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Accurate identification of synergistic treatment combinations and their
underlying biological mechanisms is critical across many disease domains,
especially cancer. In translational oncology research, preclinical systems,
such as patient-derived xenografts (PDX), have emerged as a unique study
design evaluating multiple treatments administered to samples from the same
human tumor implanted into genetically identical mice. In this paper we
propose a novel Bayesian probabilistic tree-based framework for PDX data
to investigate the hierarchical relationships between treatments by inferring
treatment cluster trees, referred to as treatment trees (Rx-tree). The frame-
work motivates a new metric of mechanistic similarity between two or more
treatments, accounting for inherent uncertainty in tree estimation; treatments
with a high estimated similarity have potentially high mechanistic synergy.
Building upon Dirichlet diffusion trees, we derive a closed-form marginal
likelihood, encoding the tree structure, which facilitates computationally ef-
ficient posterior inference via a new two-stage algorithm. Simulation stud-
ies demonstrate superior performance of the proposed method in recovering
the tree structure and treatment similarities. Our analyses of a recently col-
lated PDX dataset produce treatment similarity estimates that show a high
degree of concordance with known biological mechanisms across treatments
in five different cancers. More importantly, we uncover new and potentially
effective combination therapies that confer synergistic regulation of specific
downstream biological pathways for future clinical investigations. Our ac-
companying code, data, and shiny application for visualization of results are
available at: https://github.com/bayesrx/RxTree.

1. Introduction. According to the World Health Organization, cancer is one of the lead-
ing causes of death globally with ∼10 million deaths in 2020 (Ferlay et al. (2020)). Despite
multiple advances over the years, systematic efforts to predict efficacy of cancer treatments
have been stymied due to multiple factors, including patient-specific heterogeneity and treat-
ment resistance (Dagogo-Jack and Shaw (2018), Groisberg and Subbiah (2021)). Given that
the evolution of tumors relies on a limited number of biological mechanisms, there has been a
recent push toward combining multiple therapeutic agents, referred to as “combination ther-
apy” (Groisberg and Subbiah (2021), Sawyers (2013)). This is driven by the core hypothesis
that combinations of drugs act in synergistic manner, with each drug compensating for the
drawbacks of other drugs. However, despite higher response rates and efficacy in certain in-
stances (Bayat Mokhtari et al. (2017)), combination therapy can lead to undesired drug-drug
interactions, lower efficacy, or severe side effects (Sun, Sanderson and Zheng (2016)). Con-
sequently, it is highly desirable to advance the understanding of underlying mechanisms that
confer synergistic drug effects and identify potential favorable drug-drug interaction mecha-
nisms for further investigations.
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Given that not all possible drug combinations can be tested on patients in actual clini-
cal trials, cancer researchers rely on preclinical “model” systems to guide the discovery of
the most effective combination therapies (note, models have a different contextual meaning
here). In translational oncology, preclinical models assess promising treatments and com-
pounds, before they are phased into human clinical trials. The traditional mainstay of such
preclinical models has been cell lines, wherein cell cultures derived from human tumors are
grown in an in vitro controlled environment. However, it has been argued that they do not
accurately reflect the true behavior of the host tumor and, in the process of adapting to in
vitro growth, lose the original properties of the host tumor, thus leading to limited clini-
cal relevance and successes (Bhimani, Ball and Stebbing (2020), Tentler et al. (2012)). To
overcome these challenges, there has been a push toward more clinically relevant model sys-
tems that maintain a high degree of fidelity to human tumors. One such preclinical model
system is Patient-Derived Xenograft (PDX), wherein tumor fragments obtained from cancer
patients are directly transplanted into genetically identical mice (Hidalgo et al. (2014), Lai
et al. (2017)). Compared to traditional oncology models, such as cell lines (Yoshida (2020)),
PDX models maintain key cellular and molecular characteristics and are thus more likely to
mimic human tumors and facilitate precision medicine. More importantly, accumulating ev-
idence suggests responses (e.g., drug sensitivity) to standard therapeutic regimens in PDXs
closely correlate with patient clinical data, making PDX an effective and predictive experi-
mental model across multiple cancers (Nunes et al. (2015), Topp et al. (2014)).

PDX experimental design and key scientific questions. Overall, the PDX experimental de-
sign depends on the purpose of the study, and we consider a PDX study of the PDX clinical
trial that includes a large number of patients (Abdolahi et al. (2022)) and tests a set of com-
mon treatments. The PDX experiment then implants the tumor cell to multiple mice, and
each treatment is given to multiple mice with tumors implanted from the same (matched)
patient (see conceptual schema in Figure 1(A)). Treatment responses (e.g., tumor size) are
then evaluated, resulting in a data matrix (treatments × patients), as depicted in the heatmap
in Figure 1(A). The PDX-based clinical trial is a powerful tool for detecting the drug efficacy

FIG. 1. PDX experimental design and tree-based representation. Panel A: An illustrative PDX dataset with
five treatments (row) and eight patients (column). Mice in a given column are implanted with tumors from the
same patient and receive different treatments (across rows). The level of tumor responses are shown along a color
gradient. Panel B: A tree structure that clusters the treatments and quantifies the similarity among mechanisms.
Two treatments (1 and 4) are assumed to have different but known biological mechanisms (in different colors); the
remaining treatments (2, 3, and 5) have unknown mechanisms (in gray). The tree suggests two treatment groups are
present ({1,2} and {3,4,5}) that may correspond to two different known mechanisms. The horizontal position of
“�” represents the divergence time (defined in Section 2.1) and the mechanism similarity for treatments {3,4,5}.
In a real data analysis, the tree (topology and divergence times) is unknown and is to be inferred from PDX data.
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and drug sensitivity (Abdolahi et al. (2022)) and has been adapted in several studies for dif-
ferent cancers (e.g., Zhang et al., 2013 for the breast cancer and Bertotti et al., 2011 for the
colorectal cancer). Due to the relatively high fidelity between PDX models and the human
tumors (Abdolahi et al. (2022), Oh and Bang (2020)), a PDX-based clinical trial mirrors a
real human clinical trial using mouse “avatars” (Clohessy and Pandolfi (2015)). Thus, this
protocol serves as a scalable platform to: (a) identify underlying plausible biological mecha-
nisms responsible for tumor growth and resistance and (b) evaluate the effectiveness of drug
combinations based on mechanistic understanding. In this context, the (biological) mecha-
nism refers to the specific mechanism of action of a treatment, which usually represents a
specific target, such as an enzyme or a receptor (Grant, Combs and Acosta (2010)). From
the perspective of treatment responses as data, responses are the consequences of the down-
stream biological pathways from the corresponding interaction between a treatment and the
target/mechanism.

Ideally, treatments with the same target/mechanism should induce similar responses and
engender mechanism-related clustering among treatments. Evidently then, a sensible clus-
tering of treatments would not only partition treatments into clusters but also explicate how
the clusters relate to one another; in other words, a hierarchy among treatment clusters is
more likely to uncover plausible mechanisms for combinations of treatments with “similar”
responses when compared to “flat” clusters (e.g., k-means clustering). Such response-based
identification of potential synergistic effects from combinations of treatments will augment
understanding from known mechanistic synergy. In our application, using tree-based cluster-
ing, we assume known entities at the leaves, that is, the different treatments. The treatments
are assumed to act upon potentially distinct biological pathways, resulting in different levels
of responses across the treated mice. In this paper we use PDX response data on the leaves
to infer a hierarchy over treatments that may empirically characterize the similarity in the
targeted mechanistic pathways. The primary statistical goals are to: (i) define and estimate
a general metric measuring the similarity within any subset comprising two or more treat-
ments and (ii) facilitate (i) by conceptualizing and inferring an unknown hierarchy among
treatments.

Tree-based representations for PDX data. To this end, we consider a tree-based construct to
explore the hierarchical relationships between treatments, referred to as treatment tree (Rx-
tree, in short). We view such a tree structure as a representation of clustering of treatments
based on mechanisms that confer synergistic effects, wherein similarities between mecha-
nisms are captured through branch lengths. Hierarchy among treatments can be interpreted
through branch lengths (from the root) that are potentially reflective of different cancer pro-
cesses; this would then help identify common mechanisms and point toward treatment com-
binations disrupting oncological processes if administered simultaneously.

We will focus on rooted trees. The principal ingredients of a rooted tree comprise a root
node, terminal nodes (or leaves), internal nodes, and branch lengths. In the context of the
Rx-tree for PDX data, the leaves are observed treatment responses, whereas internal nodes
and branch lengths are unobserved. Internal nodes are clusters of treatments, and lengths of
branches between nodes are indicative of strengths of mechanism similarities. The root is a
single cluster consisting of all treatments. This leads to the following interpretation: at the
root all treatments share a common target or mechanism; length of path from the root to
the internal node (sum of branch lengths) at which two treatments split into different clus-
ters measures mechanism similarity between the two treatments. Thus, treatments that stay
clustered “longer” have higher mechanism similarities.

Throughout, we will use “tree” when describing methodology for an abstract tree (acyclic
graphs with distinguished root node) and “treatment tree” or “Rx-tree” when referring to the
latent tree within the application context.
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An illustrative example. A conceptual Rx-tree and its interpretation is illustrated in Figure 1
where five treatments (1 to 5) are applied on eight patients’ PDXs (Figure 1(A)) with the
corresponding (unknown true) Rx-tree (Figure 1(B)) based on the PDX data. Assume two
treatment groups based on different mechanisms—treatments {1,2} and treatments {3,4,5};
further, suppose treatment 4 is approved by the Food and Drug Administration (FDA). The
heatmap in Panel (A) visualizes the distinct levels of response profiles to the five treatments
so that treatments closer in the tree are more likely to have similar levels of responses. The
Rx-tree captures the mechanism similarity by arranging treatments {1,2} and {3,4,5} to stay
in their respective subtrees longer and to separate the two sets of treatment early in the tree.
Based on the Rx-tree, treatments {3,5} share high mechanism similarity values with treat-
ment 4; treatment 5 is the closest to the treatment 4, suggesting the most similar synergistic
mechanism among all the evaluated treatments 1 to 5.

Existing methods and modeling background. The Pearson correlation is a popular choice to
assess mechanism similarity between treatments (Krumbach et al. (2011)) but is inappropriate
to examine multiway similarity. A tree-structured approach, based on a (binary) dendrogram
obtained from hierarchical clustering of cell-line data using the cophenetic distance (Sokal
and Rohlf (1962)), was adopted in Narayan et al. (2020); their approach, however, failed to
account for uncertainty in the dendrogram which is highly sensitive to measurement error
in the response variables as well distance metrics (we show this via simulations and in real
data analyses). Another example with a binary dendrogram of hierarchical clustering was
proposed by Rashid et al. (2020) which also utilizes the same PDX dataset as this paper.
However, their model uses the tree structure to model the individualized treatment rule for
different patients, while our method focuses on the tree structure itself and the corresponding
mechanism similarity. In this paper we consider a model for PDX data parameterized by
a tree-structured object representing the Rx-tree. The model is derived from the Dirichlet
diffusion tree (DDT) (Neal (2003)) generative model for (hierarchically) clustered data. The
DDT engenders a data likelihood and a prior distribution on the tree parameter with support
in the space of rooted binary trees. We can then use the posterior distribution to quantify
uncertainty about the latent Rx-tree.

Summary of novel contributions and organization of the article. Our approach, based on the
DDT model for PDX data, results in three main novel contributions:

(a) Derivation of a closed-form likelihood that encodes the tree structure. The DDT
specification results in a joint distribution on PDX data, treatment tree parameters, and
other model parameters. By marginalizing over unobserved data that correspond to inter-
nal nodes of the tree, we obtain a new multivariate Gaussian likelihood with a special tree-
structured covariance matrix which completely characterizes the treatment tree (Proposition 1
and Lemma 1).

(b) Efficient two-stage algorithm for posterior sampling. Motivated by the form of
marginal data likelihood in (a), we decouple the Euclidean and tree parameters and propose
a two-stage algorithm that combines an approximate Bayesian computation (ABC) proce-
dure (for Euclidean parameters) with a Metropolis–Hasting (MH) step (for tree parameters).
We demonstrate, via multiple simulation studies, the superiority of our hybrid approach over
approaches based on classical single-stage MH algorithms (Sections 4.2 and 4.1).

(c) Corroborating existing and uncovering new, synergistic combination therapies. We
define and infer a new similarity measure that accounts for inherent uncertainty in estimating
a latent hierarchy among treatments. As a result, the maximum a posteriori Rx-tree and the
related mechanism similarity show high concordance with known existing biological mecha-
nisms for monotherapies and uncover new and potentially useful combination therapies (Sec-
tions 5.3 and 5.4).
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Of particular note is contribution (c), where we leverage a recently collated PDX dataset
from the Novartis Institutes for BioMedical Research-PDX Encyclopedia [NIBR-PDXE,
(Gao et al. (2015))] that interrogated multiple targeted therapies across five different cancers.
Our pan-cancer analyses of the NIBR-PDXE dataset show a high degree of concordance with
known existing biological mechanisms across different cancers; for example, a high mecha-
nistic similarity is suggested between two agents currently in clinical trials: CGM097 and
HDM201 in breast cancer and colorectal cancer, known to target the same gene MDM2
(Konopleva et al. (2020)). In addition, our model uncovers new and potentially effective
combination therapies. For example, exploiting knowledge of the combination therapy of
a class of agents targeting the PI3K-MAPK-CDK pathway axes—PI3K-CDK for breast can-
cer, PI3K-ERBB3 for colorectal cancer and BRAF-PI3K for melanoma—confers possible
synergistic regulation for prioritization in future clinical studies.

The rest of the paper is organized as follows: we first review our probabilistic formula-
tion for PDX data based on the DDT model and present the marginal data likelihood and
computational implications in Section 2. In Section 3 we derive the posterior inference al-
gorithm based on a two-stage algorithm. In Section 4 we conduct two sets of simulations to
evaluate the operating characteristics of the model and algorithm. A detailed analysis of the
NIBR-PDXE dataset, results, biological interpretations, and implications are summarized in
Section 5. The paper concludes by discussing implications of the findings, limitations, and
future directions.

2. Modeling Rx-tree via Dirichlet diffusion trees. Given a PDX experiment with I cor-
related treatments and J independent patients, we focus on the setting with 1 × 1 × 1 design
(one animal per PDX model per treatment) with no replicate response for each treatment and
patient. A PDX experiment produces an observed data matrix XI×J = [X1, . . . ,XI ]T, where
Xi = [Xi1, . . . ,XiJ ]T is data under treatment i across J patients; let the observed response
column for each patient be X·,j = [x1j , . . . , xIj ]T ∈ R

I , j = 1, . . . , J .
In this paper the observed treatment responses are continuous, and we model the responses

through a generative model that results in a Gaussian likelihood with a structured covariance,

X·,j |�T , σ 2 iid∼ NI

(
0,�T )

, j = 1, . . . , J,(1)

where the �T is a tree-structured covariance matrix that encodes the tree T . In particular,
�T = {�T

i,i′, i, i
′ = 1, . . . , I } encodes the tree T through two constraints (Lapointe and Leg-

endre (1991), McCullagh (2006)),

�T
i′,i = �T

i,i′ ≥ 0; �T
i,i ≥ �T

i,i′,(2)

�T
i,i′ ≥ min

{
�T

i,i′′,�
T
i′,i′′

}
for all i �= i ′ �= i′′.(3)

Each element �T
i,i is the covariance between treatments i and i ′ and measures their similarity.

The inequality (2) imposes the symmetry of covariance matrix and ensures the divergence of
all leaves. The tree structure is characterized by the ultrametric inequality (3) that ensures �T

bijectively maps to a tree T ; for more details on the relationship between the covariance �T

and the tree T , see McCullagh (2006) and Bravo et al. (2009). Of note, mean parameterized
models (e.g., mixed effects models) are inappropriate for uncovering the tree parameter under
the given data structure since the latent tree is completely encoded in covariance matrix �T .

A Bayesian formulation requires an explicit prior distribution on �T which satisfies con-
strains (2) and (3); this requirement is far from straightforward since the set of tree-structured
matrices is complicated (e.g., it is not a manifold (McCullagh (2006))). We instead con-
sider the Dirichlet diffusion tree (DDT) model (Neal (2003)) for hierarchically clustered data
which provides two useful ingredients:
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1. A prior is implicitly specified on the latent treatment tree, comprising the root, internal
nodes, leaves, and branch lengths;

2. Upon integrating out the internal nodes, a tractable Gaussian likelihood on PDX data
with tree-structured covariance is specified.

We first provide a brief description of the DDT model proposed by Neal (2003) and its
joint density on data and tree (Section 2.1). Subsequently, we derive an expression for the
likelihood and demonstrate how it can be profitably employed to develop a generative model
for PDX data and carry out Rx-tree estimation (Sections 2.2 and 2.3).

2.1. The generative process of DDT. The DDT prescribes a fragmentary, top-down
mechanism to generate a binary tree (acyclic graph with a preferred node or vertex referred
to as the root), starting from a root, containing J -dimensional observed responses Xi at I

leaves/terminal nodes; each node in the tree has either zero or two children, excepting the
root which has a solitary child. This prescription manipulates dynamics of a system of I

independent Brownian motions B1, . . . ,BI on R
J in a common time interval t ∈ [0,1]. As

shown in Figure 2(A), all Brownian motions Bi(t) start at the same point at time t = 0, loca-
tion of which is the root 0 ∈ R

J , and diverge at time points in [0,1] and locations in R
J before

stopping at the time t = 1 at locations Xi . The Brownian trajectories and their divergences
engender the tree structure, as shown in Figure 2(A).

Specifics on when and how the Brownian motions diverge are as follows: the first Brow-
nian motion B1(t) starts at t = 0 and generates X1 at t = 1; a second independent Brownian
motion B2(t) starts at the same point at t = 0, branches out from the first Brownian motion
at some time t , after which it generates X2 at time 1. The probability of divergence in a small
interval [t, t + dt] is given by a divergence function t �→ a(t), assumed, as in Neal (2003),
to be of the form a(t) = c(1 − t)−1 for some divergence parameter c > 0. Inductively then,
the vector of observed responses to treatment i, Xi , is generated by Bi(t) which follows the
path of previous ones. If at time t , Bi(t) has not diverged and meets the previous divergent
point, it will follow one of the existing paths with the probability proportional to the number
of data points that have previously traversed along each path. Eventually, given Bi(t) has
not diverged at time t , it will do so in [t, t + dt] with probability a(t) dt/m, where m is the
number of data points that have previously traversed the current path.

From the illustration in panel (A) of Figure 2, we note that B3 diverges from the B1 and
B2 at time t1 at location X′

1 and at t = 1 is at location X3 which is the J -dimensional re-
sponse vector for treatment 3; this creates a solitary branch of length t1 from the root and an

FIG. 2. (A) A binary tree with I = 5 leaves underlying the diffusion dynamics. The observed response vec-
tor Xi , i = 1, . . . , I is generated by the Brownian motion up to t = 1. The unobserved response vector X′

d ,
d = 1, . . . , (I − 1) at the divergence is generated by the Brownian motion at time td . (B) A tree-structured matrix
�T that encapsulates the tree T ; see Proposition 1 for the definition of �T .
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unobserved internal node at location X′
1. Continuing, given three Brownian motions B1, B2,

and B3, B4 does not diverge before t1 and meet the previous divergent point t1. B4 chooses to
follow the path of B3 with probability 1/3 at t1 and finally diverges from B3 at time t2 > t1
at location X′

2; this results in observation X4 for treatment 4 and an unobserved internal node
at X′

2, and so on. As a consequence, the binary tree that arises from the DDT comprises of:

(i) An unobserved root at the origin in R
J at time t = 0;

(ii) Observed data X = [X1, . . . ,XI ]T ∈ R
I×J situated at the leaves of the tree;

(iii) Unobserved internal nodes XI = [X′
1, . . . ,X′

I−1]T ∈R
(I−1)×J ;

(iv) Unobserved times t = (t1, . . . , tI−1)
T ∈ [0,1]I−1 that characterize lengths of

branches;
(v) Unobserved topology T that links (i)–(iv) into a tree structure, determined by the

number of data points Xi that have traversed through each segment or branch.

Conceptually, observed data at the leaves X1, . . . ,XI collectively form the observed PDX
responses generated through a process involving a few parameters: tree-related parameters
(T , t) and the locations of internal nodes X′

i . The tree T clusters I treatments as a hierarchy
of (I − 1) levels (excluding the last level containing leaves). At level 0 < d ≤ I − 1 of the
hierarchy, characterized by the pair (X′

d, td), the I treatments are clustered into d + 1 groups;
a measure of similarity (or dissimilarity) between treatment clusters at levels d and d + 1 is
given by the branch length td+1 − td .

We now give a brief description of how the joint density of (X,XI , t,T ) can be derived;
for more details we direct the reader to Neal (2003) and Knowles and Ghahramani (2015). For
a fixed c > 0 that governs the divergence function a(t) = c(1 − t)−1, probabilities associated
with the independent Brownian motions B1, . . . ,BI induce a joint (Lebesgue) density on
the generated tree. Note that the binary tree, arising from the DDT, is encoded by the triples
{(td ,X′

d,Xi), d = 1, . . . , I −1; i = 1, . . . , I }. An internal node at X′
d contains ld and rd leaves

below to its left and right with md = ld + rd . If each of the Brownian motions is scaled by
σ 2 > 0, then given T and a branch with endpoints (tu,X′

u) and (tv,X′
v) with 0 < tu < tv < 1,

from properties of a Brownian motion we see that X′
v ∼ NJ (X′

u, σ
2(tv − tu)IJ ), and the

(Lebesgue) density of T can be expressed as the product of contributions from its branches.
Then the joint density of all nodes, times, and the tree topology is given by

P
(
X,XI , t,T |c, σ 2)

= �[u,v]∈S(T )

(lv − 1)!(rv − 1)!
(lv + rv − 1)! c(1 − tv)

cJlv,rv −1NJ

(
X′

u, σ
2(tv − tu)IJ

)
,

(4)

where S(T ) is the collection of branches and XI
(I−1)×J = [X′

1, . . . ,X′
(I−1)]T are unobserved

locations of the internal nodes. On each branch [u, v], the first term (lv−1)!(rv−1)!
(lv+rv−1)! represents

the chance the branch containing lv and rv leaves to its left and right, respectively; c(1 −
tv)

cJlv,rv −1 represents the probability of diverging at tv with lv and rv leaves, where Jl+r =
Hlv+rv−1 − Hlv−1 − Hrv−1 with Hn = ∑n

i=1 1/i is the nth harmonic number.
The joint density is hence parameterized by (c, σ 2), where c plays a crucial role in deter-

mining the topology T : through the divergence function a(t), it determines the propensity
of the Brownian motion to diverge from its predecessors; consequently, a small c engenders
later divergence and a higher degree of similarity among treatments in PDX. The latent tree
has two components: (i) topology T and (ii) vector of divergence times t determining branch
lengths. We refer to (c, σ 2) as the Euclidean parameters and (T , t) as tree parameters.

2.2. Prior on tree and closed-form likelihood. The joint density in (4) factors into a prior
P(t,T |c, σ 2) on the tree parameter through (T , t) and a density P(X,XI |t,T , c, σ 2) that
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is a product of J -dimensional Gaussians on the internal nodes and leaves. The prior dis-
tribution on the latent tree is thus implicitly defined through the Brownian dynamics and
is parameterized by (T , t) with hyperparameters (c, σ 2). In (4) the product is over the set
of branches S(T ), and the contribution to the prior P(T , t|c, σ 2) from each branch [u, v]
is (lv−1)!(rv−1)!

(lv+rv−1)! c(1 − tv)
cJlv,rv −1 which is free of σ 2; on the other hand, the contribution to

P(X,XI |t,T , c, σ 2) from [u, v] is the J -dimensional NJ (X′
u, σ

2(tv − tu)IJ ) which is inde-
pendent of c. The likelihood function, based on the observed X, is thus obtained by integrating
out the unobserved internal nodes XI from P(X,XI |t,T , σ 2). Accordingly, our first contri-
bution is to derive a closed-form likelihood function for efficient posterior computations; to
our knowledge, this task is currently achieved only through sampling-based or variational
methods (Knowles and Ghahramani (2015), Neal (2003)).

Denote as MNI×J (M,U,V ) the matrix normal distribution of an I × J random matrix
with mean matrix M , row covariance U , and column covariance V , and let Ik denote the
k × k identity matrix. Evidently, X follows a matrix normal distribution since Gaussian laws
of the Brownian motions imply that [X,XI ] = [X1, . . . ,XI ,X′

1, . . . ,X′
(I−1)]T follow a matrix

normal distribution.

PROPOSITION 1. Under the assumption that the root is located at the origin in R
J , the

data likelihood X|σ 2,T , t ∼ MNI×J (0, σ 2�T , IJ ), where �T = (�T
i,i′) is an I × I tree-

structured covariance matrix satisfying (2) and (3) with �T
i,i = 1 and �T

i,i′ = td , for i �= i ′,
where i, i′ = 1, . . . , I and d = 1, . . . , I − 1.

Proposition 1 asserts that use of the DDT model leads to a centered Gaussian likelihood
on PDX data X with a tree-structured covariance matrix. Proposition 1 also implies that
each patient independently follows the normal distribution of (1) with an additional scale
parameter (σ 2) from the Brownian motion,

X·,j |�T , σ 2 iid∼ NI

(
0, σ 2�T )

, j = 1, . . . , J.(5)

By setting �T
i,i′ = ti,i′ as the divergence time of i and i′, �T satisfies (2) and (3) and encodes

the tree T . For example, consider a three-leaf tree with �T
i,i′ = ti,i′ ; inequality (3) implies that

for the three leaves, say, i, i′ and i ′′, one of the following conditions must hold: (i) ti′,i′′ ≥
ti,i′ = ti,i′′ ; (ii) ti,i′′ ≥ ti,i′ = ti′,i′′ ; (iii) ti,i′ ≥ ti,i′′ = ti′,i′′ . We then obtain a tree containing:
1) a subtree of two leaves with a higher similarity and 2) a singleton clade with a lower
similarity between the singleton leaf and the two leaves in the first subtree. In particular, if
ti′,i′′ ≥ ti,i′ = ti,i′′ holds, the three-leaf tree has leaf i diverging earlier before the subtree of
(i ′, i ′′).

2.3. Decoupling tree and Euclidean parameters for efficient sampling. In the full joint
density in (4), the Euclidean and tree parameters are confounded across row and column
dimensions of X, and this may result in slow mixing of chains using traditional MCMC
algorithms (Turner et al. (2013)). State-of-the-art posterior inference on (c, σ 2,T , t) can be
broadly classified into sampling-based approaches (e.g., Knowles and Ghahramani (2015))
and deterministic approaches based on variational message passing (e.g., Knowles, Gael and
Ghahramani (2011, VMP)). Variational algorithms can introduce approximation errors to the
joint posterior, via factorization assumptions (e.g., mean-field), and choice of algorithm is
typically determined by the speed-accuracy trade-off tailored for particular applications. On
the other hand, in classical MCMC-based algorithms for DDT, we observed slow convergence
in the sampling chains for c and σ 2 with high autocorrelations for the corresponding chains,
owing to possibly the high mutual dependence between c in the divergence function and the
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tree topology T , resulting in slow local movements in the joint parameter space of model and
tree parameters (Simulation II in Section 4.2).

Notwithstanding absence of the parameter c in the Gaussian likelihood, the dependence,
and information about c is implicit: the distribution of divergence times t that populate �T

are completely determined by the divergence function t �→ c(1 − t)−1. In other words, c can
indeed be estimated from treatment responses {X·,j } using the likelihood. From a sampling
perspective, however, form of the likelihood, obtained by integrating out the internal nodes
XI , suggests an efficient two-stage sampling strategy that resembles the classical collapsed
sampling (Liu (1994)) strategy in MCMC literature: first, draw posterior samples of (c, σ 2)

and then proceed to draw posterior samples of (T , t) conditioned on each sample of (c, σ 2).

3. Rx-tree estimation and posterior inference. In line with the preceding discussion,
we consider a two-stage sampler for Euclidean and tree parameters. While, in principle,
MCMC techniques could be used in both stages, we propose to use a hybrid ABC-MH al-
gorithm. Specifically, we use an approximate Bayesian computation (ABC) scheme to draw
weighted samples of (c, σ 2) in the first stage, followed by a Metropolis–Hastings (MH) step
that samples (T , t), given ABC samples of (c, σ 2) in the second stage. Motivation for using
ABC in the first stage stems from: (i) availability of informative statistics, (ii) generation of
better quality samples of the tree (compared to a single-stage MH), and (iii) better computa-
tional efficiency. We refer to Section 4.2 for more details.

3.1. Hybrid ABC-MH algorithm. ABC is a family of inference techniques that are de-
signed to estimate the posterior density pr(θ |D) of parameters θ , given data D, when the
corresponding likelihood pr(D|θ) is intractable but fairly simple from which to sample. Sum-
marily, ABC approximates pr(θ |D) by pr(θ |Sobs), where Sobs is a d-dimensional summary
statistic that ideally captures most information about θ . In the special case where Sobs is a
vector of sufficient statistics, it is well known that pr(θ | D) = pr(θ | Sobs). To generate a
sample from the partial posterior distribution pr(θ | Sobs), ABC with rejection sampling pro-
ceeds by: (i) simulating N syn values θl, l = 1, . . . ,N syn from the prior distribution pr(θ), (ii)
simulating datasets Dl from pr(D|θl), (iii) computing summary statistics Sl , l = 1, . . . ,N syn

from Dl , and (iv) retaining a subset of {θls , s = 1 . . . , k} of size k < N syn that corresponds
to “small” ‖Sls − Sobs‖ values based on some threshold. Given pairs {(θls ,Sls )}, the task of
estimating the partial posterior translates to a problem of conditional density estimation, for
example, based on Nadaraya–Watson type estimators and local regression adjustment vari-
ants to correct for the fact that Sls may not be exactly Sobs; see Sisson, Fan and Beaumont
(2019) for a comprehensive review. To implement ABC, the choice of summary statistics is
central.

We detail the specialization of ABC to the marginal posterior distributions of c and σ 2

in Section 3.1.1. Given any pair of (c, σ 2), we can sample trees from a density function
up to an unknown normalizing constant based on an existing MH algorithm (Knowles and
Ghahramani (2015)). Our proposal is to condition on the posterior median of (c, σ 2) of ABC-
weighted samples from the first stage, when sampling the trees in the second stage; clearly,
other choices are also available. This strategy produced comparable MAP trees and inference
of other tree-derived results relative to tree samples based on full ABC samples of c and σ 2.

Pseudo code for the two-stage algorithm is presented in the Supplementary Material Al-
gorithm S1 (Yao et al. (2023)). We briefly describe below its key components.

3.1.1. Stage 1: Sampling Euclidean parameters (c, σ 2) using ABC. Accuracy and effi-
ciency of the ABC procedure is linked to two competing desiderata on the summary statistics:
(i) informative, or ideally sufficient, and (ii) low-dimensional.
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Summary statistic for σ 2. From the closed-form likelihood in equation (5), a sufficient
statistic of σ 2�T is easily available, using which we construct a summary statistics for σ 2.

LEMMA 1. With X as the observed data, the statistic T := ∑
j X·,j XT·,j is sufficient for

σ 2�T and follows a Wishart distribution WI(J,σ 2�T ), where X·,j = [x1j , . . . , xIj ] ∈ R
I .

Then with S(σ 2) := tr(T)
IJ

, we have E[S(σ 2)] = σ 2 and Var[S(σ 2)] = 2σ 4 tr((�T )2)

I 2J
.

Due to the normality of X in (5) and the factorization theorem (Casella and Berger (1990)),
we see that T is complete and sufficient for σ 2�T and T ∼ WI(J,σ 2�T ). Well-known re-
sults about the trace and determinant of X (see, e.g., Mathai (1980)) provide the stated results
on the mean and variance of tr(T). Owing to its unbiasedness, we choose S(σ 2) = tr(T)/IJ as
the summary statistic for σ 2 and examine its performance through simulations in Section 4;
other choices are assessed in the Supplementary Material Section S4.1 (Yao et al. (2023)).

Summary statistic for c. Based on the matrix normal distribution of Proposition 1, the diver-
gence parameter c does not appear in the observed data likelihood. Any statistic based on the
entire observed data set X is sufficient but not necessarily informative about c. In DDT the
prior distribution of the vector of branching times t is governed by divergence parameter c via
the divergence function a(t; c). Thus, an informative summary statistic for c can be chosen
by assessing its information about t. For example, tighter observed clusters indicate small c

(e.g., c < 1), where the level of tightness is indicated by the branch lengths from leaves to
their respective parents. We construct summary statistics for c, based on a dendrogram, esti-
mated via hierarchical clustering of X based on pairwise distances δi,i′ := ‖Xi − Xi′‖, i �= i ′.
The summary statistics S(c) we choose is a 10-dimensional concatenated vector comprising
the 10th, 25th, 50th, 75th, and 90th percentiles of empirical distribution of: (i) δi,i′ and (ii)
branch lengths associated with leaves of the dendrogram. Other candidate summary statistics
for c are examined in Supplementary Material Section S4.1 (Yao et al. (2023)).

3.1.2. Stage 2: Sampling tree parameters (T , t) using Metropolis–Hastings. For the sec-
ond stage, we proceed by choosing a representative value (c0, σ

2
0 ) chosen from the posterior

sample of (c, σ 2) which in our case is the posterior median. Then a Metropolis–Hastings
(MH) algorithm to sample from pr((T , t)|c0, σ

2
0 ,X); recall that the Rx tree is characterized

by both the topology T and divergence times t. In particular, after initialization (e.g., the
dendrogram obtained from hierarchical clustering), we first generate a candidate tree (T ′, t′)
from the current tree (T , t) in two steps: (i) detaching a subtree from the original tree and
(ii) reattaching the subtree back to the remaining tree. Acceptance probabilities for a candi-
date tree can be computed exactly and directly, using the explicit likelihood in (5), without
which they would have to be calculated iteratively (Knowles and Ghahramani (2015), Neal
(2003)); see Supplementary Material Section S2.2 for details of the proposal function and the
acceptance probabilities (Yao et al. (2023)).

REMARK 1. In order to use the explicit likelihood in (5) from Proposition 1 to generate
observed data X, a tree-structured covariance �T needs to be specified, whose entries, in turn,
depend on the parameter c through the divergence function. It is not straightforward to fix or
sample a �T since its entries need to satisfy the inequalities (3). It is easier to generate data
X directly using the DDT generative mechanism in the ABC stage, and this is the approach
we follow and is described in Supplementary Section S2 (Yao et al. (2023)).

Summarily, there are three main advantages to using the explicit likelihood from Propo-
sition 1: (i) decoupling of Euclidean and tree parameters to enable an efficient two-stage
sampling algorithm, (ii) direct and exact computation of tree acceptance probabilities in MH
stage, and (iii) determination of informative sufficient statistic for σ 2 (Lemma 1).
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REMARK 2. From the computational aspect, the calculation of the explicit Gaussian
likelihood of (5) in Proposition 1 through the matrix decomposition is slower (e.g., Cholesky
decomposition with O(I 3)) than the message passing (e.g., the belief propagation with O(I )

(Mézard and Montanari (2009))) in terms of the big O notation (Knuth (1976)). However, the
computation speed also depends on the implementation. For this paper we implemented our
algorithm in R and found that the matrix decomposition is faster than the message passing
on R. We offer more details with a simulation study in Supplementary Material Section S5.3
(Yao et al. (2023)).

3.2. Posterior summary of Rx-tree, (T , t). While quantifying uncertainty concerning the
tree parameters (T , t) is of main interest, we note that, from definition of the DDT, this is
influenced by uncertainty in the model parameters. In particular, the first stage of ABC-MH
produces weighted samples, and we calculate the posterior median by fitting an intercept-
only quantile regression with weights (see details in the Supplementary Material Section S2.1
(Yao et al. (2023))). For the Rx-tree, we consider global and local tree posterior summaries
that capture uncertainty in the latent hierarchy among all and subsets of treatments.

Flexible posterior inference is readily available based on L posterior samples of (T , t)
from the MH step. It is possible to construct corresponding tree-structured covariance matri-
ces �T from sample (T , t). Instead, we compute:

(a) A global maximum a posteriori (MAP) estimate of the Rx-tree that represents the
overall hierarchy underlying the treatment responses;

(b) Local uncertainty estimates of coclustering probabilities among a subset A ⊂
{1, . . . , I } of treatments based on posterior samples of the corresponding subset of diver-
gence times.

Posterior coclustering probability functions. We elaborate on the local summary (b). Sup-
pose A = {i, i ′, i ′′} consists of three treatments. Given a tree topology T , note that at every
t ∈ [0,1] a clustering of all I treatments is available, and the clustering changes only at times
0 < t1 < · · · < tI−1. Consequently, for a given tree topology T drawn from its posterior, we
can compute for every level t ∈ [0,1] a posterior probability that i, i ′, and i′′ belong to the
same cluster. Such a posterior probability can be approximated using Monte Carlo on the
L posterior samples. Accordingly, we define the estimated posterior coclustering probability
(PCP) function associated with A as

PCPA(t) =
∑L

l=1 I[0,t
(l)

i,i′,i′′ )
(t)

L
,

where IB is the indicator function on the set B and t
(l)
i,i′,i′′ is the divergence time of A =

{i, i′, i ′′} in the lth tree sample. Essentially, the PCPA(t) can be viewed as the proportion of
tree samples with {i, i′, i ′′} having the most recent common ancestor later than t .

For every subset A, the function [0,1]  t �→ PCPA(t) ∈ [0,1] is nonincreasing, starting
at 1 and ending at 0, and reveals propensity among treatments in A to cluster as one traverses
down an (estimate of) Rx-tree starting at the root: a curve that remains flat and drops quickly
near 1 indicates higher relative similarity among the treatments in A relative to the rest of
the treatments. A scalar summary of PCPA(t) is the area under its curve known as integrated
PCP iPCPA, which, owing to the definition of PCPA(t), can be interpreted as the expected
(or average) chance of coclustering for treatments in A.

Figure 3 illustrates an example of a three-way iPCPA with A = {i, i′, i ′′} for a PDX data
with I treatments and J patients (Figure 3(A)). Given L = 3 posterior trees samples (Fig-
ure 3(B)) drawn from the PDX data, we first calculate the whole PCPA(t) function by mov-
ing the time t from 0 to 1. Starting from time t = 0, no treatment diverges at time t = 0 and
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FIG. 3. Posterior tree summaries: (A) The input PDX data with I treatments and J patients and treatments
A = {i, i′, i′′} are of interest. (B) PCPA(t) and iPCPA for treatments A based on L = 3 posterior trees. The
relevant divergence times are represented by a “�” in each posterior tree sample. For example, at time t ′, the
treatments in A diverge in one out of the three trees. Because PCPA(t ′) is defined by the proportion of posterior
tree samples in which A has not diverged up to and including t ′, it drops from 1 to 2/3.

the PCPA(t) is 1. At time t ′, treatments diverge in one out of the three posterior trees and
PCPA(t), therefore, drops from 1 to 2/3. Moving the time toward t = 1, treatments diverge
in all trees, and the PCPA(t) drops to 0. The iPCPA then can be obtained by the area under
the PCPA(t).

REMARK 3. In the special case of A = {i, i ′} for two treatments, the definition of iPCPA
can be related to the cophenetic distance (Cardona et al. (2013), Sokal and Rohlf (1962))
and, moreover, extends definition of the cophenetic distance to multiple trees. Given two
treatments i and i′ in a single tree, let td be the time at which their corresponding Brownian
paths diverge. Then PCPA(t) = I[0,td )(t) and iPCPA = td ; this implies that the cophenetic
distance is 2(1 − td), and thus iPCPA and the cophenetic distances uniquely determines the
same tree structure. For L > 1 trees, a Carlo average of divergence times of L trees leads to
the corresponding iPCPA.

REMARK 4. Given I treatments, since pairwise cophenetic distances from one tree de-
termines a tree (Lapointe and Legendre (1991), McCullagh (2006)), one might consider sum-
marizing and represent posterior trees in terms of an I × I matrix � consisting of entries
iPCP{i,i′} for every pair of treatments of (i, i′), estimated from the posterior sample of trees.
However, � need not to be a tree-structured matrix that uniquely encodes a tree. It is possible
to project � on to the space of tree-structured matrices (see, e.g., Bravo et al. (2009)), but the
projection might result in a nonbinary tree structure. We discuss this issue and its resolution
in Supplementary Material Section S3 (Yao et al. (2023)).

4. Simulations. Accurate characterization of similarities among any subset of treat-
ments is central to our scientific interest in identifying the promising treatment subsets for
further investigation. In addition, we have introduced a two-stage algorithm to improve our
ability to efficiently draw tree samples from the posterior distribution (similarly for the Eu-
clidean parameters). To demonstrate the modeling and computational advantages, we conduct
two sets of simulations. The first simulation shows that the proposed model estimates the
similarity (via iPCP) better than alternatives, even when the true data generating mechanisms
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deviate from DDT assumptions in terms of the form of divergence function, prior distribu-
tion for the unknown tree, and normality of the responses. The second simulation illustrates
the computational efficiency of the proposed two-stage algorithm in producing higher quality
posterior samples of Euclidean parameters, resulting in more accurate subsequent estimation
of an unknown tree and iPCPs, two key quantities to our interpretation of real data results.

4.1. Simulation I: Estimating treatment similarities. We first show that iPCPs estimated
by DDT are closer to the true similarities (operationalized by functions of elements in the true
divergence times in �T ) under different true data generating mechanisms that may follow or
deviate from the DDT model assumptions in three distinct aspects (the form of divergence
function, the prior distribution over the unknown tree, and normality).

Simulation setup. We simulate data by mimicking the PDX breast cancer data (see Sec-
tion 5) with I = 20 treatments and J = 38 patients. We set the true scale parameter as the
posterior median σ 2

0 and the true tree T0 as the MAP tree that are estimated from the breast
cancer data; We consider four scenarios to represent different levels of deviation from the
DDT model assumptions:

(i) No deviation of the true data-generating mechanism from the fitted DDT models:
given σ 2

0 and T0, simulate data based on the DDT marginal data distribution (equation (5));
The true data generating mechanism deviates from the fitted DDT in terms of:
(ii) Divergence function: Same as in (i), but the true tree is a random tree from DDT with

misspecified divergence function, a(t; r) = r
(1−t)2 , r = 0.5;

(iii) Prior for tree topology: Same as in (i), but the true tree is a random tree from the
coalescence model (generated by function rcoal in R package ape), and

(iv) Marginal data distribution: Same as in (i), but the marginal likelihood is a centered
multivariate t distribution with degree-of-freedom four and scaled by σ 2

0 �T0 .

For each of four true data-generating mechanisms above, we simulate B = 50 replicate data
sets. In the following we use the DDT model and the two-stage algorithm for all estimation
regardless of the true data generating mechanisms. For DDT we ran the two-stage algorithm
where the second stage is implemented with five parallel chains. For each chain we ran 10,000
iterations, discarded first 9000 trees, and combined five chains with a total of 5000 posterior
tree samples.

First, we compute the iPCPs for all pairs of treatment combinations following the defi-
nition of iPCPA, where A = {i, i′}, 1 ≤ i < i ′ ≤ I . Two alternative approaches to defining
and estimating similarities between treatments are considered: (i) similarity derived from ag-
glomerative hierarchical clustering and (ii) empirical Pearson correlation of the two vectors
of responses Xi and Xi′ for i �= i′. In particular, for (i) we considered five different linkage
methods (Ward, Ward’s D2, single, complete, and Mcquitty) with Euclidean distances. Given
an estimated dendrogram from hierarchical clustering, the similarity for a pair of treatments
is defined by first normalizing the sum of branch lengths from the root to leaf as 1 and then
calculating the area under of the coclustering curve (AUC) obtained by cutting the dendro-
gram at various levels from 0 to 1. For three- or higher-way comparisons, (i) can still produce
an AUC based on a dendrogram obtained from hierarchical clustering, while the empirical
Pearson correlation in (ii) is undefined, hence not viable as a comparator beyond assessing
pairwise treatment similarities.

Performance metrics. For treatment pairs A = {i, i ′}, to assess the quality of estimated treat-
ment similarities for each of the methods above (DDT-based, hierarchical-clustering-based,
and empirical Pearson correlation), we compare the estimated values against the true branch-
ing time �

T0
i,i′ ; similarly, when assessing recovery of three-way treatment similarities, for
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example, A = {i, i ′, i ′′}, �
T0
i,i′,i′′ is defined as the time when {i, i′, i ′′} first branches in the

true tree T0. In particular, for replication data set b = 1, . . . ,B , let �̂
(b)
i,i′ generically repre-

sent the pairwise similarities for treatment subsets (i, i′) that can be based on DDT, hierar-
chical clustering or empirical pairwise Pearson correlation. For three-way comparisons, let
�̂

(b)
i,i′,i′′ generically represent the three-way similarities for treatment subset (i, i′, i ′′) that can

be based on DDT, or hierarchical clustering.

We assess the goodness of recovery by computing
√∑

i,i′(�̂
(b)
i,i′ − �

T0
i,i′)

2, the Frobenious

norm of the matrix in recovering the entire �T0 . We compute maxi,i′,i′′ |�̂(b)
i,i′,i′′ −�

T0
i,i′,i′′ |, the

max-norm of the matrix in recovering the true three-way similarities. For a given method and
treatment subset A, the above procedure results in B values, the distribution of which can be
compared across methods; smaller values indicate better recovery of the true similarities.

Alternatively, for each method and each treatment subset, we also compute the Pearson
correlation between the estimated similarities and the true branching times across replicates
for pairwise or three-way treatment subsets: Ĉor((�̂(b)

i,i′ ,�
T0
i,i′), b = 1, . . . ,B = 50) for treat-

ments i < i ′, and Ĉor((�̂(b)
i,i′,i′′,�

T0
i,i′,i′′), b = 1, . . . ,B = 50) for treatments i < i′ < i′′. We

refer to this metric as “Correlation of correlations” (the latter uses the fact that the entries in
the true �T0 being correlations; see equation (5)); higher values indicate better recovery of
the true similarities.

Simulation results. We observe that DDT better estimates the treatment similarities, even
under misspecified models. In particular, under scenarios where the true data generating
mechanisms deviate from the fitted DDT model assumptions (ii)–(iv), the DDT captures the
true pairwise and three-way treatment similarities the best by higher values in correlation of
correlations (left panels, Figure 4) and lower matrix/array distances (right panels, Figure 4).

FIG. 4. Simulation studies for comparing the quality of estimated treatment similarities based on DDT, hier-
archical clustering, and empirical Pearson correlation. Two performance metrics are used: (left) correlation of
correlation (higher values are better) and (right) matrix distances with Frobenius norm for pairwise similarity
and max norm for three-way similarity (lower values are better). DDT captures both true pairwise (upper panels)
and three-way (lower panels) similarity best under four levels of misspecification scenarios.
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In particular, the fitted DDT with divergence function a(t) = c/(1 − t) under Scenario i, ii,
and iii performed similarly well, indicating the relative insensitivity to the DDT modeling
assumptions with respect to divergence function and the tree generative model. Under Sce-
nario iv, where the marginal likelihood assumption deviates from Gaussian with heavier tails,
the similarity estimates from all methods deteriorate relative to Scenarios i–iii. Comparing
between methods, the similarities derived from hierarchical clustering with single linkage is
comparable to DDT model when evaluated by correlation of correlation but worse than DDT
when evaluated by the matrix norm.

Additional simulations. Another alternative to bring the information of the posterior sam-
ples of c and σ 2 is to use the whole posterior samples, instead of the fixed representative
statistics only. Following the same set-up, we offer another simulation result to empirically
compare the inference performance from the algorithm with the posterior median only and
the the whole posterior samples; see more details in Supplementary Material Section S5.4
(Yao et al. (2023)).

4.2. Simulation II: Comparison with single-stage MCMC algorithms. We have also con-
ducted extensive simulation studies that focus on the computational aspect of the proposed
algorithms and demonstrate the advantage of the proposed two-stage algorithm in producing
higher quality posterior samples of the unknown tree than classical single-stage MCMC al-
gorithms. In particular, we demonstrate that the proposed algorithm produces: (i) MAP trees
that are closer to the true tree than alternatives (hierarchical clustering, single-stage MH with
default hierarchical clustering, or the true tree at initialization) and (ii) more accurate esti-
mation of pairwise treatment similarities compared to single-stage MCMC algorithms; see
Supplementary Material Section S5 (Yao et al. (2023)) for further details.

Additional simulations and sensitivity analyses. Aside from the simulations above focusing
on the tree structure and the divergence time, Supplementary Material S4 (Yao et al. (2023))
offers additional details for Euclidean parameters, including the parameter inference, algo-
rithm diagnostics, and sensitivity analysis for the number of the synthetic data. In particular,
we empirically show that current S(c) and S(σ 2) outperform other candidate summary statis-
tics in terms of bias in Section S4.1. In Section S4.2 we present additional simulation results
that demonstrate that the two-stage algorithm (i) enjoys stable effective sample size (ESS) for
(c, σ 2), and (ii) leads to similar or better inference on (c, σ 2), as ascertained using credible
intervals. In Section S4.3 we check the convergence of MH and the goodness of fit for ABC.
A sensitivity analysis for the number of the synthetic data providing the possible acceleration
for ABC is shown in Section S4.4.

5. Treatment trees in cancer using PDX data.

5.1. Dataset overview and key scientific questions. We leverage a recently collated PDX
dataset from the Novartis Institutes for BioMedical Research-PDX Encyclopedia [NIBR-
PDXE, (Gao et al. (2015))] that interrogated multiple targeted therapies across different can-
cers and established that PDX systems provide a more accurate measure of the response of
a population of patients than traditional preclinical models. Briefly, the NIBR-PDXE con-
sists of > 1000 PDX lines across a range of human cancers and uses a 1 × 1 × 1 design
(one animal per PDX model per treatment); that is, each PDX line from a given patient was
treated simultaneously with multiple treatments, allowing for direct assessments of treatment
hierarchies and responses. In this paper we focus on our analyses on a subset of PDX lines
with complete responses across five common human cancers: breast cancer (BRCA), cuta-
neous melanoma (CM, skin cancer), colorectal cancer (CRC), nonsmall cell lung carcinoma



PROBABILISTIC LEARNING OF TREATMENT TREES IN CANCER 1899

(NSCLC), and pancreatic ductal adenocarcinoma (PDAC). After rescaling data and missing
data imputation, different numbers of treatments, I , and PDX models, J , presented in the
five cancers were, (I, J ): BRCA, (20,38), CRC, (20,40), CM, (14,32), NSCLC, (21,25),
and PDAC, (20,36). (See Supplementary Material Table S7 for treatment names and Section
S6.1 for details of preprocessing procedures (Yao et al. (2023)).)

In our analysis we used the best average response (BAR) as the main response by tak-
ing the untreated group as the reference group and using the tumor size difference before
and after administration of the treatment(s) following Rashid et al. (2020). Positive values of
BAR indicate the treatment(s) shrunk the tumor more than the untreated group with higher
values indicative of (higher) treatment efficacy. To apply the Proposition 1, we also checked
the distributional assumption for each cancer (see Supplementary Material Section S6.2 (Yao
et al. (2023))). The treatments included both drugs administered individually with established
mechanisms (referred to as “monotherapy”) and multiple drugs combined with potentially
unknown synergistic effects (referred to as “combination therapy”). Our key scientific ques-
tions were as follows: (a) identify plausible biological mechanisms that characterize treatment
responses for monotherapies within and between cancers, and (b) evaluate the effectiveness of
combination therapies based on biological mechanisms. Due to a potentially better outcome
and lower resistance, combination therapy with synergistic mechanism is highly desirable
(Bayat Mokhtari et al. (2017)).

DDT model setup. For all analyses we followed the setup in the Section 4.1 and ob-
tained N syn = 600,000 synthetic datasets from the ABC algorithm (Section 3.1.1) with prior
c ∼ Gamma(2,2) and 1/σ 2 ∼ Gamma(1,1) and took the first 0.5% (d = 0.5%) closest data
in terms of S(c) and S(σ 2). We calculated the posterior median of (c, σ 2), as described in Sec-
tion 3.2. For the second-stage MH, we ran five chains of the two-stage algorithm with (c, σ 2)

fixed at the posterior median by 10,000 iterations and discarded the first 9000 trees which
resulted in 5000 posterior trees in total. Finally, we calculated the Rx-tree (MAP) and iPCP
based on 5000 posterior trees for all subsequent analyses and interpretations. All computa-
tions were divided on multiple different CPUs (see the Supplementary Table S5 (Yao et al.
(2023)) for the full list of CPUs). For the BRCA data with I = 20 and J = 38, we divided
the ABC stage into 34 compute cores with a total of 141 CPU hours and maximum 4.7 hours
in real time. For the MH stage and the single-stage MCMC, we split the computation on five
compute cores with a total of 8.6 and 12 CPU hours and a maximum 1.7 and 2.5 hours in
real time, respectively.

Our results are organized as follows: we provide a summary of the Rx-tree estimation
and treatment clusters in Section 5.2 followed by specific biological and translational inter-
pretations in Sections 5.3 and 5.4 for monotherapy and combination therapy, respectively.
Additional results can be accessed and visualized using our companion R-shiny application
(see Supplementary Material Section S6.6 (Yao et al. (2023)) for details).

5.2. Rx-tree estimation and treatment clusters. We focus our discussion on three cancers:
BRCA, CRC, and CM here; see Supplementary Material Section S6.5 for NSCLC and PDAC
(Yao et al. (2023)). In Figure 5 Rx-tree, pairwise iPCP, and (scaled) Pearson correlation are
shown in the left, middle, and right panels, respectively. Focusing on the left two panels, we
observe that the Rx-tree and the pairwise iPCP matrix show the similar clustering patterns.
For example, three combination therapies in CM form a tight subtree and are labeled by a box
in the Rx-tree of Figure 5, and a block with higher values of iPCP among three combination
therapies also shows up in the corresponding iPCP matrix with a box labeled. In our analysis
the treatments predominantly target six oncogenic pathways that are closely related to the
cell proliferation and cell cycle: (i) phosphoinositide 3-kinases, PI3K, (ii) mitogen-activated
protein kinases, MAPK, (iii) cyclin-dependent kinases, CDK, (iv) murine double minute 2,
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MDM2, (v) janus kinase, JAK, and (vi) serine/threonine-protein kinase B-Raf, BRAF. We
label targeting pathways above for monotherapies with solid dots and further group PI3K,
MAPK, and CDK due to the common downstream mechanisms (e.g., Kurtzeborn, Kwon and
Kuure (2019), Repetto et al. (2018)). Roughly, the Rx-tree from our model clusters monother-
apies targeting oncogenic processes above and largely agrees with common and established
biology mechanisms. For example, all PI3K-MAPK-CDK inhibitors (solid square) belong to
a tighter subtree in three cancers; two MDM2 monotherapies (solid triangle) are closest in
both BRCA and CRC. While visual inspection of the MAP Rx-tree agrees with known bi-
ology, iPCP further quantifies the similarity by assimilating the information across multiple
trees from our MCMC samples. For the ensuing interpretations in Sections 5.3 and 5.4, we
focus on iPCP and verify our model through monotherapies with known biology, since our a
priori hypothesis is that monotherapies that share the same downstream pathways should ex-
hibit higher iPCP values. Furthermore, we extend our work to identify combination therapies
with synergy and discover several combination therapies for each cancer.

5.3. Biological mechanisms in monotherapy. Our estimation procedure exhibits a high
level of concordance between known biological mechanisms and established monotherapies
for multiple key signalling pathways. From the Rx-tree in Figure 5, aside from the oncogenic
process (solid dots) introduced above, monotherapies also target receptors (hollow circles)
or other nonkinase targets (e.g., tubulin; crosses). We summarize our key findings and inter-
pretations along with their implications in monotherapy across different cancers for PI3K-
MAPK-CDK in this section and list the rest signaling pathways and their regulatory axes,
namely, MDM2 from cell cycle regulatory pathways, human epidermal growth factor recep-
tor 3 (ERBB3) from receptor pathways, and tubulin from nonkinase pathways in Supplemen-
tary Material Section S6.4 (Yao et al. (2023)). For the following sections, because we wish to
conduct fully-exploratory analyses where we do not assume prior knowledge about treatment
mechanism, we set the threshold of the co-clustering at the 75th percentile of all pairwise
iPCPs. Specifically, we set the cut-off at 0.753, 0.687, and 0.801 for BRCA, CRC, and CM,
respectively; see Supplementary Material Section S6.3 (Yao et al. (2023)) for more details
about cut-off choices under full and partially exploratory settings related to prior knowledge
about monotherapies.

PI3K-MAPK-CDK inhibitors. For treatments targeting PI3K, MAPK, and CDK, treatments
have the same target share high iPCP. In the NIBR-PDXE dataset, three PI3K inhibitors
(BKM120, BYL719, and CLR457), two MAPK inhibitors (binimetinib and CKX620), and
one CDK inhibitor (LEE011) were tested, but different cancers contain different numbers
of treatments. Specifically, all three PI3K inhibitors present in BRCA and CRC, but only
BKM120 is tested in CM; CRC contains two MAPK inhibitors while BRCA and CM only
have binimetinib; LEE011 is tested in all three cancers. In Figure 6 BKM120, BYL719, and
CLR457 share high pairwise iPCPs (box (1)) and all target PI3K for BRCA and CRC (BRCA,
(BKM120, CLR457): 0.8986, (BKM120, BYL719): 0.8002, (BYL719, CLR457): 0.8002;
CRC, (BKM120, CLR457): 0.7555, (BKM120, BYL719): 0.8041, (BYL719, CLR457):
0.7597); MAPK (box (2)) inhibitors, binimetinib, and CKX620, show a high pairwise iPCP in
CRC (0.7792). Aside from the pairwise iPCPs, our model also suggests high multiway iPCPs
among PI3K inhibitors in BRCA (0.8002) and CRC (0.7513). Among these inhibitors, PI3K
inhibitor of BYL719 was approved by FDA for breast cancer; MAPK inhibitor of binime-
tinib was approved by FDA for BRAF mutant melanoma in combination with encorafenib,
and CDK inhibitor of LEE011 was approved for breast cancer.

Our model suggests treatments targeting different pathways also share high iPCP values
across different cancers. Monotherapies targeting different cell cycle regulatory pathways
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FIG. 5. The Rx-tree and iPCP for breast cancer (BRCA, top row), colorectal cancer (CRC, middle row), and
melanoma (CM, lower row). Three panels in each row represent: (left) estimated Rx-tree (MAP), distinct external
target pathway information is shown in distinct shapes for groups of treatments on the leaves, (middle) estimated
pairwise iPCP, that is, the posterior mean divergence time for pairs of entities on the leaves (see the result para-
graph for definition for any subset of entities), and (right) scaled Pearson correlation for each pair of treatments.
Note that the MAP visualizes the hierarchy among treatments; the iPCP is not calculated based on the MAP but
based on posterior tree samples (see definition in Section 3.2).

(PI3K, MAPK, and CDK) exhibit high iPCPs. CDK inhibitor, LEE011, and MAPK in-
hibitors share high pairwise iPCP values in BRCA ((LEE011, binimetinib): 0.7709), CRC
((LEE011, binimetinib): 0.8617, (LEE011, CKX620): 0.7820) and CM ((LEE011, binime-
tinib): 0.8210) in the Figure 6 with box (3). High iPCP among MAPK and CDK in-
hibitors agree with biology, since it is known that CDK and MAPK collaboratively regu-
late downstream pathways such as Ste5 (Repetto et al. (2018)). High pairwise iPCP values
between PI3K and MAPK inhibitors were observed in box (3) in Figure 6. Specifically,
our model suggests high pairwise iPCPs as follows: (i) BRCA, (binimetinib, BKM120):
0.7427, (binimetinib, BYL719): 0.7441, (binimetinib, CLR457): 0.7427)); (ii) CRC, (binime-
tinib, BKM120): 0.7374, (binimetinib, BYL719): 0.7388, (binimetinib, CLR457): 0.7541,
(CKX620, BKM120): 0.7366, (CKX620, BYL719): 0.7357, (CKX620, CLR457): 0.7676));
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FIG. 6. Bar plot of iPCPs for pairs of combination therapies (red bars) and pairs of monotherapies (green
bars): (A) breast cancer, (B) colorectal cancer, and (C) melanoma. The bar plots are sorted by the iPCP values
(high to low); pairs of treatments are shown only if the estimated iPCP is greater than 0.7. Monotherapies have
different known targets which are listed in the bottom-right table (see Section 5.3 for more details and discussion
on monotherapies).

(iii) CM, (binimetinib, BKM120): 0.8882. Aside from the pairwise iPCPs above, high mul-
tiway iPCPs in BRCA (0.7422), CRC (0.7300), and CM (0.8882) also show the similar in-
formation. From the existing literature, both PI3K and MAPK can be induced by ERBB3
phosphorylation (Balko et al. (2012)), and it is not surprising to see high iPCPs between
PI3K and MAPK inhibitors.

5.4. Implications in combination therapy. Based on the concordance between the
monotherapy and biology mechanism, we further investigate combination therapies to iden-
tify mechanisms with synergistic effect. In NIBR-PDXE, 21 combination therapies were
tested, and only one of them includes three monotherapies (BYL719 + cetuximab + en-
corafenib in CRC); the rest contain two monotherapies. Out of 21 combination therapies,
only three do not target any cell cycle (PI3K, MAPK, CDK, MDM2, JAK, and BRAF) path-
ways (see Supplementary Material Table S8 for the full list of combination therapies (Yao
et al. (2023))). From the Rx-tree in Figure 5, combination therapies tend to form a tighter
subtree and are closer to monotherapies targeting PI3K-MAPK-CDK which implies that the
mechanisms under combination therapies are similar to each other and are closer to the PI3K-
MAPK-CDK pathways. We identified several combination therapies with known synergistic
effects and provide a brief description for each of the cancers in the following paragraphs.

Breast cancer. Four combination therapies were tested in BRCA,and three therapies tar-
geting PI3K-MAPK-CDK (BYL719 + LJM716, BYL719 + LEE011, and LEE011 +
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everolimus) form a subtree in Rx-tree with a high three-way iPCP (0.8719). Among these
combination therapies, PI3K-CDK inhibitor, BYL719 + LEE011, suggests a possible syner-
gistic regulation (Bonelli et al. (2017), Vora et al. (2014), Yuan et al. (2019)). Based on the
high iPCP between BYL719 + LEE011 and the remaining two therapies, we suggest syn-
ergistic effect for combination therapies targeting PI3K-ERBB3 (BYL719 + LJM716) and
CDK-MTOR (LEE011 + everolimus) for future investigation.

Colorectal cancer. Our model suggests a high three-way iPCP (0.7437) among PI3K-EGFR
(BYL719 + cetuximab), PI3K-EGFR-BRAF (BYL719 + cetuximab + encorafenib), and
PI3K-ERBB3 (BYL719 + LJM716) inhibitors. Since the triple therapy (BYL719 + cetux-
imab + encorafenib) enters the phase I clinical trial with synergy (Geel et al. (2014)), our
model proposes the potential synergistic effect for PI3K-ERBB3 based on iPCP for future in-
vestigation. Of note, we found a modest iPCP (0.6280) between the FDA-approved combina-
tion therapy EGFR-BRAF (cetuximab + encorafenib) and PI3K-EGFR-BRAF (BYL719 +
cetuximab + encorafenib), and the modest iPCP can be explained by an additional drug-drug
interaction between BYL719 and encorafenib in triple-combined therapy (van Geel et al.
(2017)).

Melanoma. In NIBR-PDXE three combination therapies were tested in CM, and all of
them consist of one monotherapy targeting PI3K-MAPK-CDK and the other one targeting
BRAF. A tight subtree is observed in the Rx-tree, and our model also suggests a high iPCP
(0.9222) among three combination therapies. Since PI3K, MAPK, and CDK work closely
and share a high iPCP (0.8204) among monotherapies in CM, a high iPCP (0.9222) among
three combination therapies is not surprising. Since two combination therapies of BRAF-
MAPK (dabrafenib + trametinib and encorafenib + binimetinib) are approved by FDA for
BRAF-mutant metastatic melanoma (Dummer et al. (2018a, 2018b), Robert et al. (2019)), we
recommend the synergy for BRAF-PI3K (encorafenib + BKM120) and BRAF-CDK (enco-
rafenib + LEE011) inhibitors.

Comparison to alternative approaches. Unlike the probabilistic generative modeling ap-
proach proposed in this paper, standard distance-based agglomerative hierarchical clustering
and Pearson correlation can also be applied to the PDX data to estimate the similarity. How-
ever, simple pairwise similarities can be potentially noisy, and the uncertainty in the estima-
tion is not fully incorporated due to the absence of a generative model. As we showed in
Section 4.1 (Simulation I) that agglomerative hierarchical clustering and the Pearson cor-
relation leads to inferior recovery of the true branching times and the true tree structure
under different data-generating mechanisms mimicking the real data. As further evidence,
we compute pairwise similarities based on Pearson correlation (other distance metrics show
similar patterns) in the right panel of Figure 5. By mapping the original Pearson correlation
ρ ∈ [−1,1] through a linear function ρ+1

2 , we make the range of iPCP and Pearson correla-
tion comparable. We observe that pairwise iPCP, estimated through the DDT model, is less
noisy than Pearson correlation. For example, both iPCP and Pearson correlation in CM show
higher similarities among combination therapy framed by a box, but iPCP exhibits a clearer
pattern than Pearson correlation.

6. Summary and discussion. In translational oncology research, PDX studies have
emerged as a unique study design that evaluates multiple treatments when applied to sam-
ples from the same human tumor implanted into genetically identical mice. PDX systems are
promising tools for large-scale screening to evaluate a large number of FDA-approved and
novel cancer therapies. However, there remain scientific questions concerning how distinct
treatments may be synergistic in inducing similar efficacious responses and how to identify
promising subsets of treatments for further clinical evaluation. To this end, in this paper,
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we propose a probabilistic framework to learn treatment trees (Rx-trees) from PDX data to
identify promising treatment combinations and plausible biological mechanisms that confer
synergistic effect(s). In particular, in a Bayesian framework based on the Dirichlet diffu-
sion tree, we estimate a maximum a posteriori rooted binary tree with the treatments on the
leaves and propose a posterior uncertainty-aware similarity measure (iPCP) for any subset
of treatments. The divergence times of the DDT encode the tree topology and are profitably
interpreted within the context of an underlying plausible biological mechanism of treatment
actions.

From the class of probabilistic models with an unknown tree structure component, we
have chosen the DDT, mainly owing to the availability of a closed-form marginal likelihood
that directly links the tree topological structure to the covariance structure of the observed
PDX data, which additionally decouples the Euclidean and tree parameters; to the best of
our knowledge, this method has not been proposed or explored hitherto for the DDT. The
decoupling leads to efficient posterior inference, via a two-stage algorithm, that confers sev-
eral advantages. The algorithm generates posterior samples of Euclidean parameters through
approximate Bayesian computation and passes the posterior medians to a second stage classi-
cal Metropolis–Hastings algorithm for sampling from the conditional posterior distribution of
the tree given all other quantities. Through simulation studies we show that the proposed two-
stage algorithm generates better posterior tree samples and captures the true similarity among
treatments better than alternatives, such as single-stage MCMC and naive Pearson correla-
tions. The posterior samples of trees are summarized by iPCP, which we propose to measure
the empirical mechanistic similarity for multiple treatments incorporating uncertainty.

Using the proposed methodology on NIBR-PDXE data, we estimate Rx-trees and iPCPs
for five cancers. Among the monotherapies, iPCP is highly concordant with known biology
across different cancers. For example, BKM120 and BYL719 show a high iPCP value among
treatments in breast and colorectal cancer, which corroborates known mechanisms, since both
monotherapies target the same biological pathway, PI3K, and BYL719 was approved by FDA
for breast cancer. The proposed iPCP can also suggest improvements upon an existing com-
bination therapy. We first identify a combination therapy with known synergy (not based
on the our data) and then determine which additional therapies (monotherapies or combi-
nation therapies) have high iPCPs when considered together with the existing combination
therapy. Based on the NIBR-PDXE data, for each cancer we suggest potential synergies be-
tween PI3K-ERBB3 and CDK-MTOR for breast cancer, PI3K-ERBB3 for colorectal cancer,
and BRAF-PI3K and BRAF-CDK for melanoma that could be potentially explored in future
translational studies.

Our current analysis infers treatment trees based on the drug responses from the NIBR-
PDXE dataset which provides treatment similarity information that may be used to guide
potential treatment strategies. However, there are a few limitations. First, the PDX experi-
ments may fail to capture the difference in the microenvironment between the human and
the immunodeficient mouse (Dobrolecki et al. (2016)) which must be considered in dis-
ease contexts when findings are generalized to human. As PDX technology matures, this
can be compensated by better PDX experiments that capture the tumor microenvironment
more precisely. For example, one can use the genetically engineered mice to reconstruct the
human immune system (Abdolahi et al. (2022)), and some studies have started to adapt this
method in the context of immunotherapies (Zhao et al. (2018)). Second, on experimental de-
sign, current literature points to the potential advantage of designs with multiple animals per
treatment and patient (Abdolahi et al. (2022)). We can incorporate the random effects in the
current model of (4) for the multiple-animal-per-patient design, and we refer the reader to
the Supplementary Material Section S7 (Yao et al. (2023)) for more details. Also, to evalu-
ate PDX designs with fewer treatments and patients that is common in coclinical trials (e.g.,
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Koga and Ochiai (2019)), we conducted a simulation for two datasets with a smaller dimen-
sion ((I, J ) = (5,5) and (10,15)) which confirmed the advantage of the proposed method
in terms of recovering treatment similarities (see Supplementary Material Section S5.5 (Yao
et al. (2023))). Finally, from a statistical perspective we have assumed independent patients
without using the underlying patient-specific genomic information that is also available in the
NIBR-PDXE. By including patient-specific genomic information, we may further improve
our ability to identify synergistic treatments that may be specific to a subset of patients. One
approach to utilizing genomic information could be to extend the DDT model to incorporate
patient-specific genomic information in the mean structure or the column covariance of the
marginal likelihood of equation (4). In addition, models with non-Gaussian marginal likeli-
hood and nonbinary treatment tree, in principle, can be defined by considering generative tree
models based on general diffusion processes (Heaukulani, Knowles and Ghahramani (2014),
Knowles and Ghahramani (2015)). Both extensions raise significant, nontrivial methodolog-
ical and computation issues (e.g., deriving tractable likelihoods or finding low-dimensional
summary statistics for new parameters) and constitute the foundation for future work.

SUPPLEMENTARY MATERIAL

Supplementary to “Probabilistic learning of treatment trees in cancer” (DOI:
10.1214/22-AOAS1696SUPPA; .pdf). Detailed proof of Proposition 1, projection of the tree-
structured matrix, and the MCMC algorithm are provided. Additional simulations including
other potential summary statistics and inference on the real parameters are examined. Com-
putation set-up and additional results for the NIBR-PDXE are also included.

Code and data availability (DOI: 10.1214/22-AOAS1696SUPPB; .zip). We also pro-
vide a general purpose code in R that accompanies this manuscript along with all the neces-
sary documentation and datasets required to replicate our results in the compressed archive:
AOAS1696.zip. Furthermore, to aid access and visualization of the results, we have also de-
veloped an R-shiny application (see Supplementary Material Section S6.6 (Yao et al. (2023))).
Our code is also available on https://github.com/bayesrx/RxTree.
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