Z. We next approximate the maximum and absolute value functions using

a smooth surrogate. Let θ be a sufficiently large real number. Consider the following smooth

approximation of the maximum function, Fθ({ψu}u), defined as

1

θ
log(

∑
u

exp(θψu)).

It can be shown that

max
εT<u<(1−ε)T

ψu ≤ Fθ({ψu}εT<u<(1−ε)T ) ≤ max
εT<u<(1−ε)T

ψu +
log T

θ
. (B.19)

See e.g., Equation (37) of Chernozhukov et al. (2014).

Similarly, we can approximate the absolute value function |x| = max(x, 0) + max(−x, 0)

by θ−1{log(1 + exp(θx)) + log(1 + exp(−θx))}. Define the corresponding smooth function

fθ(Zu) as√
u(T − u)

T 2

1

Tθ

T−1∑
t=0

∑
a

∫
s

{log(1 + exp(θφ>L(a, s)Zu)) + log(1 + exp(−θφ>L(a, s)Zu))}pbt(s)πbt (a|s)ds.

Similarly, we have ψu ≤ fθ(Zu) ≤ ψu + θ−1 log 2. This together with (B.19) yields

TS∗∗1 ≤ Fθ({fθ(Zu)}u) ≤ Fθ({ψu + θ−1 log 2}u) ≤ TS∗∗1 +
log(2T )

θ
. (B.20)

For a given z, consider the probability P(
√
NTTS∗∗1 ≤ z). According to Section B.1 of Belloni

and Oliveira (2018), for any δ > 0, there exists a thrice differentiable function h that satisfies

|h′| ≤ δ−1, |h′′| ≤ δ−2K and |h′′′| ≤ δ−3K for some universal constant K > 0 such that

I(x ≤ z/
√
NT + δ) ≤ h(x) ≤ I(x ≤ z/

√
NT + 4δ). (B.21)
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Define a composite function m({Zu}u) = h ◦ Fθ({fθ(Zu)}u). Combining (B.21) with

(B.20) yields that

P(
√
NTTS∗∗1 ≤ z) ≤ Em({Zu}u) ≤ P(

√
NTTS∗∗1 ≤ z + 4

√
NTδ). (B.22)

Similarly, we have

P(
√
NTTSb,∗∗1 ≤ z|Data) ≤ E[m({Zb

u}u)|Data] ≤ P(
√
NTTSb,∗∗1 ≤ z + 4

√
NTδ|Data),

where Zb
u is defined in (B.12). This together with (B.22) yields that

max{max
z
|P(
√
NTTSb,∗∗1 ≤ z|Data)− P(

√
NTTS∗∗1 ≤ z − 4

√
NTδ)|,

max
z
|P(
√
NTTSb,∗∗1 ≤ z|Data)− P(

√
NTTS∗∗1 ≤ z + 4

√
NTδ)|}

≤ |Em({Zu})− E[m({Zb
u}u)|Data]|.

(B.23)

We next apply Corollary 2.1 of Belloni and Oliveira (2018) to establish an upper bound for

|Em({Zu}u)− E[m({Zb
u}u)|Data]|. Similar to Lemma 4.3 of Chernozhukov et al. (2014), we

can show that c0 ≡ supz,z′ |m(z)−m(z′)| ≤ 1,

c2 ≡ sup
z

∑
j1,j2

∣∣∣∣ ∂2m(z)

∂zj1∂zj2

∣∣∣∣ � δ−2L+ δ−1θL,

c3 ≡ sup
z

∑
j1,j2,j3

∣∣∣∣ ∂3m(z)

∂zj1∂zj2∂zj3

∣∣∣∣ � δ−3L3/2 + δ−2θL3/2 + δ−1θ2L3/2,

under (A4). In addition, similar to Lemma B.2, we can show that the quadratic variation pro-

cess
∑

g E{Z(g)(Z(g))>|F (g−1)} will converge to some deterministic matrix with elementwise

maximum norm bounded by C
√

log(NT )/(εNT )3/2 for some constant C > 0, with proba-

bility at least 1 − O(N−2T−2). So is the conditional covariance matrix of Zb given the data,

e.g., ∑
g

E[Zb,(g)(b, Z(g))>|{Si,t, Ai,t, Ri,t}1≤i≤N,0≤t≤T ].

Moreover, under (A4), the third absolute moment of each element in Z(g) is bounded by

O(N−3T−3
√
L). Let δ = θ−1. It follows from Corollary 2.1 of Belloni and Oliveira (2018)

that

|Em({Zu})− E[m({Zb
u}u)|Data]| �

θ2L
√

log(NT )

(εNT )3/2
+

θ3L2

ε3(NT )2
, (B.24)
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WPA1. Notice that
√
NTTS∗∗1 has a bounded probability density function. It follows that

sup
z
|P(
√
NTTS∗∗1 ≤ z − 4

√
NTδ)− P(

√
NTTS∗∗1 ≤ z + 4

√
NTδ)| �

√
NTδ. (B.25)

By setting θ = (NT )c for some constant 1/2 < c < 2/3− 2c5/3, both the RHS of (B.24)

and (B.25) decay to zero. In view of (B.23), we have shown that

sup
z
|P(
√
NTTSb,∗∗1 ≤ z|Data)− P(

√
NTTS∗∗1 ≤ z)| p→ 0.

Similarly, based on (B.10), we can show that

sup
z
|P(
√
NTTSb1 ≤ z|Data)− P(

√
NTTS1 ≤ z)| p→ 0.

The proof is hence completed.

B.2.2 Maximum-Type Tests

For any u, a and s, define the variance estimator σ̂2
u(a, s) by

φ>L(a, s)Ŵ−1
[T−κ,T−u]

N2(κ− u)2

[
N∑
i=1

T−u−1∑
t=T−κ

φL(Ai,t, Si,t)φ
>
L(Ai,t, Si,t)δ

2
i,t(β̂[T−κ,T−u])

]
{Ŵ−1

[T−κ,T−u]}
>φ>L(a, s)

+
1

N2u2
φ>L(a, s)Ŵ−1

[T−u,T ]

[
N∑
i=1

T−1∑
t=T−u

φL(Ai,t, Si,t)φ
>
L(Ai,t, Si,t)δ

2
i,t(β̂[T−u,T ])

]
{Ŵ−1

[T−u,T ]}
>φ>L(a, s).

We next show that both the unnormalised and normalised maximum-type tests have good size

property. The proof is very similar to that in Section B.2.1. We provide a sketch of the proof

and outline some major key steps only.

Proof for the unnormalised test: The first step in the proof is to show that
√
NT (TS∞ −

TS∗∞) = op(1), where TS∗∞ is a version of TS∞ with Q̂[T1,T2] replaced by the leading term

according to (A1). By Assumptions (A1), (A4) and the condition that (NT )2c1−1 � L, this

can be proven using similar arguments to Step 3 of the proof in Section B.2.1.

The second step in the proof is to show that
√
NT (TSb∞ − TSb,∗∞ ) = op(1) where TSb,∗∞ is a

version of TSb∞ with Ŵ[T1,T2] and δi,t(β̂[T1,T2]) replaced by their oracle values W[T1,T2] and δ∗i,t,

respectively, for any T1 and T2. This can be proven using similar arguments to Steps 2 and 3 of

the proof in Section B.2.1.
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Notice that in the test statistic, the maximum is taken over all state-action pairs. Recall

that the state space is [0, 1]d. Consider an ε-net of [0, 1]d with ε =
√
d/(NT )4. Let TS∗∗∞

and TSb,∗∗∞ be versions of TS∗∞ and TSb,∗∞ where the maximum is taken over the ε-net. Under

(A10), using similar arguments to Step 1 of the proof in Section B.2.1, we can show that
√
NT (TS∗∞ − TS∗∗∞) = op(1) and

√
NT (TSb,∗∞ − TSb,∗∗∞ ) = op(1). This corresponds to the

second step of the proof.

Finally, the last step in the proof is to show

sup
z
|P(
√
NTTSb,∗∗∞ ≤ z|Data)− P(

√
NTTS∗∗∞ ≤ z)| p→ 0.

Similar to Step 4 of the proof in Section B.2.1, this step can be proven based on the high-

dimensional martingale central limit theorem developed by Belloni and Oliveira (2018). To-

gether with the first two steps, we obtain that

sup
z
|P(
√
NTTSb∞ ≤ z|Data)− P(

√
NTTS∞ ≤ z)| p→ 0.

The proof is hence completed.

Proof for the normalised test: Using similar arguments to Step 2 of the proof in Section B.2.1,

we can show that WPA1, (i) maxT2−T1≥εT ‖Ŵ−1
[T1,T2]‖2 = O(1);

(ii) min
T2−T1≥εT

λmin

{
1

N(T2 − T2)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φ
>
L(Ai,t, Si,t)

}
> C,

for some constantC > 0. In addition, by Lemma B.1, the difference δi,t(β̂[T1,T2])−δ∗i,t decays at

a rate of (NT )−c for some constant c > 0, uniformly in i, t, T1, T2, WPA1. This together with

(i) and (ii) implies that there exists some constant C > 0 such that σ̂2
u(a, s) > C‖φL(a, s)‖2

2

for any u, a, s, WPA1. This allows us to show
√
NT (TSn,∞−TS∗n,∞) = op(1) under a weaker

condition that does not require (NT )2c1−1 � L, where TS∗n,∞ is a version of TSn,∞ with

Q̂[T1,T2] replaced by the leading term according to (A1). The rest of the proof can be established

in a similar manner as the proof for the unnormalised test.
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B.3 Proof of Lemma B.1

We aim to establish the uniform rate of convergence of {supa,s |φL(a, s)>β̂[T1,T2]−Qopt(a, s)| :

T2 − T1 ≥ εT}. Under (A2), the optimal Q-function Qopt is p-smooth (see e.g., the proof of

Lemma 1 in Shi et al., 2021). This together with (A3) implies that there exists some β∗ such

that the bias supa,s |Qopt(a, s) − φ>L(a, s)β∗| = O(L−c2), under the null hypothesis. By the

definition of β∗[T1,T2], we have

β∗[T1,T2] − β∗ = [EφL(At, St){φL(At, St)− γφL(πopt(St+1), St+1)}>]−1

×[EφL(At, St){Rt + γφ>L(πopt(St+1), St+1)β∗ − φL(At, St)β
∗}].

Since ‖W−1
[T1,T2]‖2 ≤ c̄, ‖β∗[T1,T2] − β∗‖2 can be upper bounded by

c̄‖EφL(At, St){Rt + γφ>L(πopt(St+1), St+1)β∗ − φL(At, St)β
∗}‖2 ≤ c̄ sup

ν∈RL

E|ν>φL(At, St)|

×|γφ>L(πopt(St+1), St+1)β∗ − γQopt(πopt(St+1), St+1)− φL(At, St)β
∗ +Qopt(At, St)|.

The second term on the RHS is of the order O(L−c2). The first term on the RHS can be upper

bounded by c̄ supa∈RL

√
E|a>φL(At, St)|2 ≤ c̄

√
λmaxEφL(At, St)φ>L(At, St) = O(1), under

Condition (A4). As such, we have supT1,T2 ‖β
∗
[T1,T2] − β∗‖2 = O(L−c2).

Under the conditions that c2 > 1/2 and supa,s ‖φL(a, s)‖2 = O(L1/2), we have supa,s,T1,T2 ‖φ(a, s)>(β∗−

β∗[T1,T2])‖2 = O(L−ε0) for some ε0 > 0. It follows that supa,s,T1,T2 |Q
opt(a, s)−φ>L(a, s)β∗[T1,T2]| =

O(L−ε0). SinceL is proportional to (NT )c5 for some c5 > 0, we obtain that supa,s,T1,T2 |Q
opt(a, s)−

φ>L(a, s)β∗[T1,T2]| = O{(NT )−ε0} for some ε0 > 0.

As such, it suffices to show supa,s ‖φL(a, s)>(β̂[T1,T2] − β∗[T1,T2])‖2 = O{(NT )−ε0}, or

equivalently, supT1,T2 ‖β̂[T1,T2]−β∗[T1,T2]‖2 = O(L−c), with probability at least 1−O(N−1T−1),

for some c > 1/2. Under (A1), it suffices to show both the bias term supT1,T2 ‖b[T1,T2]‖2 and the

standard deviation term ‖N−1(T2 − T1)−1W−1
[T1,T2]

∑N
i=1

∑T2−1
t=T1

φL(Ai,t, Si,t)δ
∗
i,t‖2 are O(L−c).
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Under the null hypothesis, the bias term satisfies

‖b[T1,T2]‖2 = sup
T1,T2

∥∥∥∥∥ 1

T2 − T1

W−1
[T1,T2]

T2−1∑
t=T1

EφL(At, St)φ
>
L(At, St)(β

∗
[T1,T2] − β∗)

∥∥∥∥∥
2

+ sup
T1,T2

∥∥∥∥∥ 1

T2 − T1

W−1
[T1,T2]

T2−1∑
t=T1

EφL(At, St){Qopt(At, St)− φ>L(At, St)β
∗}

∥∥∥∥∥
2

.

By Cauchy-Schwarz inequality, the first term on the RHS can be upper bounded by

sup
t,T1,T2

‖W−1
[T1,T2]‖2‖EφL(At, St)φL(At, St)

>‖2‖β∗[T1,T2] − β∗‖2 = O(L−c2).

The second term can be shown to be O(L−c2), using similar arguments in bounding ‖β∗[T1,T2]−

β∗‖2.

The assertion that

sup
T1,T2

∥∥∥∥∥ 1

N(T2 − T1)
W−1

[T1,T2]

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)δ
∗
i,t

∥∥∥∥∥
2

= O(
√
L(εNT )−1 log(NT )) = O(L−c),

with probability at least 1 − O(N−1T−1) can be proven using the martingale concentration

inequality (see e.g., Corollary 3.1, Tropp, 2011) and the Bonferroni inequality, under the con-

dition that L = O{(NT )c5} for some c5 < 1/4. We omit the details to save space.

B.4 Proof of Lemma B.2

We focus on establishing a uniform upper error bound for {|Ŵ[T1,T2]−W[T1,T2]| : T2−T1 ≥ εT}

in this section. The assertion that ‖W−1
[T1,T2]‖2 ≤ c̄ can be proven by Lemma 3 of Shi et al.

(2021).

In Lemma B.1, we have established the uniform consistency of the estimated Q-function.

Under the margin condition in (A8), it follows that

|φ>L(a, s)β̂[T1,T2] −Qopt(a, s)− φ>L(πopt(s), s)β̂[T1,T2] +Qopt(πopt(s), s)|

< |Qopt(a, s)−Qopt(πopt(s), s)|,

for any a and s, with probability at least 1−O(N−1T−1). As such, we have arg maxa φ
>
L(a, s)β̂[T1,T2] =

arg maxaQ
opt(a, s) and hence πβ̂[T1,T2]

= πopt, with probability at least 1 − O(N−1T−1). It
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follows that

Ŵ[T1,T2] =
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){φL(Ai,t, Si,t)− γφL(πopt(Si,t+1), Si,t+1)}>.(B.26)

We next provide an upper bound on the difference between the RHS of (B.26) and W[T1,T2].

Define Ŵ ∗
[T1,T2] as

1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

πb(a|Si,t)φL(a, Si,t)[φL(a, Si,t)− γE{φL(πopt(Si,t+1), Si,t+1)|Ai,t = a, Si,t}]>.

The difference |Ŵ[T1,T2]−W[T1,T2]| can be upper bounded by |Ŵ[T1,T2]− Ŵ ∗
[T1,T2]|+ |Ŵ ∗

[T1,T2]−

W[T1,T2]|.

Under CMIA, the first term Ŵ[T1,T2] − Ŵ ∗
[T1,T2] corresponds to a sum of martingale dif-

ference. Using similar arguments to the proof of Lemma 3 of Shi et al. (2021), we can

show that the first term is of the order O(
√

(εNT )−1L log(NT )), with probability at least

1 − O{(NT−3)}, under the condition that T2 − T1 ≥ εT . See also, Freedman’s inequal-

ity for matrix martingales developed by Tropp (2011). It follows from Bonferroni’s inequal-

ity that supT1,T2 ‖Ŵ[T1,T2] − Ŵ ∗
[T1,T2]‖2 = O(

√
(εNT )−1L log(NT )), with probability at least

1−O{(NT )−1}.

It remains to bound ‖Ŵ ∗
[T1,T2] −W[T1,T2]‖2. Let Γ0 be an ε-net of the unit sphere in RL that

satisfies the following: for any ν ∈ RL with unit `2 norm, there exists some ν0 ∈ Γ0 such that

‖ν − ν0‖2 ≤ ε. Set ε = (NT )−2. According to Lemma 2.3 of Mendelson et al. (2008), there

exists such an ε-net Γ0 that belongs to the unit sphere and satisfies |Γ0| ≤ 5L(NT )2L.

For any ν1, ν2 with unit `2 norm, define

Ψt(a, s, ν1, ν2) = πbt (a|s)ν>1 φL(a, s)[φL(a, s)− γE{φL(πopt(St+1), St+1)|At = a, St = s}]>ν2.

The difference ‖Ŵ ∗
[T1,T2] −W[T1,T2]‖2 can be represented as

sup
‖ν1‖2=‖ν2‖2=1

∣∣∣∣∣ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

{Ψt(a, Si,t, ν1, ν2)− EΨt(a, Si,t, ν1, ν2)}

∣∣∣∣∣ .
We first show that Ψt(a, s, ν1, ν2) is a Lipschitz continuous function of ν1 and ν2. For any

ν1, ν2, ν3, ν4, the difference Ψt(a, s, ν1, ν2) − Ψt(a, s, ν3, ν4) can be decomposed into the sum
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of the following two terms:

πbt (a|s)(ν1 − ν3)>φL(a, s)[φL(a, s)− γE{φL(πopt(St+1), St+1)|At = a, St = s}]>ν2

+πbt (a|s2)ν>3 φL(a, s)[φL(a, s)− γE{φL(πopt(St+1), St+1)|At = a, St = s}]>(ν2 − ν4).

The first term is O(L), by the condition sups ΦL(s) = O(
√
L) in (A4). Similarly, the second

term is O(L) as well. To summarize, we have shown that

|Ψt(a, s1, ν1, ν2)−Ψt(a, s2, ν3, ν4)| ≤ cL(‖ν1 − ν3‖2 + ‖ν2 − ν4‖2),

for some constant c > 0.

For any ν1, ν2 with unit `2 norm, there exist ν1,0, ν2,0 ∈ Γ0 that satisfy ‖ν1− ν1,0‖2 ≤ ε and

‖ν2 − ν2,0‖2 ≤ ε. As such, Ψt(a, s1, ν1, ν2)−Ψt(a, s2, ν1, ν2) can be upper bounded by

sup
ν1,0,ν2,0∈Γ0

∣∣∣∣∣ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

{Ψt(a, Si,t, ν1,0, ν2,0)− EΨt(a, Si,t, ν1,0, ν2,0)}

∣∣∣∣∣+
2cL

(NT )2
.

It remains to establish a uniform upper bound for the first term. We aim to apply the

concentration inequality developed by Alquier et al. (2019). However, a direct application of

Theorem 3.1 in Alquier et al. (2019) would yield a sub-optimal bound. This is because each

summand Ψt(a, St, ν1,0, ν2,0) is not bounded, since ‖φL‖2 is allowed to diverge with the number

of observations. To obtain a sharper bound, we further decompose the first term into the sum

of the following two terms:

sup
ν1,0,ν2,0∈Γ0

∣∣∣∣∣ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

[Ψt(a, Si,t, ν1,0, ν2,0)− E{Ψt(a, Si,t, ν1,0, ν2,0)|Si,t−1}]

∣∣∣∣∣
+ sup

ν1,0,ν2,0∈Γ0

∣∣∣∣∣ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

[E{Ψt(a, Si,t, ν1,0, ν2,0)|Si,t−1} − EΨt(a, Si,t, ν1,0, ν2,0)]

∣∣∣∣∣ .
(B.27)

The first term corresponds to a sum of martingale difference. Using similar arguments

in showing supT1,T2 ‖Ŵ[T1,T2] − Ŵ ∗
[T1,T2]‖2 = O(

√
(εNT )−1L log(NT )), we can show that

the first term in (B.27) is of the order O(
√

(εNT )−1L log(NT )), with probability at least

1−O(N−1T−1), where the big-O term is uniform in {(T1, T2) : T2 − T1 ≥ εT}.
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As for the second term, notice that by definition, E{Ψt(a, St, ν1,0, ν2,0)|St−1 = s} equals∫
s′
πbt (a|s′)ν>1,0φL(a, s′)[φL(a, s′)− γE{φL(πopt(St+1), St+1)|At = a, St = s′}]>ν2,0pt−1(s′|a, s)ds′.

Under the p-smoothness condition in (A2), E{Ψt(a, St, ν1,0, ν2,0)|St−1 = s} is a Lipschitz

continuous function of s. However, unlike Ψt(a, s, ν1,0, ν2,0), the integrand

|πbt (a|s′)ν>1,0φL(a, s′)[φL(a, s′)− γE{φL(πopt(St+1), St+1)|At = a, St = s′}]>ν2,0|

is upper bounded by a constant, under the condition maxt λmax{EφL(At, St)φ
>
L(At, St)} =

O(1) in (A4). See e.g., Equation (E.77) of Shi et al. (2021). As such, the Lipschitz constant

is uniformly bounded by some constant. Consequently, the conditions in the statement of

Theorem 3.1 in Alquier et al. (2019) are satisfied. We can apply Theorem 3.1 to the mean zero

random variable

1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

[E{Ψt(a, Si,t, ν1,0, ν2,0)|Si,t−1} − EΨt(a, Si,t, ν1,0, ν2,0)],

for each combination of ν1,0, ν2,0, T1, T2, and show that it is of the orderO(
√
εL(NT )−1 log(NT ))

with probability at least 1 − O(N−CLT−CL), for some sufficiently large constant C > 0. By

Bonferroni’s inequality, we can show that

sup
T2−T1≥εT

sup
ν1,0,ν2,0∈Γ0

∣∣∣∣∣ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

∑
a

[Ψt(a, Si,t, ν1,0, ν2,0)− E{Ψt(a, Si,t, ν1,0, ν2,0)|Si,t−1}]

∣∣∣∣∣ ,
is upper bounded by O(

√
Lε−1(NT )−1 log(NT )) with probability at least 1−O(N−1T−1).

B.5 Proof of Theorem 2

Without loss of generality, assume T0 = 0. We only consider the `1-type test. The proof for

the maximum-type test can be similarly derived. Under the given conditions on T ∗, we have

TS1 ≥
√
T ∗(T − T ∗)

T 2

{
1

NT

∑
i,t

|Q̂[0,T ∗](Ai,t, Si,t)− Q̂[T ∗,T ](Ai,t, Si,t)|

}

≥
√
ε(1− ε)

{
1

NT

∑
i,t

|Q̂[0,T ∗](Ai,t, Si,t)− Q̂[T ∗,T ](Ai,t, Si,t)|

}
.

(B.28)
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Under (A3), there exist some β∗0 and β∗T such that

sup
a,s
|Qopt

0 (a, s)− φ>L(a, s)β∗0 | = O(L−c2) and sup
a,s
|Qopt

T (a, s)− φ>L(a, s)β∗T | = O(L−c2).(B.29)

Using similar arguments in the proof of Lemma B.1, we can show that

max(‖β̂[0,T ∗] − β∗0‖2, ‖β̂[T ∗,T ] − β∗T‖2) = O(L−c2) +O(
√
L(εNT )−1 log(NT )), (B.30)

WPA1. Using similar arguments in Step 1 of the proof of Theorem 1, we can show that the last

line of (B.28) can be well-approximated by√
ε(1− ε)
T

T−1∑
t=0

∑
a

∫
s

|Q̂[0,T ∗](a, s)− Q̂[T ∗,T ](a, s)|πbt (a|s)pbt(s)ds, (B.31)

with the approximation error upper bounded by
√
ε(1− ε)L(NT )−1 log(NT ), WPA1.

By (A4) and Cauchy-Schwarz inequality, we have

∑
a

∫
s

|φ>L(a, s)ν|ds ≤
∑
a

√∫
s

|φ>L(a, s)ν|2ds � ‖ν‖2λmax

(∫
s

ΦL(s)Φ>L(s)ds

)
� ‖ν‖2.

This together with (B.28), (B.30) and (B.31) yields that

TS1 ≥
√
ε(1− ε)
T

T−1∑
t=0

∑
a

∫
s

|φ>L(a, s)(β∗0 − β∗T )|πbt (a|s)pbt(s)ds

+O(
√
L(NT )−1 log(NT )) +O(L−c2),

WPA1. Combining this together with (B.29) yields that

TS1 ≥
√
ε(1− ε)
T

T−1∑
t=0

∑
a

∫
s

|Qopt
0 (a, s)−Qopt

T (a, s)|πbt (a|s)pbt(s)ds

+O(
√
L(NT )−1 log(NT )) +O(L−c2),

WPA1. In addition, using similar arguments in Step 2 of the proof of Theorem 1, we can show

that the bootstrapped test statistic TSb1 is upper bounded by O(
√
L(NT )−1 log(NT )), WPA1.

Under the given condition on ∆1, TS1 is much larger than the upper αth quantile of TSb1, WPA1.

As such, the power of the proposed test approaches 1 under the alternative hypothesis. This

completes the proof.
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B.6 Proof of Theorem 3

We first show the consistency of the estimated Q-function. In FQI, we iteratively update the

Q-function according to the formula,

Q(k+1) = arg min
Q

∑
i,t

{
Ri,t + γmax

a
Q(k)(a, Si,t+1)−Q(Ai,t, Si,t)

}2

.

At the kth iteration, we define the population-level Q-function

Q(k+1),∗(a, s) = r(a, s) + γmax
a′

∫
s′
Q(k)(a′, s′)p(s′|a, s)ds′. (B.32)

According to the Bellman optimality equation,

Qopt(a, s) = r(a, s) + γmax
a′

∫
s′
Qopt(a′, s′)p(s′|a, s)ds′.

It follows that

sup
a,s
|Qopt(a, s)−Q(k+1)(a, s)| ≤ sup

a,s
|Q(k+1),∗(a, s)−Q(k+1)(a, s)|+ sup

a,s
|Qopt(a, s)−Q(k+1),∗(a, s)|

≤ sup
a,s
|Q(k+1),∗(a, s)−Q(k+1)(a, s)|+ γ sup

a,s
|Qopt(a, s)−Q(k)(a, s)|.

Iteratively applying this inequality for k = K,K − 1, · · · , 1, we obtain that

sup
a,s
|Qopt(a, s)− Q̂[T1,T2](a, s)| ≤

∑
k

γK−k sup
a,s
|Q(k+1),∗(a, s)−Q(k+1)(a, s)|

+γK+1 sup
a,s
|Qopt(a, s)−Q(0)(a, s)|.

(B.33)

As K diverges to infinity, the second term on the RHS decays to zero. The first term is upper

bounded by

1

1− γ
sup
a,s,k
|Q(k+1),∗(a, s)−Q(k+1)(a, s)|. (B.34)

It remains to show this term decays to zero as the sample size approaches to infinity.

Let β(k) denote the estimated regression coefficients such that Q(k)(a, s) = φ>L(a, s)β(k).

We claim that there exist some constants C, C̄ > 0 such that

sup
a,s

max
k∈{0,··· ,j}

|Q(k)(a, s)| ≤ C and max
k∈{0,··· ,j}

‖β(k)‖2 ≤ C̄, (B.35)
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with probability at least 1− (j + 1)/(NT ), for sufficiently large NT . The values of C and C̄

will be specified later.

We will prove this assertion by induction. Using similar arguments in the proof of Lemma

B.2, we can show that∥∥∥∥∥ 1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
> − 1

T2 − T1

T2−1∑
t=T1

EφL(At, St)φL(At, St)
>

∥∥∥∥∥
2

≤ c
√
L(εNT )−1 log(NT ),

(B.36)

for some constant c > 0, with probability at least 1 − N−1T−1. Under (A6), λmin{(T2 −

T1)−1
∑T2−1

t=T1
EφL(At, St)φL(At, St)

>} is uniformly bounded away from zero. On the event

set defined by (B.36), for sufficiently large NT , there exists some c̄ > 0 such that

λmin

{
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}
≥ c̄. (B.37)

When k = 0, this posit assertion in (B.35) holds as long as supa,s |Q(0)(a, s)| ≤ C and

‖β(0)‖2 ≤ C̄. Suppose the assertion holds for k = 0, 1, · · · , J . We aim to prove this asser-

tion holds for k = J + 1. Since the reward is uniformly bounded, so is supa,s |r(a, s)|. We

will choose C to be such that C ≥ 2(1 − γ)−1 supa,s |r(a, s)|. It follows from (B.32) that

supa,s |Q(k+1),∗(a, s)| ≤ (1 + γ)C/2. In addition, define

β(k+1),∗ =

{
1

T2 − T1

T2−1∑
t=T1

EφL(At, St)φL(At, St)
>

}−1{
1

T2 − T1

T2−1∑
t=T1

EφL(At, St)Q
(k+1),∗(At, St)

}
.

By (A4) and (A6), there exist some constants c, C > 0 such that ‖β(k+1),∗‖2 ≤ cC. We choose

C̄ to be such that C̄ ≥ 2cC. As such, it suffices to show that on the set defined in (B.37), the

estimation errors supa,s |Q(k+1)(a, s)−Q(k+1),∗(a, s)| ≤ (1−γ)C/2 and ‖β(k+1)−β(k+1),∗‖2 ≤

cC, with probability at least 1− (NT )−1.

Under (A2), there exists some β(k+1),∗∗ such that supa,s |Q(k+1),∗(a, s)−φ>L(a, s)β(k+1),∗∗| ≤

c0L
−c2 for some constant c0 > 0. Using similar arguments to the proof of Lemma B.1, we can

show that supk ‖β(k+1),∗∗ − β(k+1),∗‖2 = O(L−c2). Since L is proportional to (NT )c5 for

some c5 > 0, for sufficiently large NT , we have ‖β(k+1),∗∗ − β(k+1),∗‖2 ≤ cC/2 and hence
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‖β(k+1),∗∗‖2 ≤ 3cC/2. Therefore, to show ‖β(k+1) − β(k+1),∗‖2 ≤ cC, it suffices to show

‖β(k+1) − β(k+1),∗∗‖2 ≤ cC/2.

By definition, we have

β(k+1) − β(k+1),∗∗ =

{
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}−1

×

[
1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){Ri,t + γmax
a
φ>L(a, Si,t+1)β(k) − φ>L(Ai,t, Si,t)β

(k+1),∗∗}

]
.

On the set defined in (B.37), ‖β(k+1) − β(k+1),∗∗‖2 is upper bounded by

sup
‖β(k)

0 ‖2≤2cC,‖β(k+1),∗∗
0 ‖2≤3cC/2

supa,s |r(a,s)+γ
∫
s′ maxa′ φ

>
L (a′,s′)β

(j)
0 p(s′|a,s)ds′−φ>L (a,s)β

(k+1),∗∗
0 |≤c0L−c2

∣∣∣∣∣ c̄−1

N(T2 − T1)

N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)

×{Ri,t + γmax
a
φ>L(a, Si,t+1)β

(k)
0 − φ>L(Ai,t, Si,t)β

(k+1),∗∗
0 }

∣∣∣ .
Using similar arguments to Step 1 of the proof of Theorem 1, we can show that the upper bound

is of the orderO(L−c2)+O(
√
L(εNT )−1 log(NT )), with probability at least 1−(NT )−1. For

sufficiently large NT , the assertion ‖β(k+1) − β(k+1),∗∗‖2 ≤ cC/2 is automatically satisfied.

Moreover, by (A4) and the condition that L is proportional to (NT )c5 for some 0 < c5 < 1/2,

we obtain that supa,s |Q(k+1)(a, s) − Q(k+1),∗(a, s)| � L1/2−C̄ + L
√

(εNT )−1 log(NT ) �

(1− γ)C/2. The assertion is thus proven.

Under the given conditions on K, the maximum number of iterations, we obtain that both

Q̂[T1,T2] and β̂[T1,T2] are uniformly bounded WPA1. In addition, using similar arguments, we

can show that the estimation error (B.34) decays to zero, WPA1. According to (B.33), we have

max
K/2<k≤K

sup
a,s
|Qopt(a, s)−Q(k+1)(a, s)| p→ 0.

By (A9), we obtain that arg maxa φ
>
L(a, s)β(k+1) = πopt(s), for any K/2 < k ≤ K ,WPA1.

As such, β(k+1) equals{
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}−1 [ N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){Ri,t + γφ>L(πopt(Si,t+1), Si,t+1)β(k)}

]
.
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It follows that

(β(k+1) − β∗[T1,T2]) =

{
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}−1

×

[
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){Ri,t + γφ>L(πopt(Si,t+1), Si,t+1)β(k)} − φ>L(Ai,t, Si,t)β
∗
[T1,T2]

]
.

(B.38)

We next derive the asymptotic normality of β̂[T1,T2]. Without loss of generality, suppose K

is an even number. Applying (B.38) for k = K,K − 1, · · · , K/2 + 1, we obtain that

β̂[T1,T2] − β∗[T1,T2] = L̂K/2(β(K/2+1) − β∗[T1,T2]) +

K/2∑
j=0

L̂j ̂̀,
where

L̂ = γ

{
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}−1{ N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φ
>
L(πopt(Si,t+1), Si,t+1)

}

and ̂̀=

{
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t)φL(Ai,t, Si,t)
>

}−1

×

[
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){Ri,t + γφ>L(πopt(Si,t+1), Si,t+1)β∗[T1,T2]} − φ>L(Ai,t, Si,t)β
∗
[T1,T2]

]
.

Similar to Lemma 3 of Shi et al. (2021), under (A6), we can show that ‖L̂2‖ ≤ γ̄ for some

γ̄ < 1, WPA1. Under the given conditions on K, we obtain that

β̂[T1,T2] − β∗[T1,T2] = (I − L̂)−1̂̀+O
(
N−c1T−c1

)
,

with probability at least 1−O(N−1T−1). Notice that

(I − L̂)−1̂̀=

[
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){φL(Ai,t, Si,t)− γφL(πopt(Si,t+1), Si,t+1)}>
]−1

×

[
N∑
i=1

T2−1∑
t=T1

φL(Ai,t, Si,t){Ri,t + γφ>L(πopt(Si,t+1), Si,t+1)β∗[T1,T2]} − φ>L(Ai,t, Si,t)β
∗
[T1,T2]

]
.

The assertion follows using similar arguments to the proof of Lemma B.2. We omit the details

to save space.
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C More on the numerical study

C.1 Smooth Markov Chain Transition

The way we generate a smooth transition function is to first define a piecewise constant func-

tion, and smoothly connects the constant functions through a transformation. Specifically, let

the piecewise constant function with two segments be f(s, t) = f1(s)I{t ≤ T ∗}+ f2(s)I{t >

T ∗}, where f1 and f2 are functions not dependent on t.

We now introduce a smooth transformation φ(s) = ψ(s)
ψ(s)+ψ(1−s) , where ψ(s) = e−1/sI{s >

0}. Then g(s; f1, f2, s0, s1) := f1(s) + (f2(s) − f1(s))φ
(
s−s0
s1−s0

)
is a smooth function from

f1 to f2 on the interval [s0, s1]. In addition, the transformed function f̃(s, t) = f1(s)I{t ≤

T ∗ − δT} + g(s; f1, f2, s0, s1)I{T ∗ − δT < t < T ∗ + δT} + f2(s)I{t > T ∗} is smooth in s.

Here δ controls the smoothness of the transformation; smaller δ leads to more abrupt change

and larger δ leads to smoother change. An example of f̃(s, t) is shown in Figure 1.

Figure 1: Smooth transformation of piecewise constant function: f1(s) = −I{s ≤ −2} and
f2(s) = I{s ≥ 2}.

The four settings of transition dynamics are specified as the following.

(1) Time-homogeneous state transition function and piecewise constant reward function:

S0,t+1 = 0.5A0,tS0,t + z0,t, t ∈ [0, T ].

R0,t =

{
r1(S0,t, A0,t; t) ≡ −1.5A0,tS0,t, if t ∈ [0, T ∗)

r2(S0,t, A0,t; t) ≡ A0,tS0,t, if t ∈ [T ∗, T ],
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(2) Time-homogeneous state transition function and smooth reward function:

S0,t+1 = 0.5A0,tS0,t + z0,t, t ∈ [0, T ].

R0,t =


r1(S0,t, A0,t; t), if t ∈ [0, T ∗ − δT ),
g (S0,t; r1, r2, T

∗ − δT, T ∗) , if t ∈ [T ∗ − δT, T ∗),
r2(S0,t, A0,t; t), if t ∈ [T ∗, T ].

(3) Piecewise constant state transition and time-homogeneous reward function:

S0,t+1 =

{
F1(S0,t, A0,t; t) ≡ −0.5A0,tS0,t + z0,t, if t ∈ [0, T ∗),
F2(S0,t, A0,t; t) ≡ 0.5A0,tS0,t + z0,t, if t ∈ [T ∗, T ].

R0,t = 0.25A0,tS
2
0,t + 4S0,t, t ∈ [0, T ].

(4) Smooth state transition and time-homogeneous reward function:

S0,t+1 =


F1(S0,t, A0,t; t), if t ∈ [0, T ∗),
g (S0,t;F1, F2, T

∗ − δT, T ∗) , if t ∈ [T ∗ − δT, T ∗),
F2(S0,t, A0,t; t), if t ∈ [T ∗, T ].

R0,t = 0.25A0,tS
2
0,t + 4S0,t, t ∈ [0, T ].

C.2 Simulation Setting of IHS Data

We initiate the state variables as independent normal distributions with Si,0,1 ∼ N (20, 3),

Si,0,2 ∼ N (20, 2), and Si,0,3 ∼ N (7, 1), and let them evolve according toSi,t+1,1

Si,t+1,2

Si,t+1,3

 = W1(Ai,t)S̃i,tI{t ∈ [0, T ∗)}+ W2(Ai,t)S̃i,tI{t ∈ [T ∗, T ]}+ zi,t,

where the transition matrices are

W1(Ai,t) =

10 + 0.6Ai,t 0.4 + 0.3Ai,t 0.1− 0.1Ai,t −0.04 0.1
11− 0.4Ai,t 0.05 0 0.4 0
1.2− 0.5Ai,t −0.02 0 0.03 + 0.03Ai,t 0.8

 ,

W2(Ai,t) =

10− 0.6Ai,t 0.4− 0.3Ai,t 0.1 + 0.1Ai,t 0.04 −0.1
11− 0.4Ai,t 0.05 0 0.4 0
1.2 + 0.5Ai,t −0.02 0 0.03− 0.03Ai,t 0.8

 ,

S̃i,t = (1, Si,t)
>, and zi,t ∼ N3(0, diag(1, 1, 0.2)) is random noise.
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